Skip to main content
. 2022 Sep 12;12:964605. doi: 10.3389/fonc.2022.964605

Table 3.

Evaluation indicators of predictive performance of five models in HER2-overexpressed and Non-HER2-overexpressed groups.

Classifier SEN SPE PRE GM FPR F1 ACC AUC
LR Training Dataset 0.5000 0.7926 0.5232 0.5744 0.2074 0.5067 0.7026 0.7068
Testing Dataset 0.8462 0.3529 0.7500 0.5465 0.6471 0.7952 0.6964 0.7029
RF Training Dataset 0.3667 0.9704 0.9449 0.5782 0.0296 0.5105 0.7862 0.8065
Testing Dataset 0.2941 0.9744 0.8333 0.5353 0.0256 0.4348 0.7679 0.8054
NB Training Dataset 0.3833 0.8296 0.5958 0.5338 0.1704 0.4308 0.6923 0.6932
Testing Dataset 0.8718 0.3529 0.7556 0.5547 0.6471 0.8095 0.7143 0.7164
SVM Training Dataset 0.3667 0.8963 0.8269 0.5580 0.1037 0.4563 0.7333 0.7883
Testing Dataset 0.8974 0.4118 0.7778 0.6079 0.5882 0.8333 0.7500 0.7617
XGBoost Training Dataset 0.5167 0.9185 0.7972 0.6341 0.0815 0.6049 0.7949 0.7988
Testing Dataset 0.7949 0.6471 0.8378 0.7172 0.3529 0.8158 0.7500 0.7459

RF, Random Forest; NB, Naïve Bayes; SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; SEN, sensitivity ;SPE, specificity; PRE, precision; GM, geometric mean; FPR, false positive rate; ACC, accuracy; AUC, area under ROC. LR, Logistic Regression.