Table 3.
Classifier | SEN | SPE | PRE | GM | FPR | F1 | ACC | AUC | |
---|---|---|---|---|---|---|---|---|---|
LR | Training Dataset | 0.5000 | 0.7926 | 0.5232 | 0.5744 | 0.2074 | 0.5067 | 0.7026 | 0.7068 |
Testing Dataset | 0.8462 | 0.3529 | 0.7500 | 0.5465 | 0.6471 | 0.7952 | 0.6964 | 0.7029 | |
RF | Training Dataset | 0.3667 | 0.9704 | 0.9449 | 0.5782 | 0.0296 | 0.5105 | 0.7862 | 0.8065 |
Testing Dataset | 0.2941 | 0.9744 | 0.8333 | 0.5353 | 0.0256 | 0.4348 | 0.7679 | 0.8054 | |
NB | Training Dataset | 0.3833 | 0.8296 | 0.5958 | 0.5338 | 0.1704 | 0.4308 | 0.6923 | 0.6932 |
Testing Dataset | 0.8718 | 0.3529 | 0.7556 | 0.5547 | 0.6471 | 0.8095 | 0.7143 | 0.7164 | |
SVM | Training Dataset | 0.3667 | 0.8963 | 0.8269 | 0.5580 | 0.1037 | 0.4563 | 0.7333 | 0.7883 |
Testing Dataset | 0.8974 | 0.4118 | 0.7778 | 0.6079 | 0.5882 | 0.8333 | 0.7500 | 0.7617 | |
XGBoost | Training Dataset | 0.5167 | 0.9185 | 0.7972 | 0.6341 | 0.0815 | 0.6049 | 0.7949 | 0.7988 |
Testing Dataset | 0.7949 | 0.6471 | 0.8378 | 0.7172 | 0.3529 | 0.8158 | 0.7500 | 0.7459 |
RF, Random Forest; NB, Naïve Bayes; SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; SEN, sensitivity ;SPE, specificity; PRE, precision; GM, geometric mean; FPR, false positive rate; ACC, accuracy; AUC, area under ROC. LR, Logistic Regression.