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Abstract

Stem/progenitor cells, including cardiac-derived c-kit+ progenitor cells (CPCs), are under clinical 

evaluation for treatment of cardiac disease. Therapeutic efficacy of cardiac cell therapy can 

be attributed to paracrine signaling and the release of extracellular vesicles (EVs) carrying 

diverse cargo molecules. Despite some successes and demonstrated safety, large variation in 

cell populations and preclinical/clinical outcomes remains a problem. Here, we investigated 

this variability by sequencing coding and non-coding RNAs of CPCs and CPC-EVs from 

30 congenital heart disease patients and used unsupervised learning methods to determine 

potential mechanistic insights. CPCs retained RNAs related to extracellular matrix organization 

and exported RNAs related to various signaling pathways to CPC-EVs. CPC-EVs are enriched 

in miRNA clusters related to cell proliferation and angiogenesis. With network analyses, we 

identified differences in non-coding RNAs which give insight into age-dependent functionality of 

CPCs. By taking a quantitative computational approach, we aimed to uncover sources of CPC cell 

therapy variability.
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Introduction

Heart disease remains the leading cause of morbidity and mortality in the US, and often 

results in irreversible damage to the myocardium 1. Initially treated by surgery, drugs, or 

transplant, cardiac cell therapy emerged in the early 2000s with the goal to regenerate 

healthy myocardium after injury or disease. Over the years, several stem or progenitor cell 

types have been investigated for the treatment of various ischaemic and congenital heart 

diseases 2,3. In particular, previous preclinical research has shown that cardiac-derived c-kit+ 

cells (CPCs) repair the myocardium after injury 4–6. Of note, our group is involved in 

a current phase I clinical trial investigating CPCs for treatment of hypoplastic left heart 

syndrome, a complex single ventricle congenital heart disease (NCT03406884).

Despite demonstrated safety and some efficacy in cardiac cell therapy preclinical and 

clinical trials, large variation in cell populations and patient outcomes remains a significant 

problem for further developing larger-scale, reliable therapies 2,7. Some of the variance 

in cell populations can be attributed to donor age. Additionally, once isolated, in vitro 

cell culture conditions or manipulations, like hypoxia and cell aggregation, also affect 

cell reparative effects 6,8. Considering the high variability of cell populations, it is thus 

important to identify specific mechanisms of action in order to enhance cell therapy efficacy 

for patients. To this extent, our group has demonstrated that CPCs can repair rat right 

ventricle failure in an age-dependent manner, with neonatal CPCs having the greatest 

reparative capacity 4,9,10. However, there is a dearth of quantitative studies investigating 

the underlying RNA cues driving CPC therapeutic efficacy. We have previously investigated 

the molecular basis for the differences between reparative and non-reparative CPCs with 

RNAseq experiments 4,10, however these studies were not comprehensive, with low sample 

sizes and consideration of only one or two types of RNA.

Originally, transplanted cells for cardiac disease treatment were thought to function via 

engraftment, proliferation, and differentiation. However, transplanted cellular retention is 

low and much of the therapeutic benefit is now attributed to paracrine signaling, including 

the release of extracellular vesicles (EVs) 2. EVs are lipid-bilayer vesicles released from 

cells via exocytosis or budding of the plasma membrane into the extracellular space. 

Once released, neighboring recipient cells may internalize EVs via endocytic processes, 

including direct membrane fusion, lipid-raft based uptake, and receptor-ligand interactions 
11. Importantly, EVs carry and protect diverse molecules, including RNAs, proteins, and 

lipids. The crucial role of EVs in cell therapy has been highlighted in previous work 

demonstrating that the inhibition of EV release diminishes the reparative effect of stem and 

progenitor cells 12. In the context of cardiac cell therapy, this suggests CPCs themselves 

are not the only source of variable RNA signals contributing to repair. Studies have shown 

that the uptake of EVs by resident cardiac cells allows for the transfer of stem or progenitor 
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cell EV cargo and stimulates repair in the injured tissue 2. Despite the well-established link 

between EV release/uptake and repair, our understanding of the signals or cargo molecules 

contributing to these effects is poor, especially given that EV cargo is highly heterogeneous 
13. Importantly, CPCs and CPC-EV RNA content have been studied separately, but never 

together, comparatively.

Given the current limitations surrounding cardiac cell therapy variability, we aimed 

to investigate these discrepancies by performing bulk sequencing of primary CPCs 

from pediatric heart patients and their released EVs. First, we performed conventional 

differential expression analyses to identify key differences between cells and EVs and 

used unsupervised learning methods to reduce dataset dimensionality and summarize the 

data. Then, we systematically investigated the biological significance of our RNA-seq 

experiments with pathway and competitive endogenous RNA network analyses. We utilized 

publicly available datasets to provide greater context and determine the specificity of our 

CPC-EV results, in comparison to other cell types and EVs. Our results highlight the need 

for more quantitative investigations of cardiac cell therapy, and more personalized medicine 

approaches to cell therapy.

Results

Characterization of EVs from neonate, infant, and child CPCs

To characterize CPC-EVs, CPC populations were grown and expanded in 2D culture and 

EVs were isolated from the conditioned media via differential ultracentrifugation (Fig. 

1a). CPCs were previously isolated from cardiac biopsies of neonate (<1 week, n=9), 

infant (1 week – 1 year, n=13), and child (>1 year, n=8) congenital heart disease patients 

(Supplementary Table 1). Bioanalyzer profiles of CPC and CPC-EV RNA revealed distinct 

18S and 28S ribosomal peaks in the CPC RNA, but not in the CPC-EV RNA, confirming 

successful isolation of EVs without cellular contamination (Fig. 1b). Furthermore, total 

RNA from EVs was enriched in small RNAs with a peak ∼22nt, the size of miRNAs. 

CPC-EVs were imaged using transmission electron microscopy and analyzed for size and 

concentration with nanoparticle tracking analysis. Independent of patient cell source, all 

CPC-EVs were 100–140 nm, characteristic of exosomes or small EVs (Fig. 1c and 1d).

CPCs retain ECM-related RNAs and export signaling pathway-related RNAs to EVs

Total RNA sequencing results identified 13,718 and 8,718 expressed RNAs in CPCs and 

CPC-EVs, after filtering out lowly expressed RNAs (Fig. 2a) 14. Dimension reduction with 

principal component analysis (PCA) of the 8,563 commonly expressed RNAs revealed 

distinctive separation of CPC and CPC-EV samples across the first two components, 

cumulatively representing 38% of the total variance (Fig. 2b). Furthermore, an unbiased 

heatmap of the top 1% variable RNAs revealed hierarchical clustering by source: CPC vs. 

CPC-EV (Fig. 2c).

Given that CPC and CPC-EV samples were matched, derived from each patient, we used the 

dream (differential expression for repeated measures) approach to determine differentially 

expressed RNAs between CPCs and CPC-EVs. In total, 4,898 RNAs, or 57% of the 
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commonly expressed RNAs, were differentially expressed with adjusted p-values < 0.05 

(Fig. 2d, Supplementary Table 2)15. The top differentially expressed RNAs in CPCs and 

CPC-EVs are displayed in Table 1. Notably, collagen type IV and VIII chains, integrin 

alpha V, dystroglycan 1, and growth arrest – specific 6 are upregulated in CPCs, and Ras-

related protein Rab-13, dexamethasone-induced Ras-related protein 1, colony stimulating 

factor 1 receptor, and interleukins 33 and 16 are upregulated in CPC-EVs. To further 

determine the biological significance of these differentially expressed RNAs, we performed 

pathway analysis of the top 250 RNAs upregulated in CPCs and CPC-EVs (ranked by 

fold-change). Metascape pathway analysis revealed CPCs were enriched in RNAs associated 

with extracellular matrix (ECM) organization, ECM-receptor interaction, insulin-like growth 

factor transport and immune responses; whereas CPC-EVs were enriched in RNAs involved 

in peptide chain elongation, RNA splicing, and MAPK and G alpha (q) signaling (Fig. 2e, 

Supplementary Tables 3 and 4) 16.

CPC-EVs are enriched in miRNAs involved in cardiac development and cell signaling

We then performed similar miRNAseq analyses: miRNAseq revealed 206 and 641 expressed 

miRNAs in CPCs and CPC-EVs, respectively, after filtering out lowly expressed miRNAs 

(Fig. 3a). PCA of the 193 commonly expressed miRNAs showed clear separation of 

CPC and CPC-EV samples across principal component 1, representing 27.9% of total 

variance (Fig. 3b). Linear regression using the dream approach was used to determine 

the differentially expressed miRNAs between CPCs and CPC-EVs. In total, 126 of 193, 

or 65% of miRNAs were differentially expressed with adjusted p-values <0.05 (Fig. 3c, 

Supplementary Table 5). The top differentially expressed miRNAs are displayed in Table 2. 

Next, we found gene targets for the differentially expressed miRNAs using miRTarBase with 

the criteria that targets be experimentally validated by at least 3 methods (Supplementary 

Table 6). Pathway analysis of the gene targets revealed enrichment of gene ontology (GO) 

pathways involved in vasculature and heart development, VEGFA-VEGFR2, and TGF-beta 

signaling, as well as cell adhesion, differentiation, and apoptosis (Fig. 3d, Supplementary 

Tables 7 and 8).

CPC-EVs contain vesicle biosynthesis and cell cycle-related miRNAs

We investigated the enrichment of well-studied miRNA families and cardiac-related 

miRNAs, with known functions in CPC-EVs (Fig. 4a). Most notably, members of the 

miRNA 17/92 cluster (miR-18a-5p and miR-92a-3p) involved in development and cell 

proliferation are upregulated in CPC-EVs 17–19. Additionally, members of the miRNA 

99/100 family (miR-99a-5p and miR-99b-3p) involved in hematopoietic stem cell renewal 

are also upregulated in CPC-EVs 20.

To understand the specificity of our CPC vs. CPC-EV results, we searched the Gene 

Expression Omnibus (GEO) database for previously published datasets with miRNAseq 

from EVs and their parent cells. We found eleven datasets comprised of many cell types, 

including, various cancer cells, immune cells, and bone marrow mesenchymal stem cells 
21–28. We calculated fold-change values (EV/Cell) for each data set and ranked the miRNAs 

in order of decreasing fold-change value (Fig. 4b). We found our data set was congruent 

with other data sets: our CPC-EVs were enriched in some miRNAs upregulated in other 
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EV types, and our CPCs retained some similar miRNAs to other cell types. Specifically, 

well-studied miR-122-5p, which has been implicated in miRNA EV cargo sorting, was top 

ranked in multiple data sets 29. Nevertheless, there were a handful of unique miRNAs, 

enriched in CPC-EVs, but not in EVs from other cell types. These miRNAs included 

miR-18a-5p and miR-130b-3p. Evidence suggests that miR-18a-5p is anti-apoptotic 30,31, 

while miR-130b-3p is pro-apoptotic, targets insulin-like growth factor 1, and may be cardiac 

harmful 32,33.

Construction of the ceRNA network

Evidence suggests that lncRNAs act as competing endogenous RNAs (ceRNAs) and 

play a key role in regulating RNA expression 34–36. Furthermore, previous work has 

demonstrated that CPCs function in an age-dependent manner: CPCs from neonate patients 

are more reparative than CPCs from older patients 4,37. To gain a comprehensive level of 

understanding of age-dependent CPC ceRNA interactions, we investigated the differentially 

expressed mRNAs, lncRNAs, and miRNAs between neonate and child CPCs. Overall, child 

and neonate CPC RNA profiles were the most dissimilar (Supplementary Fig. 1). PCA of 

coding and non-coding RNAs showed separation of neonate and child CPCs across the first 

three components (Fig. 5a).

We used edgeR/limma to find the top differentially expressed miRNAs (18), lncRNAs 

(134), and mRNAs (505) (|fold-change|>2 and p<0.05) between neonate and child CPCs 

(Supplementary Table 9). Overall, child CPCs were enriched in various non-coding RNAs, 

as compared to neonate CPCs (Fig. 5b and 5c). We then matched differentially expressed 

miRNAs to differentially expressed lncRNAs and mRNAs by putative target sites using 

miRcode and miRTarBase as shown in Fig. 5d 38,39. The resulting ceRNA network consisted 

of 107 nodes and 144 edges (Fig. 5e). The most highly connected nodes included miRNAs: 

miR-218-5p and −8773p upregulated in child CPCs, and −23a-3p, −23b-3p, and −301a-3p, 

upregulated in neonate CPCs. (Table 3, Supplementary Fig. 2). Metascape enrichment 

analysis revealed these nodes are enriched in pathways including, blood vessel development, 

positive regulation of cell cycle, and regulation of Wnt signaling pathway (Supplementary 

Table 10). We analyzed the hub genes in the full ceRNA (Fig. 5e) network using the 

Cytoscape MCODE plug-in. The full network was reduced to the most highly connected 

36 hub nodes, including miRNAs: miR-23a-3p, −23b-3p, 148a-3p, −181a-5p, −218-5p, 

−301a-3p, and −877-3p (Fig. 5f).

Discussion

Several cell types are being clinically evaluated for use in cardiac cell therapy, including 

CPCs (NCT02501811, NCT03351400, NCT03406884). Despite promising preclinical 

results, there remain concerns over variability from different cell populations and cell 

therapy outcomes 40. Specifically, several groups have shown that CPC therapeutic efficacy 

is dependent on patient age and disease, as well as cell culture and expansion conditions 
4,6,41,42. Furthermore, research has shown that cardiac cell therapy efficacy can be attributed 

to paracrine signaling and the release of EVs, rather than cellular engraftment, proliferation, 

and differentiation 2. Therefore, to investigate sources of CPC-therapy variability, we used 
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next generation sequencing methods to determine differences among pediatric primary CPCs 

(n=30 patients) and their respective EVs released in vitro. We analyzed CPC and CPC-EV 

coding and non-coding RNA content and investigated the differences (1) between patient 

matched CPCs and CPC-EVs, and (2) across CPC patient age groups. Previous research has 

investigated differences between stem cells and their EVs, but these studies were limited in 

sample size and focused on miRNA only 43,44. By taking a comprehensive computational 

approach, we gained insight into potential mechanisms of action and sources of variability of 

CPC cell therapy.

First, we determined the differences between CPC and CPC-EV RNA content. For this 

study, we profiled coding and long non-coding RNA using total RNAseq and miRNA with 

small RNAseq. As expected, we found that the greatest contributor to variance across the 

entire dataset was source (cell vs. EV), rather than patient age or sex (Fig. 2b, 2c, 3b, 

Supplementary Fig. 3c and 3d). Using differential expression analysis, we discovered that 

a large portion of RNAs and miRNAs were expressed in only cells or EVs. Further, of 

the intersecting set of RNAs expressed in both cells and EVs, many were differentially 

expressed (adjusted p-values < 0.05, Fig. 2a, 2d, 3a, and 3c). In total, CPCs retained RNAs 

involved in extracellular matrix organization and exported RNAs to EVs involved in various 

signaling pathways (Fig. 2e and 3d).

Importantly, cell type and cell environment affect EV cargo 9,45,46. In the context of cardiac 

cell therapy, stem and progenitor cell-EVs have been shown to carry RNAs with beneficial 

pleiotropic effects—immunomodulatory, anti-fibrotic, anti-apoptotic, pro-angiogenic, pro-

migratory, and pro-proliferative—as compared to their non-progenitor cardiac cell type 

counterparts 2,12,47. Additionally, manipulations affecting parent stem and progenitor cell 

environment, like hypoxia and cell aggregation, affect EV RNA cargo and resulting EV 

efficacy 9,45. Special attention has been paid to EV miRNA cargo, as it plays an important 

role in cardiac repair: signaling between stem or progenitor cells and resident cardiac 

cells 48. Circulating EVs protect internal cargo from degradation and are thus a rich 

source of circulating miRNAs. Our results indicate that CPC-EVs are upregulated in 

several important and well-studied miRNA clusters (Fig. 4a). In particular, members of 

miRNA cluster 17/92 are upregulated in CPC-EVs. The miRNA 17/92 cluster was initially 

discovered as an oncogene and has been shown to promote cardiomyocyte proliferation 
17,19. Furthermore, miR-92a is highly expressed in endothelial cells and is upregulated in 

CPC-EVs (log2fold-change = 1.46, as compared to CPC). Previous studies have shown that 

increasing cellular expression of miR-92a-3p specifically via EV delivery is pro-angiogenic

—promoting cell cycle progression and endothelial-to-mesenchymal transition in endothelial 

cells—whereas direct cell overexpression of miR-92a-3p may be anti-angiogenic 49–51. 

Additionally, members of the miR-23/−24/−27 cluster are implicated in both positive and 

negative regulation of neovascularization and are differentially expressed in CPC and CPC-

EVs 52,53. Overall, identifying well-studied miRNA clusters with known biological roles in 

our CPC-EVs provides greater insight into their potential mechanisms of action in vitro or in 

vivo.

Furthermore, we aimed to differentiate non-specific, EV biogenesis-related RNA cargo from 

CPC-specific, potentially pro-reparative cargo. To do so, we compared the top 15 miRNAs 
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enriched in CPC-EVs and CPCs to publicly available data sets from various cell types—

immune cells, cancer cells, and mesenchymal stem cells—and we found both similarities 

and differences in the top ranked miRNAs. The 4th most upregulated miRNA in CPC-EVs, 

miR-122-5p (log2fold-change = 5.92, Table 2), is upregulated in EVs from other cell types 

(Fig. 4b) and is loaded into EVs via Lupus La protein binding 29. Several other miRNA EV 

sorting mechanisms have been identified, including other RNA-binding protein mechanisms 

and membrane proteins involved in EV biogenesis. For example, three of the miRNAs 

upregulated in CPC-EVs, miR320a, −193a, and −92a (log2fold-change = 1.25, 0.80, 1.46) 

have been shown to be actively loaded into EVs via Argonaute 2, major vault protein, and 

vacuolar protein sorting-associated protein 4 binding, respectively 54–56.

On the other hand, in our comparison to other datasets, we also identified miRNAs 

enriched in CPC-EVs that are not enriched in EVs from other cell types. Most notably, 

miR-18a-5p is upregulated in CPC-EVs (log2fold-change = 5.56) and is a member of 

the pro-proliferative and anti-apoptotic 17/92 miRNA cluster. In contrast to some other 

cell type EVs, miR-501-3p was also identified as a top upregulated miRNA in CPC-EVs. 

A previous report determined that macrophage-derived exosome miR-501-3p promoted 

pancreatic ductal adenocarcinoma cell migration and proliferation 57. Considering treatment 

strategies for cardiac repair strive to promote cell proliferation, miR-18a-5p and miR-501-3p 

may be potent, progenitor cell-specific EV signals driving therapeutic response. Further 

investigation of these miRNAs is warranted. Overall, when understanding the function of 

released EVs in cell therapy, it will be important to discriminate between non-specific, 

machinery-related RNA cargo vs. CPC-specific, potentially beneficial RNA. Elucidating 

CPC-specific EV cargo molecules will help us understand which RNA molecules are driving 

cardiac cell therapy efficacy.

We have previously examined and reported differential CPC mRNA expression across 

neonate, infant, and child age groups in a smaller sample size 10. We have not, however, 

investigated the full RNA landscape and potential interactions of coding and non-coding 

RNAs in CPCs. Importantly, in 2011, Salmena et al. introduced the competing endogenous 

RNA (ceRNA) hypothesis, suggesting that RNA transcripts “talk” to each other via miRNA 

response elements, forming a large-scale transcriptome regulatory network 36. A growing 

body of evidence suggests that lncRNAs play a key role in protein-coding gene regulation 

by acting as miRNA sponges 34–36. Furthermore, non-coding RNAs play an important 

role in cardiac development 58, and CPCs lose their therapeutic functionality as they age 
4,37. Thus, to gain a comprehensive level of understanding of age-dependent CPC ceRNA 

interactions, we investigated the differentially expressed miRNAs, lncRNAs, and mRNAs 

between neonate and child CPCs. We determined that neonate and child CPCs had the 

greatest differences in RNA content. Infant CPCs had an “intermediate” RNA profile and 

were not included in the pairwise ceRNA network analysis (Fig. 5a and Supplementary Fig. 

1) Largely, child CPCs had higher expression of non-coding RNAs, compared to neonate 

CPCs (Fig. 5c). Using the miRcode and miRTarBase target prediction databases, we mapped 

a lncRNA-miRNA-mRNA network of differentially expressed RNAs between neonate and 

child CPCs (Fig. 5d, 5e, and 5f). The resulting network highlighted the importance of highly 

connected miR-218-5p, −181a-5p, −23a-3p, and −23b-3p (Table 3).
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Our findings presented in this report are constrained by CPC in vitro culture conditions. 

Expansion of CPCs for the collection of EVs demands tens of millions of cells, requiring in 

vitro passaging of cells and potentially introducing transcriptome drift. To limit this issue, 

we kept cultures less than or equal to passage nine. The interpretation of these results is 

also limited due to the CPC two-dimensional culture experimental design, which is not ideal 

to recapitulate the in vivo cellular environment. Furthermore, CPC-EVs released from in 

vitro cell cultures may vary from CPC-EVs released from transplanted cells in in vivo and 

clinical models. EV cargo is highly heterogenous and affected by parent cell conditions and 

environment. Previous research in allogenic cardiac cell therapy has addressed this issue by 

collecting exosomes released from human CPCs in rat plasma, after cell transplantation, via 

major histocompatibility complex class I 5. Future efforts to identify CPC-EV markers for 

autologous and allogenic transplant models will assist our efforts to understand CPC-EV 

cardiac repair mechanisms of action.

In conclusion, we sequenced patient-derived CPCs and CPC-EVs and examined the RNA 

profiles with unsupervised learning methods to explore differences in coding and non-

coding RNAs. We determined that CPC and CPC-EV RNA profiles differ and that there 

are age-dependent differences in non-coding RNAs of CPCs. More specifically, CPCs 

retain cell adhesion-related RNAs and export both generic EV transport-related RNAs and 

potential progenitor cell-specific and pro-reparative RNAs involved in cell proliferation 

and neovascularization. Further, child CPCs contain elevated levels of non-coding RNAs, 

compared to neonate CPCs. With this study, we hope to highlight the value of using 

unbiased methods as “precursors” to quickly hone in on potentially important CPC and 

CPC-EV RNAs so that more targeted experimental tests may be performed. Cell therapy 

for children is currently in early clinical trials, and data from our laboratory and others 

show that cells and EVs may independently, or in concert, repair the damaged myocardium 
5,12. Using bulk sequencing to develop tools to computationally assess mechanisms and 

biomarkers in an unbiased manner could improve the outcomes of this promising approach. 

Our work provides further perspective for understanding the mechanism of action of CPCs, 

which is valuable for addressing clinical trial variability.

Materials and Methods

Isolation and Culture of c-kit+ Progenitor Cells (CPCs)

This study was approved by the Institutional Review Board at Children’s Healthcare of 

Atlanta and Emory University. CPCs were isolated by c-kit magnetic bead sorting from 

cardiac biopsies of congenital heart disease patients (Supplementary Table 1) as previously 

described4,59. CPCs were cultured using Hams F-12 medium with 10% fetal bovine serum, 

1% Penicillin-Streptonmycin, 1% L-glutamine, and 0.04% fibroblast growth factor 2.

Extracellular Vesicle (EV) Collection and Characterization

EVs were successfully isolated from 27 of the 30 CPC populations. Briefly, CPCs were 

grown to 90% confluency, washed with PBS, and quiesced with serum free medium for 24 

hours. Conditioned media was collected and subjected to sequential centrifugation: 3000 g 

for 10 min to remove cells, 28,000 g for 30 min to remove cell debris, and 118,000 g for 1 hr 
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54 min to pellet EVs (Optima XPN-100 ultracentrifuge; Beckman Coulter SW 41 Ti rotor). 

EV size and concentration was determined by NanoSight NS300. Samples were diluted 

1:10 in PBS, and three, 60-second video images were captured per sample and analyzed by 

NanoSight NTA 3.4 software.

Next Generation Sequencing

RNA from CPCs and CPC-EVs were isolated with the miRNeasy Mini Kit (Qiagen), 

according to manufacturer’s instructions. Purified RNA was analyzed (2100 Bioanalyzer 

and TapeStation Controller, Agilent Genomics) for miRNA and RNA size, quality, and 

quantity. RNA library preparation and sequencing was conducted by Novogene Co., Ltd 

(Illumina NovaSeq 6000 with PE150 platform) or the Emory Yerkes Nonhuman Primate 

Genomics core (Illumina HiSeq 3000). Sequencing source information for each CPC patient 

is displayed in Supplementary Table 1.

Small RNA sequencing performed at Novogene were trimmed and filtered in the FASTQ 

Toolkit Illumina Basespace app. Truseq adapters (AGATCGGAAGAGC) were trimmed with 

an adapter trim stringency set to 0.90. Reads were filtered to 18–51 length with reads 

passing the FASTQ Toolkit filter. Then, reads were mapped with Bowtie aligner and hg19 

and miRBase v21 references, and mature miRNA hits were determined using the small RNA 

Illumina Basespace app. Small RNA sequencing performed at Emory Yerkes Nonhuman 

Primate Genomics core were aligned and hits were determined using the Qiagen GeneGlobe 

console with QIAseq miRNA Quantification tool. Default parameters were used: 3’ adapters 

were trimmed using cutadapt, reads with less than 16 base pair insert sequences or less 

than 10 base pair unique molecular index sequences were removed, reads were aligned with 

Bowtie aligner, GRCh38 and miRBase v21 references.

Total RNAseq files from Novogene and Emory Yerkes Nonhuman Primate Genomics core 

were aligned, and gene counts were determined with the STAR aligner in the Illumina 

BaseSpace app, RNA-Seq Alignment. Reads were aligned with hg19 reference genome. 

Biotypes were matched to alignment results using the Ensembl based annotation package 

(EnsDb.Hsapiens.v79). miRNAs were considered only from small RNA sequencing and 

were thus removed from the total RNA sequencing set. All of CPC lncRNAseq was 

performed with Novogene. lncRNAs were aligned using STAR with the quantMode 

GeneCounts option and GRCh38 reference 60. Total RNA sequencing counts after filtering 

are presented in Supplementary Tables 11 and 12; miRNA sequencing counts after filtering 

are presented in Supplementary Tables 13 and 14. RNA sequencing and alignment metrics 

are presented in Supplementary Tables 15 and 16.

RNA Sequencing Data Analysis

Data analysis was completed in R. First, raw aligned RNA counts for CPC and CPC-EVs 

were filtered: we removed RNA with zero count entries in ten or more samples and used 

edgeR package’s ‘filterByExpr’ function using the default parameter settings. RNA counts 

were normalized using the edgeR weighted trimmed mean of M-values method (default 

parameters), and transformed into log2 counts per million (logCPM). Principal component 

analyses (PCA) were performed using the ‘prcomp’ built in function. Heatmaps were 
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generated using the pheatmap package with Manhattan distance calculations and ward.D2 

clustering method.

Batch correction of sequencing data (in logCPM) was implemented using the sva package’s 

‘ComBat’ function to correct for sequencing performed at separate sites: Novogene and 

Emory Yerkes Nonhuman Primate Genomics Core (Supplementary Table 1)61. PCA plots 

before and after batch correction are displayed in Supplementary Figs. 3a and 3b. Variance 

explained by each covariate (patient, sex, age (in log10months), type (cell or EV), and 

sequencing site) was assessed before and after batch correction with variancePartition 

package (Supplementary Figs. 3c and 3d) 62. Age was treated as a fixed effect and all 

other categorical covariates were treated as random effects.

For differential expression analysis of CPC and CPC-EV RNA content, we used the dream 

(differential expression for repeated measures) linear mixed modeling approach from the 

variancePartition package to account for patient matched cell and EV data 15. Patient was 

treated as a random effect and the following co-variates were considered: patient, sex, age 

(in log10months), type (cell or EV), batch (sequencing site). Weights were estimated with 

the voomWithDreamWeights function and the cell vs. EV hypothesis test was conducted 

with the dream function (Satterthwaite approximation method). Cell vs. EV differential 

expression analyses were conducted for n=26 patients: Patient 894 was removed because sex 

was not known, and cell sequencing from patients 938, 1048, and 1092, were not included as 

EVs were not sequenced from these patients.

Volcano plots were constructed from linear mixed model results using the EnhancedVolcano 

package. Correspondence between PCA variable loadings and differential expression 

analysis results, presented in volcano plots, is displayed in Supplementary Fig. 4. 

miRTarBase was used to identify miRNAs with known targets (validated by at least three 

assays) 39. Biological pathway enrichment analyses were performed using Metascape 16.

Data Mining

We probed previously published datasets containing miRNA data from parent cells and their 

EVs 21–28. GEO2R was used to determine the differential expression of EV vs. cell miRNAs 

(Benjamini Hochberg p-value adjustment)63. miRNAs in each dataset were ranked from 

largest to smallest log2fold-change (EV/Cell). To account for different sized datasets, ranks 

were scaled within their respective study using the ‘smoothPalette’ function in the tagcloud 

package, before plotting with the scales package in R. Data mining results are presented in 

Supplementary Table 17.

ceRNA Network Construction

Differentially expressed RNAs (neonate vs. child CPCs) were determined using edgeR 

and limma/voom method. Reads from total RNA, lncRNA, and miRNA CPC sequencing 

were filtered: we removed RNA with zero count entries in ten or more samples and 

used edgeR package’s ‘filterByExpr’ function with the default parameter settings. Total 

RNA, miRNA, and lncRNA models were built using all CPC data (neonate, infant, and 

child) with the following covariates: age group, sex, and batch (sequencing site). Counts 

were transformed to logCPM values and weights for linear modeling were computed 

Hoffman et al. Page 10

Genomics. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using the limma voom function. Linear models were fit. Then, contrast matrices for 

age groups were created (neonate – child, neonate – infant, infant – child), coefficients 

were estimated, and moderated statistics were computed with empirical Bayes moderation. 

Differentially expressed RNAs between neonate and child groups were identified using 

the topTable function. Differential expression results for lncRNA sequencing are presented 

in Supplementary Table 18. The differentially expressed miRNAs (18) were matched to 

differentially expressed lncRNAs (134) by miRcode and differentially expressed mRNAs 

(505) by miRTarBase (|fold-change|>2 and p<0.05). The resulting RNAs that were matched 

within the set were displayed in a network with Cytoscape 64. The full network (107 nodes, 

144 edges) was reduced to the most highly connected hubs (36 nodes, 75 edges) using the 

MCODE plug in.

Furthermore, we investigated the age-related differences in CPC RNAs in a quantitative 

approach by transforming patient age to log10months. We constructed linear models with 

age (continuous), sex, and batch (if applicable) covariates, as before. We compared the 

differentially expressed RNAs (p<0.05) determined by this quantitative method with the 

differentially expressed RNAs determined by the categorical method above (age as neonate, 

infant, or child). The results are displayed in Supplementary Fig. 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• C-kit+ progenitor cells retain and release specific RNAs to EVs

• CPC-EVs contain miRNA related to cell proliferation, not found in other cell 

type EVs

• CPCs derived from older patients are enriched in non-coding RNA
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Figure 1. CPC-EV isolation and characterization.
a Schematic of study: CPCs and CPC EV miRNA and total RNA are sequenced and 

analyzed (created from Biorender.com).

b Bioanalyzer profile for patient matched CPC and CPC-EV RNA content.

c Transmission electron microscopy image of CPC EV. Scale bar, 100 nm.

d Vesicle size distribution histogram by nanoparticle tracking analysis in neonate, infant, and 

child CPC-derived EVs. Shaded region indicates standard error.
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Figure 2. Differential expression of CPC and CPC-EV total RNAseq.
a RNAs expressed in CPCs and CPC EVs.

b PCA plot of CPC and CPC EVs show clustering by RNA source across PC1.

c Heatmap of top 1% variable RNAs show clustering of samples by source: cell and EV.

d Volcano plot of differentially expressed RNAs in CPCs and CPC EVs.

e Network of top enriched terms from differentially expressed RNAs upregulated in CPCs 

(red) vs. EVs (blue) using the Metascape tool.
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Figure 3. Differential expression of CPC and CPC EV miRNAseq.
a miRNAs expressed in CPCs and CPC EVs.

b PCA plot of CPC and CPC EVs show clustering by RNA source across PC1.

c Volcano plot of differentially expressed miRNAs in CPCs and CPC EVs.

d GO pathway enriched terms from differentially expressed miRNA gene targets, as 

determined by miRTarBase.
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Figure 4. Differential expression of well-studied CPC and CPC-EV miRNAs and miRNA 
clusters.
a Differential expression of well-studied miRNAs in CPCs and CPC-EVs.

b Our study’s top 15 miRNAs up (red) and down (blue) regulated in EV samples plotted 

with rank of top enriched miRNAs from 11 publicly available databases. GEO database 

numbers listed on top; white color indicates no available miRNA expression (NA).
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Figure 5. ceRNA network of neonate and child CPCs.
a PCA plot of CPC coding and non-coding CPC RNAs (PC1, PC2, PC3) show clustering by 

patient age group.

b Volcano plot of differentially expressed non-coding RNAs between neonate and child 

CPCs. Thirty-six and 98 RNAs are upregulated in neonate and child cells, respectively.

c Fold-change values for each RNA in various categories. RNAs upregulated in child CPCs 

(purple), compared to neonate CPCs (yellow). N represents number of measured RNAs in 

each category.

d Schematic for ceRNA network construction: differentially expressed RNAs between 

neonate and child CPCs were matched in miRcode and miRTarBase by putative target sites.

e Full ceRNA network of differentially expressed RNAs (neonate vs. child CPCs) with 107 

nodes and 144 edges.

f Reduced MCODE network of the most highly connected RNA nodes.
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Table 1.

RNAs preferentially released to EV and retained in cell

RNA Log2(EV/Cell) padj RNA Log2(Cell/EV) padj

CA11 7.56 ** CPA4 5.78 ***

RAB13 7.26 *** OSMR 5.44 ***

RASD1 6.56 ** COL8A1 5.40 **

PLEKHA4 6.51 *** OXTR 5.37 **

NEFM 6.49 ** FSTL3 5.36 ***

C1orf115 6.26 ** GDF6 5.15 **

ANP32B 6.01 *** TNFRSF11B 5.07 **

NET1 5.90 *** COL4A1 5.00 ***

C22orf46 5.76 *** RECK 4.94 **

CSF1R 5.57 ** CHPF 4.91 **

KIF21B 5.57 * SLC16A3 4.89 **

TRAK2 5.52 *** P3H4 4.87 ***

ERG 5.50 ** EDIL3 4.82 **

CDC42BPG 5.50 ** UGCG 4.81 **

IL33 5.42 * TRAM2 4.79 **

IL16 5.31 * ANGPTL4 4.78 **

DNAH10 5.31 * MEGF6 4.75 **

CGNL1 5.26 *** GAS6 4.69 **

PITPNM3 5.25 ** IGFBP3 4.65 **

SPTBN4 5.06 * B4GALT1 4.64 **

ROCK1P1 5.00 * ARSJ 4.63 **

GUCY1A2 4.88 * CD248 4.60 **

KIAA1211 4.87 * PKD1 4.59 **

CCDC88C 4.79 * ITGA5 4.58 **

FLG 4.79 * DAG1 4.58 **

*
p < 0.01

**
p < 1e-5

***
p < 1e-10
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Table 2.

miRNAs preferentially released to EV and retained in cell

miRNA Log2(EV/Cell) padj RNA Log2(Cell/EV) padj

hsa-miR-486-5p 7.49 *** hsa-miR-29b-3p 4.05 ***

hsa-miR-203a-3p 6.58 ** hsa-miR-379-5p 3.39 ***

hsa-miR-589-5p 6.01 ** hsa-miR-27a-3p 3.28 ***

hsa-miR-122-5p 5.92 ** hsa-miR-31-5p 3.24 **

hsa-miR-18a-5p 5.56 ** hsa-miR-411-5p 3.17 **

hsa-miR-130b-3p 5.25 ** hsa-miR-30a-5p 3.16 ***

hsa-miR-320c 4.84 ** hsa-miR-454-3p 3.04 **

hsa-miR-1180-3p 4.27 *** hsa-let-7e-5p 2.93 ***

hsa-miR-760 4.26 ** hsa-let-7f-5p 2.82 ***

hsa-miR-299-5p 4.16 ** hsa-miR-27b-3p 2.73 ***

hsa-miR-92b-5p 4.15 ** hsa-miR-29a-3p 2.61 ***

hsa-miR-339-3p 4.15 * hsa-miR-143-5p 2.52 **

hsa-miR-125a-3p 3.93 * hsa-miR-30e-5p 2.48 **

hsa-miR-494-3p 3.82 ** hsa-miR-21-5p 2.48 ***

hsa-miR-501-3p 3.66 ** hsa-miR-103a-3p 2.45 ***

hsa-miR-500a-3p 3.56 * hsa-miR-27a-5p 2.41 *

hsa-miR-184 3.26 * hsa-let-7a-5p 2.35 **

hsa-miR-127-5p 3.23 * hsa-miR-134-5p 2.32 *

hsa-miR-4661-5p 3.15 * hsa-miR-143-3p 2.30 **

hsa-miR-197-3p 3.15 ** hsa-miR-431-5p 2.16 *

hsa-miR-214-3p 3.00 * hsa-miR-24-3p 2.13 ***

hsa-let-7d-3p 2.91 *** hsa-miR-493-3p 2.12 **

hsa-miR-1287-5p 2.90 * hsa-miR-16-5p 2.12 ***

hsa-miR-320b 2.82 * hsa-miR-450b-5p 2.06 *

hsa-miR-92b-3p 2.76 ** hsa-miR-152-3p 1.98 ***

*
p < 0.01

**
p < 1e-5

***
p < 1e-10
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Table 3.

ceRNA network hub connectivity

RNA Type Name Node Degree

miRNA miR-218-5p 31

miRNA miR-181a-5p 22

miRNA miR-23a-3p 20

miRNA miR-23b-3p 18

miRNA miR-148a-3p 17

miRNA miR-877-3p 13

miRNA miR-301a-3p 13

lncRNA RP11-115D19.1.1 5

lncRNA PCA3 5

lncRNA AC092594.1.1 4

lncRNA AC108142.1.1 4

mRNA MYLIP 3

lncRNA CTD-2541J13.1.1 3

lncRNA MIR143HG 3

lncRNA RP11-184M15.1.1 3

lncRNA RP11-3P17.4.1 3

lncRNA RP11-471J12.1.1 3

lncRNA SNHG5 3

lncRNA AC016683.6.1 3
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