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• Background and Aims Decomposition is a major ecosystem process which improves soil quality. Despite 
that, only a few studies have analysed decomposition in an agricultural context, while most agrosystems (e.g. 
vineyards) are facing decreasing soil quality. The objective of this study is to understand the impacts of both 
pedoclimate and weed management on the mass loss of vineyard weed communities during the early stages of the 
decomposition process through their functional properties.
• Methods In 16 Mediterranean vineyards representing both a pedoclimate and a soil management gradient, 
we measured the mass loss of green above-ground biomass of 50 weed communities during decomposition in 
standard conditions and key leaf traits of dominant species [e.g. leaf dry matter content (LDMC) and leaf lignin to 
nitrogen ratio (lignin:N)]. Both the mean [i.e. community-weighted mean (CWM)] and diversity (i.e. Rao index) 
were computed at the community level. Path analysis was used to quantify the effects of agro-environmental filters 
on the mass loss of weed communities through their functional properties.
• Key Results Tillage and mowing filtered more decomposable communities than chemical weeding (16 and 8 
% of higher mass loss after 2 months of decomposition). Path analysis selected weed management practice type 
as the main factor determining mass loss through its effect on functional properties, while soil and climate had 
minor and no effects, respectively. Chemical weeding favoured communities with higher investment in resistant 
leaves (e.g. 38 % higher lignin:N, 22 % lower leaf nitrogen content) which resulted in lower mass loss compared 
with tilled and mowed communities. Mowing favoured communities with 47 % higher biomass and with 46 % 
higher nitrogen content.
• Conclusions Weed management significantly influenced weed mass loss, while the pedoclimate had little 
effect. Our results suggest that mowing is a promising alternative to herbicide use, favouring higher biomass, ni-
trogen content and decomposability potential of weeds.

Key words: Mass loss, decomposition, weeds, vineyards, trait-based approach, community-weighted means, Rao, 
functional diversity, soil management practices, soil characteristics, climate.

INTRODUCTION

Understanding how weed communities respond to environ-
mental filtering in agrosystems (e.g. annual crops or perennial 
crops) and affect ecosystem processes is essential to designing 
and managing agroecosystems (Damour et al., 2018). In these 
systems, both environmental conditions (e.g. climate and soil 
characteristics) and agricultural practices (e.g. weed man-
agement) filter weed species according to their trait values, 
resulting in constrained functional properties at the commu-
nity level (Booth and Swanton, 2002). Mediterranean vine-
yard flora is a relevant model to better understand both weed 
response to these agro-environmental filters and weed ef-
fects on the processes occurring in agrosystems. Indeed, the 
Mediterranean climate exerts strong environmental filters on 
the plant communities such as summer drought filtering (de la 
Riva et al., 2016) to which species must adapt through their 

trait values (Rota et al., 2017). Moreover, weed management 
is quite diversified in vineyards (Winter et al., 2018): recent 
studies showed that each weed management type (i.e. chem-
ical weeding, tillage and mowing) filters weed functional 
properties in different ways (MacLaren et al., 2019; Hall et 
al., 2020; Guerra et al., 2021; Bopp et al., 2022). For instance, 
tillage exerts strong and frequent disturbance on weed com-
munities (Gaba et al., 2014; Kazakou et al., 2016). Such a 
highly disturbed environment favours acquisitive species with 
high photosynthetic activity per unit of dry mass invested in 
the leaves [high specific leaf area, i.e. leaf area to leaf dry 
mass; and low leaf dry matter content (LDMC), i.e. leaf dry 
mass to leaf fresh mass ratio] (Kazakou et al., 2016; Hall et 
al., 2020; Guerra et al., 2021; Bopp et al., 2022). On the con-
trary, mowing removes partially weed biomass and can be 
considered a disturbance with lower intensity compared with 
tillage (Kazakou et al., 2016). Several studies demonstrated 
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that weed communities developing in mowed vineyards had 
more conservative strategies, producing more expensive and 
resistant leaves, that are consequently less efficient for the 
photosynthesis per unit of dry mass (high LDMC and low 
specific leaf area) (Kazakou et al., 2016; Hall et al., 2020; 
Mainardis et al., 2020; Guerra et al., 2021; Bopp et al., 2022). 
The strategies that weed communities can develop under 
chemical weeding are less clear. Even if herbicides can also be 
considered as high-intensity disturbances as the whole weed 
biomass is destroyed (Gaba et al., 2014), studies found con-
trasting results: more acquisitive strategies (Hall et al., 2020; 
Bopp et al., 2022) or more conservative strategies (MacLaren 
et al., 2019; Guerra et al., 2021).

Vineyards are facing major soil quality issues due to man-
agement intensification, and studying how weed management 
could improve soil quality is of utmost importance (Garcia et 
al., 2018; Novara et al., 2018). In vineyards, weed biomass is 
destroyed by management practices before plant senescence. 
The biomass is returned to the soil and can therefore be used as 
green manure to improve soil quality (Steenwerth et al., 2016). 
Weed decomposition is one of the major processes involved in 
nutrient and carbon cycling (Buchholz et al., 2017; Pingel et 
al., 2019) and to a certain extent soil organic matter (SOM) 
and nutrient availability (Liu et al. 2020). In Californian vine-
yards, Steenwerth et al. (2016) demonstrated that the above-
ground biomass of the weeds contained 93 kg ha–1 of nitrogen, 
which could contribute to meeting the nitrogen requirement of 
the vineyards (20–90 kg N ha–1) (Metay et al., 2014; Verdenal 
et al., 2021). However, to our knowledge, no study has assessed 
the decomposition potential of the biomass produced by weeds 
in vineyards.

In natural and semi-natural ecosystems, the links between 
traits and decomposition have been largely studied on litters, 
naturally occurring in these extensively managed systems. 
Historically, litter decomposition has been mostly explained 
by litter traits (e.g. Melillo et al., 1982; Gallardo and Merino, 
1993), but several studies have shown that green leaf traits 
related to plant resource-use strategies were also good pre-
dictors (e.g. Cornelissen and Thompson, 1997; Kazakou 
et al., 2006). Leaf structural traits such as LDMC quantify 
plant investment in tough, resistant and long-lived leaf struc-
tures leading to low decomposition potential (Garnier et al., 
2004; Kazakou et al., 2006, 2009). These structural leaf traits 

were also found to relate to leaf fibre content (lignin, hemi-
cellulose and cellulose) which was also negatively correlated 
with decomposition (Kazakou et al., 2006; Kurokawa and 
Nakashizuka, 2008; Bumb et al., 2018). Other chemical traits 
such as leaf nitrogen content (LNC) are also good predictors 
of decomposition (Freschet et al., 2010). Indeed, LNC is re-
lated to nutrient acquisitive strategies associated with low leaf 
carbon investment in leaf structure leading to high decompos-
ition potential (Cornwell et al., 2008; Eichenberg et al., 2015).

To scale up from species to community scale, the mass ratio 
hypothesis states that trait values of the most dominant species 
within the communities are the main drivers of ecosystem pro-
cesses (Grime, 1998; Garnier et al., 2004). Thus, it is expected 
that the community-weighted means (CWM, i.e. species-
specific mean leaf trait values weighted by the abundance in 
the community) of traits related to decomposition would drive 
the decomposition process (Garnier et al., 2004; Fortunel et al., 
2009). In addition to considering the trait values of the dominant 
species of communities, the variability of trait values within 
communities might give a complementary understanding of 
the mechanisms driving decomposition (García-Palacios et al., 
2017). Indeed, a recent meta-analysis demonstrated that mixed 
litters (i.e. composed of several species) decomposed from 
2 % to 4 % more rapidly than the expected average value of 
decomposition from single-species litter experiments (Liu et 
al., 2020). This synergistic effect of litter mixing can be ex-
plained by higher trait dissimilarities (Porre et al. 2020). Rao’s 
quadratic entropy (Rao), i.e. the average of trait dissimilarity 
represented by the different species making up a community 
(Botta-Dukát, 2005), is an index widely used to measure the 
dissimilarity of single-trait or multi-trait value distributions (de 
Bello et al., 2016). For instance, LNC variability was found 
to be positively correlated with decomposition (Plazas-Jiménez 
and Cianciaruso, 2021). This synergistic effect was explained 
by nutrient transfers from high-quality litters (high LNC, low 
leaf lignin:N) to low-quality litters under nutrient-limited con-
ditions, resulting in an overall higher decomposition (Handa et 
al., 2014; Finerty et al., 2016). In contrast, the release of inhibi-
tory secondary compounds (e.g. lignin and polyphenols) may 
induce antagonist effects (Hättenschwiler et al., 2005; Kou et 
al., 2020).

The general objective of the present study was to under-
stand the indirect impacts of weed management, fertilization 
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Fig. 1. Relationships between climate, soil, and agricultural practice drivers, structural and chemical leaf traits and the mass loss of green organs of weed commu-
nities in vineyards. In this conceptual framework, we assume that the mass loss of green organs is impacted by agro-environmental filters through their effect on 
the functional properties of plant communities (arrows 2) and the relationships between the functional properties and the mass loss of green organs (arrows 3). We 

also assume that agro-environmental drivers (arrows 1) interact with each other. CWM, community-weighted mean; RaoQ, Rao quadratic entropy. 
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and pedoclimatic conditions on mass loss of ‘green’ weed 
biomass through several leaf functional properties (CWM 
and Rao) (Fig. 1). In tilled and chemically weeded vine-
yards (i.e. disturbed environments), we expected that com-
munities would develop acquisitive strategies with a high 
photosynthesis rate per unit of invested dry mass [high LNC, 
low LDMC, low leaf fibre content and low leaf carbon to 
nitrogen ratio (C:N)] and thus high decomposability. In con-
trast, we hypothesized that mowing would select communi-
ties composed of species with conservative strategies, with 
lower photosynthetic activity per unit of dry mass and more 
resistant leaves (higher LDMC, higher fibre content, lower 
LNC and higher leaf C:N), resulting in a lower mass loss 
potential through decomposition. To test these hypotheses, 
we assessed the mass loss of 50 communities after 2 months 
of decomposition, with biomass that was sampled before 
the senescence in a network of 16 Mediterranean vineyards 
characterized by a pedoclimate and weed management gra-
dient. We first assessed how agricultural practices (weed 
management) and pedoclimate affected the weed community 
functional properties (Fig. 1, arrows 2), considering pos-
sible interactions between agro-environmental filters (Fig. 
1, arrows 1). We then explored the relationships between 
weed community functional properties and weed mass loss 

through decomposition (Fig. 1, arrows 3). Finally, we tested 
the overall framework using path analysis.

MATERIALS AND METHODS

Pedoclimate characterization of the vineyard network

Plant material was collected in 16 vineyards around 
Montpellier, France (Fig. 2). The Mediterranean climate of 
this region is warm (mean annual temperature of 14.7 °C) and 
quite dry (annual rainfall of 818 mm with 33 % of the rainfall 
occurring in October and November) with a mean aridity index 
of 0.68 (i.e. the ratio between annual rainfall and potential 
evapotranspiration) (Table 1). The soil was sampled from the 
0–10 cm topsoil layer within the inter-rows of the vineyards (i.e. 
the free space between the rows of the vines): ten samples were 
collected in different inter-rows within the same vineyard and 
mixed to get one sample per vineyard. Thus, in total, measure-
ments were conducted on 16 soils. Soil textures (NF X 31-107 
method), SOM (NF ISO 14235) and pH (NF ISO 10390) of the 
16 samples were measured. The vineyard network is character-
ized by a wide range of soil textures, from sandy soils near the 
Mediterranean Sea to clayey and silty soils on the northern part 
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of the network (Table 1). The organic matter content of soils is 
quite low (19.2 g kg–1 on average) but is highly variable among 
the vineyards (from 7.6 to 50 g kg–1). Soils are mostly alkaline 
(pH mean value of 8.3).

Weed management and fertilization practices within the vineyard 
network

Weed management and fertilization practices were re-
corded through surveys of the 16 farmers of the network. The 
questionnaire was composed of 61 questions with open and 
multiple-choice answers divided into three sections: (1) farm 
characteristics (area, wine valorization and labels); (2) vineyard 
characteristics (topography, vine density, grape variety, fertil-
ization, manure and irrigation); and (3) cultural calendar of 
weed management practices of rows and inter-rows from 2015 
to 2020 (type and date of each practice, agricultural machinery, 
the dose of chemical weeding, the type of herbicide used and 
the depth of tillage).

In this study, we selected two types of soil management 
practice variables in the inter-rows: (1) four variables that char-
acterize the disturbance gradient of the vineyard network de-
scribed by weed management practice types (tillage, chemical 
weeding and mowing) and weed management frequency; and 
(2) one variable quantifying fertilization related to the gradient 
of the management of soil nutrient resources by farmers (Table 

2). The frequency of weed management disturbance was as-
sessed using the annual number of weed management prac-
tices in the inter-rows: the number of chemical weeding (Nb.
Chem), tillage (Nb.Till) and mowing (Nb.Mow). Moreover, 
the annual longest period between two weed destructions by 
tillage or chemical weeding (Sc.dur) was used to describe the 
overall inverse of frequency-disturbing events at the inter-row 
level. Mowing was not considered a totally destructive disturb-
ance because it partially removes weed biomass. Fertilization 
was described by the annual nitrogen fertilization input (Ferti). 
To consider the cropping system history of each vineyard, 
each soil management variable was quantified and averaged 
over the last 5 years before the sampling. A principal compo-
nent analysis (PCA) was performed based on all these scaled 
variables (PCA function of the FactoMineR R package) and 
hierarchical clustering was carried out on the first two axes of 
the PCA to define groups of vineyards sharing similar agricul-
tural practices (HCPC function of the FactoMineR R package) 
(Le et al., 2008). Three main management types were selected 
by the hierarchical clustering (Supplementary Data Fig. S1). 
Cluster 1 groups seven vineyards dominated by tillage prac-
tice and higher nitrogen input than the other vineyards over the 
5 last years before the experiment (Till-1, Till-2, Till-3, Till-
4, Till-5, Till-6 and Till-7), cluster 2 includes four vineyards 
managed by mowing (Sc-1, Sc-2, Sc-3 and Sc-4) and cluster 3 
gathers the five chemically weeded vineyards (Chem-1, Chem-
2, Chem-3, Chem-4 and Chem-5) (Fig. 2).

Table 1. Range of climate and soil characteristics of the 16 vineyards

Factor type Variables Abbreviation Unit Mean (min–max) Coefficient of variation 

Climate Mean annual temperature – °C 14.7 (13.7–15.9) 5.0 %

Annual rainfall – mm 818 (554–929) 14.3 %

Aridity index AI – 0.68 (0.45–0.82) 18.0 %

Soil Silt content Silt g kg–1 356 (146–634) 30.7 %

Sand content Sand g kg–1 429 (174–704) 30.6 %

pH pH – 8.3 (6.7–8.8) 6.7 %

Soil organic matter SOM g kg–1 19.2 (7.6–50.0) 48.7 %

The climatic data were extracted from the SAFRAN grid of Meteo France from 2015 to 2020 (Quintana-Seguí et al. 2008).

Table 2. Characteristics of weed management and fertilization practices within the vineyard network (mean, minimum and maximum) 
per weed management type

 Management variables Chemical weeding (Chem)
mean (min–max) 

Mowing (Mow)
mean (min–max) 

Tillage (Till)
mean (min–max) 

Annual number of tillage of inter-rows (Nb.Till) 0.1 (0–0.5) 0 2.5 (1.2–4.3)

Annual number of mowing of inter-rows (Nb.Mow) 0.7 (0–1.5) 2.2 (1–4) 0.7 (0–1.5)

Annual number of chemical weeding of inter-rows (Nb.Chem) 1.0 (0.8–1) 0 0.16 (0–0.5)

Number of days of the most extended period between two weed 
destructions by tillage or chemical weeding (Sc.dur)

308 (195–341) 365 189 (127–269)

Annual nitrogen fertilization input in kg ha–1 (Ferti) 6.9 (0–14.6) 3.2 (0–12.9) 9.2 (0.7–18.2)

All the variables were averaged over the period 2015–2020.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
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Characterization of covariations of the soil, climate and weed 
management practices

Covariations between soil management (number of tillage 
operations, mowing, chemical weeding and fertilization input), 
soil characteristics (soil organic matter, pH, sand and silt 
percentage of soils) and climate (aridity index) were investi-
gated by performing a PCA including all these variables (see 
Supplementary data Fig. S2 for more details) and the signifi-
cance of the correlations was estimated using the Pearson cor-
relation test with P-values corrected using the Holm method 
(Supplementary data Table S1). Only three correlations were 
significant: a negative correlation between silty and sandy soils 
(correlation coefficient: –0.77); a negative correlation between 
sandy soils and mowing (correlation coefficient: –0.75); and a 
negative correlation between tillage and the maximum duration 
of spontaneous cover cropping (correlation coefficient: -0.89).

Floristic composition of weed communities

In each vineyard, four quadrats of 60 × 60 cm were randomly 
placed in neighbouring inter-rows, delimiting four distinct 
weed communities per vineyard. In total, 64 weed communi-
ties (4 quadrats × 16 vineyards) were characterized in the vine-
yard network and 82 species were identified. We sampled plant 
communities in March 2020 before the first weed management 
practices. In each quadrat, the plant species were identified and 
their covers were quantified to estimate their relative abun-
dances. Applying the mass ratio hypothesis (Grime, 1998), we 
identified the list of the most abundant species for each commu-
nity that covered at least 80 % of the quadrats to measure their 
leaf traits (Garnier et al., 2004). As there were missing data, to 
reach 80 % of the communities with trait values, we only kept 
the quadrats for which we had the trait values to reach 80 % of 
the cover for the result analyses (in total 50 quadrats of the 64).

Measurement of mass loss of green organs during decomposition

To assess decomposition potential, we set up a standard-
ized laboratory bioassay following Wardle et al. (1998) by 
controlling temperature and humidity, with similar soil con-
ditions and decomposer populations, while maintaining a suf-
ficiently natural situation so that the results of bioassay tests 
may be extrapolated to the field situation. This bioassay has 
the advantage of measuring mass loss as influenced by biomass 
quality in a shorter period than in ‘litter beds’ [8 weeks of in-
cubation in microcosms corresponds to 9 months of incubation 
in ‘litter beds’ in the Mediterranean climate (Kazakou, 2006), 
data not shown]. To quantify the potential decomposition of the 
‘fresh’ or ‘green’ biomass that would constitute the mulch after 
mowing, the above-ground parts of all the weeds of the commu-
nity (leaves, stems and reproductive parts) were collected and 
dried at 60 °C. We dried the sampled biomass to homogenize 
the humidity of the biomass (some samples were collected 
during rainy days) and to prevent the decomposition to start for 
biomass that was sampled earlier in the season than others (2 
weeks of sampling in total). From 1.5 to 2 g of this dry ‘green’ 
biomass which mixed leaves, stems and reproductive parts of 

the communities (4 replicates × 50 communities = 200 sam-
ples) were placed inside thin litter nylon bags of 0.3 mm mesh 
and 5 × 5 cm2 (Northern Mesh, Oldham, UK) on 9 cm diam-
eter Petri dishes, filled with the same standardized humus sub-
strate (3:1 mixture of mineral soil and surface organic horizon) 
following the methodology of Wardle et al. (2002). The effect 
of macro- and mesofauna was excluded by the small holes in 
the litter bags (0.3 mm) and the conditions of the experiment 
(Petri dishes in closed climate chambers). Each ‘dry green’ bio-
mass put in the litter bags was weighed before the beginning 
of the experiment (Mi). The Petri dishes were then sealed and 
kept in the dark at 24 °C for 2 months. The soil moisture was 
kept constant with weekly watering (200 % of field capacity). 
Thus, in these optimal and constant conditions, the differences 
in the potential mass loss were mainly due to the differences in 
the quality of the decomposing green material. At the end of 
the experiment, we weighed the green mass (Mf) after decom-
position. We defined the metric of decomposition potential as 
‘mass loss of green organs’ because the measurements were 
done on the green above-ground biomass, mixing all organs, 
before their senescence. The percentage of mass loss of green 
organs (MLGO) was calculated as:

MLGO = 100× [1− (Mi −Mf) /Mi)] (1)

where Mi is the ‘dry green’ mass before decomposition sampled 
in the quadrats (g) and Mf is the ‘dry green’ mass after 2 months 
of decomposition (g).

Functional properties of weed communities

Four leaf traits were measured on the 51 dominant species 
representing 80 % of the relative cover within each of the 50 
communities (see the detailed list of the sampled species in 
Supplementary data Table S2). The LDMC represents the pro-
portion of light and cheap tissues (mesophyll and epidermis) 
with regard to dense and costly tissues (vascular tissues and 
sclerenchyma) (Kazakou et al., 2006). Leaf cellulose content 
(Cel), leaf hemicellulose content (Hemicel) and leaf lignin con-
tent (Lignin) were also measured to assess the leaf compos-
ition of fibres, from easily degradable fibres (i.e. cellulose) to 
more recalcitrant fibres (i.e. lignin). Leaf carbon content, LNC 
and leaf C:N were also selected. The C:N describes the invest-
ment in carbon in the leaf structure (conservative strategy) with 
regards to the leaf investment in photosynthetic enzymes (ac-
quisitive strategy). The leaf lignin:N was also computed, as this 
trait indicates the leaf carbon quality rather than its quantity as 
in the C:N (Chapin et al., 2012). Indeed, the complex and vari-
able structure of lignin makes it the most difficult leaf fibre to 
decompose (Krishna and Mohan, 2017).

The LDMC was measured on the leaves of eight individ-
uals per species collected in the inter-rows of the vineyards 
(i.e. the free space between the rows of the vines) where the 
species were dominant, following Pérez-Harguindeguy et al., 
2013). Thus, for the most frequent dominant species of the 
vineyard network, this trait was measured in several vine-
yards (for instance, eight individuals of Crepis sancta were 
collected in six different vineyards; thus 48 individuals were 
measured for this species). The LNC and the leaf carbon con-
tent were measured pooling all the eight individual leaves per 

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
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species (or more if the species was measured in several vine-
yards) with three repeated measures by elemental analysis 
(NF ISO 10694) using a FrashEA® 112 analyser. The leaf 
cellulose, hemicellulose and lignin content were also meas-
ured at the species level on the pooled samples of leaves. 
These traits were analysed using near-infrared reflectance 
spectroscopy (NIRS) following Bumb et al. (2016). Dried and 
ground samples of each species were placed in quartz ring 
cells and spectra were collected with a FOSS Nirsystem 6500 
spectrometer (FOSS Nirsystems, Silver Spring, MD, USA) 
operating from 400 to 2500  nm in reflectance mode. Leaf 
cellulose and lignin contents were determined with the use of 
existing calibrations at CIRAD (French International Centre 
of Agricultural Research for Development, Montpellier, 
France). Moreover, the nitrogen content of the above-ground 
biomass collected in the quadrats was also assessed to quan-
tify the potential green manure effect of the weeds in vine-
yards using the same method as for the leaves. To calculate 
the nitrogen content of the above-ground biomass in more 
classical agronomic units, we extrapolated the nitrogen con-
tent of this biomass sampled in 60 × 60 cm2 quadrats in kilo-
grams per hectare.

To assess litter quality at the community level, we calculated 
the CWM of the leaf traits (Garnier et al., 2004) applying the 
mass ratio hypothesis which states that the most dominant spe-
cies of a community drive the ecosystem processes (Grime, 
1998):

CWM =
n∑

i=1

pi × traiti
 

(2)

where pi is the relative abundance of the species i within a com-
munity, traiti is the value of trait of the species i and n is the 
number of species within the community. The CWM expresses 
the most probable trait value of an individual plant within a 
community (Garnier et al., 2004). To consider the effect of 
functional diversity on decomposition, we computed Rao’s 
quadratic entropy (Rao’s Q) (Botta-Dukát, 2005) for each leaf 
trait using the dbFD function from the FD R package (Laliberté 
and Legendre, 2010; Laliberté et al., 2014).

Rao =
n∑

i=1

n∑
j=1

pipjdij
 

(3)

where n is the number of species in a community, dij the dissimi-
larity between each pair of different species i and j, and pi and pj 
are the relative cover of species i and j, respectively, within the 
communities. The descriptive statistics of each CWM and Rao 
are presented per weed management type in Supplementary 
data Table S3 at the community level.

To characterize the functional space of the CWM and Rao 
index following Migliorini and Romero (2020) and García-
Palacios et al. (2017), we computed a PCA based on each CWM 
and Rao indices, considering covariations between CWM and 
Rao indices for each trait. In the CWM functional space, we 
selected the first two axes that explained most of the functional 
variance (79.3 %) (Fig. 3). The first axis (CWM1) was mostly 
determined by the weighted means of lignin:N, C:N and LNC. 
The second axis (CWM2) was driven by the weighted means of 
hemicellulose content and LDMC. In the Rao functional space, 

the functional diversity of each trait was mostly driven by the 
first two axes (68.4 %) (Fig. 3). The first axis (Rao1) was deter-
mined by the Rao of lignin:N, C:N and LNC. The second axis 
(Rao2) was mostly driven by the Rao of the leaf hemicellulose 
and the lignin content.

Data analyses

To quantify the relationships between (1) the mass loss of 
green organs and the functional properties (coordinates of 
communities along the PCA axes based on CWM and Rao 
indices) and (2) agro-environmental filters and functional 
properties, linear mixed models were used employing the 
lme function from the lme4 R package (Bates et al., 2015). A 
‘vineyard’ random effect was added before model selection to 
consider the hierarchical structure of our dataset (four quad-
rats maximum per vineyard). Before model construction, the 
collinearity of explanatory variables was investigated using 
the variance inflation factor (VIF < 5). Model selection was 
performed using a backward step selection procedure based 
on the corrected Akaike information criterion (AICc). To 
compare the effects of weed management on the mass loss, 
the biomass and its nitrogen content, we also used linear 
mixed models with ‘vineyard’ as a random effect. Analysis 
of variance (ANOVA) was used to detect the significance of 
the effect of weed management, and a pairwise Student t-test 
was performed to compare the average mass loss, biomass 
and its nitrogen content according to the different weed man-
agement types.

A path analysis was performed to quantify the influence of 
agro-environmental filters on the mass loss of green organs 
through changing the functional properties of communities 
using the psem function from the piecewiseSEM R package 
(Lefcheck, 2016). This function uses a path analysis method 
that allows dealing with the hierarchical structure of the dataset. 
It applies the directed separation method proposed by Shipley 
(2009) which tests that all variables are conditionally inde-
pendent. To do this, a set of conditional independence claims 
called the ‘basis set’ is identified from the hypothesized path 
diagram. A Fisher’s C statistic is then calculated using all the 
P-values of the tests of each independent claim constituting the 
‘basis set’. The C statistic is compared with χ2 distribution with 
2k degrees of freedom (k is the number of independent claims). 
The path diagram is considered significant if the probability that 
the relationships within the independent claims occur, is weak 
(P-value > 0.05). Before model selection, we added a ‘vine-
yard’ random effect in each sub-model constituting the path 
analysis to consider the hierarchical structure of our dataset. 
We also added correlated errors between CWM1 (coordinates 
on the first axis of the CWM PCA), CWM2 (coordinates on the 
second axis of the CWM PCA), Rao1 (coordinates on the first 
axis of the Rao PCA) and Rao2 (coordinates on the second axis 
of the Rao PCA) and between each agro-environmental filter 
to consider non causal covariations. In the initial hypothesized 
structural equation model, we only added the functional prop-
erties which were found to be significantly related to the mass 
loss of green organs based on the linear mixed models. All data 
analyses were carried out using R version 4.1.1 (R Core Team, 
2021).

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac099#supplementary-data
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RESULTS

Mass loss of green organs varied with the vegetation management 
practices

The mass loss of green organs of the weeds varied from 33 % 
of decomposed biomass to 60 %, with an average of 45 %, after 
2 months of decomposition in optimal conditions. The mass 
loss of green organs was significantly impacted by weed man-
agement types (Supplementary data Table S4). Communities 
that developed after 5 years of chemical weed control were 

significantly less decomposable than the other communities 
(40.6 % of decomposition) (Fig. 4A). In contrast, communities 
favoured by 5 years of tillage and 5 years of mowing had a sig-
nificantly higher mass loss (48.6 % and 45.3 %, respectively) 
(Fig. 4A).

Communities located in mowed vineyards produced higher 
biomass (52  g on 60 × 60  cm2) than communities managed 
with herbicide (23 g) and tillage (32 g) (Fig. 4B). Moreover, 
the total nitrogen content of the above-ground biomass was 
significantly higher in mowed vineyards (34 kg N ha–1) than in 
chemically weeded (17 kg N ha–1) and tilled vineyards (20 kg 
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N ha–1) (Fig. 4C; see Supplementary data Table S5 for the de-
tailed data).

Functional properties of weed communities which responded to 
weed management practices

Mixed linear models were computed to explain the func-
tional properties of weed communities (CWM1, CWM2, Rao1 
and Rao2) by climate, soil and weed management type. CWM1 
responded to weed management type which explained 40 % 
of the total variance (Table 3). Compared with the other weed 
management types, communities developing after 5 years 
of chemical weeding were dominated by species with higher 
C:N (16.4 on average in chemically weeded communities vs. 
13.5 and 13.3 in mowed and tilled communities, respectively), 
high lignin:N (3.2 in chemically weeded communities vs. 2 in 
mowed and tilled communities) and low LNC (0.3 % in chem-
ically weeded communities vs. 1.0 % and 0.9 % in mowed 
and tilled communities, respectively) (Supplementary data 
Table S3). CWM2 and the functional diversity of communities 
through Rao1 and Rao2 did not respond significantly to agro-
environmental filters.

Mass loss of green organs was mostly impacted by weed 
management through C:N, lignin:N and LNC weighted means

We identified the functional variables (CWM1, CWM2, 
Rao1 and Rao2) which were significantly related to the mass 
loss of green organs. CWM1 was the only functional variable 
selected by the models, and this variable explained 15 % of 
mass loss variance. The mass loss of green organs was higher 
when weed communities were dominated by species with 

high LNC, low C:N and low lignin:N (estimate: –0.39 ± 0.13, 
P-value = 0.006).

To link mass loss, functional properties of weed commu-
nities and the agro-environmental filters identified as relevant 
variables by the previous models, a path analysis was per-
formed. The selected SEM model fitted the data well (Fisher’s 
C = 13.86, d.f. = 8 and P-value = 0.16) and explained 22 % 
of the mass loss of green organs (Fig. 5). Mass loss of green 
organs was mostly determined by CWM1 (LNC, C:N and 
lignin:N) as found in the previous model (Fig. 6A). The func-
tional diversity (Rao1 and Rao2) and CWM2 did not influence 
the mass loss. However, Rao2 covaried positively with CWM1 
(correlated error of 0.43), showing that communities domin-
ated by species with low LNC, high C:N and high lignin:N 
were also composed of species with dissimilar values of leaf 
lignin and hemicellulose content within communities (Fig. 5). 
Weed management impacted the mass loss of green organs by 
modifying CWM1 (Fig. 6A). Indeed, chemically weeded com-
munities were dominated by species with low quality leaves 
with 16 % higher C:N, 38 % higher lignin:N and 22 % lower 
LNC than tilled and mowed communities, resulting in 17 % 
lower mass loss of green organs (Supplementary data Table S3; 
Fig. 6A). Weed management also influenced CWM2 and Rao1. 
Communities managed by mowing had a lower leaf hemicellu-
lose content (14.6 % in mowed communities vs. 15.3 % in other 
communities) and lower LDMC (202.6 mg g–1 in mowed com-
munities vs. 227.3 mg g–1 in other communities) than commu-
nities that were managed with a shorter duration of the presence 
of the weeds due to more frequent disturbance (i.e. chemical 
weeding or tillage) (Supplementary data Table S3). Compared 
with chemical weeding, tillage favoured higher variability of 
lignin:N (43 % higher than chemically weeded communities), 
C:N (45 % higher) and LNC (74 % higher) within communi-
ties (Supplementary data Table S3). The between-community 
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variability along CWM1 was higher in tilled vineyards (s.e. 
= 0.81) and mowed vineyards (s.e. = 0.84) than in vineyards 
managed by herbicides (s.e. = 0.33) (Fig. 6B). The SOM was 
the only soil variable selected by the model. Communities lo-
cated in soils with high organic matter content had a higher leaf 
lignin and hemicellulose content (estimate: 0.49). However, its 
filtering effect on CWM2 did not result in significant changes 
in mass loss as leaf lignin and hemicellulose content were not 
significantly related to decomposition potential. The climate 
variable (aridity index) was not selected.

DISCUSSION

Mass loss of green organs of weed communities in Mediterranean 
vineyards

To our knowledge, this is the first study that has evaluated the 
mass loss of green organs of vineyard weeds in controlled con-
ditions ex situ. We found that, on average, 45 % of the initial 
vegetation mass was decomposed in 2 months in optimal and 
standardized conditions. In contrast to most of the studies, we 
chose to assess the mass loss of green organs which would 
occur after destruction by a weed management practice (e.g. 
mowing). This new indicator is better adapted to agrosystems 
which are highly disturbed environments and, as a conse-
quence, decomposition might occur before species senescence.

Although the green manure effect of sown cover crops has 
been quantified (Garcia et al., 2018), little is known about the 
nitrogen content of weeds at the community level (Lindsey et 
al., 2013). Most of the studies quantifying the nitrogen con-
tent of weeds were done at the species level (e.g. Matos et 

al., 2011; Lindsey et al., 2013; Perthame et al., 2020). Our 
study gave a rough estimate of the amount of nitrogen con-
tained in the above-ground biomass of weeds that developed 
during the winter before the first weed management practice 
in Mediterranean vineyards. From the nitrogen content of this 
biomass sampled in 60 × 60 cm2 quadrats, the extrapolation of 
the amount of nitrogen at the hectare level showed that weeds 
can represent a significant nitrogen reservoir: 22 kg N ha–1 was 
contained in the sampled biomass on average over the 16 vine-
yards. Vineyard needs in terms of nitrogen are generally quite 
low (between 20 and 90 kg N ha–1 per growing season) (Metay 
et al., 2014; Verdenal et al., 2021). Thus, weed mulching could 
contribute to meeting the vineyard’s nitrogen needs. Moreover, 
we demonstrated that communities selected by 5 years of 
mowing produced more biomass and represented a higher res-
ervoir of nitrogen (34 kg N ha–1) compared with communities 
selected by 5 years of chemical weeding (17 kg N ha–1) and 
5 years of tillage (20 kg N ha–1). These values of biomass ni-
trogen content are lower than those measured by Steenwerth et 
al. (2016) on weed communities in Californian vineyards man-
aged by tillage (93 kg N ha–1). This difference could be due to 
later sampling (in April in Steenwerth et al., 2016 vs. in March 
in our case). If the nitrogen content of leaves, stems and repro-
ductive parts decreased during the vegetation season (Bumb et 
al. 2016), higher biomass is expected throughout the season 
and could explain the biomass with higher nitrogen content in 
the study of Steenwerth et al. (2016). However, our study did 
not quantify the amount of nitrogen that was released through 
decomposition and did not consider nitrogen immobilization 
in the case of low soil nitrogen availability that could happen 
in the field.

Table 3. Community functional properties explained by climate, soil and weed management type after model selection 

Community 
functional
property 

Selected models Std. est. Std. err. t P R2
marg R2

cond 

CWM1
C:N + 
Lignin:N + 
LeafN -

Weed management + (1|Vineyard) 0.40 0.64

Chemical weeding 0.81 0.26 3.09 0.003

Mowing –0.43 0.31 –1.36 0.179

Tillage –0.57 0.25 –2.30 0.026

CWM2
Hemicellulose + 
LDMC + 

Intercept + 
(1|Vineyard)

– – – – 0 0.40

Rao1
Lignin:N + 
C:N + 
LeafN -

Intercept + 
(1|Vineyard)

– – – – 0 0.49

Rao2
Hemicellulose + 
Lignin + 

Intercept + 
(1|Vineyard)

– – – – 0 0.70

‘Weed management + (1|Vineyard)’ represents the model formula with ‘Weed management’ as a fixed effect and (1|Vineyard) as a random effect. Significant 
P-values (P < 0.05) are in bold. Std. est., standardized beta estimates; Std. err., standardised errors; t, t-value; P, P-value; R2

marg, marginal R2; R2
cond, conditional R2; 

CWM1, the first axis of the community-weighted means Principal Component Analysis (CWM PCA); CWM2, the second axis of the CWM PCA; Rao1, the first 
axis of the Rao PCA; Rao2, the second axis of the Rao PCA

The full model of each functional variable was composed of a ‘weed management type’ effect (chemical weeding, mowing and tillage) and pedoclimate vari-
ables (pH + soil organic matter + silt + sand + aridity index) as fixed effects. For each model, a variable that identifies the vineyard where the communities came 
from was added as a random effect.
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The over-riding effect of weed management on leaf CWM and 
mass loss of green organs over the pedoclimate

In this study, we tested whether the functional approach 
could explain the effect of practices on mass loss. We hypothe-
sized that herbicide application and tillage (i.e. disturbed envir-
onments) would select species with acquisitive strategies with 
a high photosynthesis rate per unit of invest dry mass (high 
LNC, low LDMC, low leaf fibre content and low leaf C:N) and 
thus high decomposability. In contrast, we hypothesized that 
mowing would select communities composed of species with 
more conservative strategies, with lower photosynthetic activity 
per unit of dry mass and more resistant leaves (higher LDMC, 
higher fibre content, lower LNC and higher leaf C:N), resulting 
in a lower mass loss potential through decomposition. Tilled 
and mowed vineyards selected communities with high decom-
position potential (49 % and 45 % of mass loss, respectively), 
while chemical weeding favoured communities with lower de-
composition potential (41 %). In the literature, the results of 
in situ experiments demonstrating weed management’s influ-
ence on weed decomposition are quite scarce. In other studies, 
mulching was found to favour the high decomposition potential 

of weeds in maize and asparagus crops (Wardle et al., 1999) 
and teabags in vineyards (Pingel et al., 2019) compared with 
tilled treatments. These results were related to higher microbial 
activities in soils, a factor that we did not consider in our ex situ 
study which could explain our contrasted results.

Our study demonstrated that weed management had a major 
impact on vegetation decomposition through changes in the 
functional properties of weeds. Five years of chemical weeding 
favoured communities composed of species with low-quality 
leaves (lower LNC, higher C:N and lignin:N) compared with 
tilled and mowed communities for 5 years. In contrast to our 
hypotheses, chemical weeding promoted communities with 
more conservative strategies than the other weed management 
types, composed of species with a low photosynthetic rate per 
unit of dry mass invested in the leaf and resistant leaf structure, 
leading to poor litter quality and low decomposability. High 
C:N may be due to leaf structure adaptation to decrease herbi-
cide absorption. For instance, the presence of a thick cuticle 
or high wax content of leaves has been found to decrease the 
absorption of glyphosate (Santier and Chamel, 1992). Indeed, 
leaf C:N correlates positively with cuticle thickness, leading to 
low decomposability potential (Zukswert and Prescott, 2017). 
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Fig. 5. Path analysis predicting the response of the mass loss of green organs of weed communities in vineyards to soil and weed management practices through 
their functional properties (CWM and Rao). The standardized estimates for the quantitative variables (SOM and CWM1) and the marginal means for the qualitative 
variable (Weed management) of each relationship are displayed. Double-headed arrows represent significantly correlated errors, while causation relationships are 
drawn with simple arrows. The R2 values of the response variables are indicated. Non-significant causal arrows are drawn with dashed lines. Goodness-of-fit statis-
tics: Fisher’s C = 13.86, d.f. = 8 and P-value = 0.16. SOM, soil organic matter; Chem, chemical weeding applied for 5 years; Till, 5 years of tillage practice; Mow, 
5 years of mowing; CWM1 and CWM2, first and second axes of the CWM PCA, respectively; Rao1 and Rao2, first and second axes of the Rao PCA, respectively; 
LDMC, leaf dry matter content; C, leaf carbon content; N, leaf nitrogen content; Lignin, leaf lignin content; Lignin:N, leaf lignin to nitrogen ratio; C:N, leaf 
carbon to nitrogen ratio; Cel, leaf cellulose content; Hemicel, leaf hemicellulose content. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., non-significant (P > 0.05).
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Onoda et al. (2012) showed that thick cuticles conferred tear 
resistance to leaves, slowing down the first steps of the decom-
position process. Moreover, high lignin:N could be linked to 
lignified cell walls that strengthen the tissues and decrease the 
permeability of cell walls (Higuchi, 1985). Even though there 
is no clear evidence of this mechanism in the literature, we 
could hypothesize that high leaf lignin content could reduce the 

absorption of glyphosate. Linkages between LNC, lignin:N and 
C:N and decomposition have been well established at the com-
munity level in natural and semi-natural environments, and our 
results are consistent with the literature (Fortunel et al., 2009; 
Walter et al., 2020; Plazas-Jiménez and Cianciaruso, 2021).

Weed management also impacted the functional diversity 
of the leaf traits which influenced the mass loss of green or-
gans, i.e. lignin:N, C:N and LNC. Tillage favoured higher func-
tional diversity of all the nitrogen-related traits, while chemical 
weeding was associated with lower functional diversity within 
communities. The reduction of within-community functional 
diversity by herbicides has also been highlighted in a recent 
study in vineyards (Hall et al., 2020). Moreover, at the vine-
yard network scale, all the communities that were chemically 
weeded had similar values of CWM of lignin:N, C:N and LNC 
(CWM1 axis) (s.e. between chemically weeded communities 
= 0.33) compared with tilled (s.e. = 0.81) and mowed commu-
nities (s.e. = 0.84). This could be linked to a strong filtering 
effect after 5 years of herbicide use, leading to communities 
composed of species sharing the same strategy of investment 
in the leaf structure to better tolerate chemical weeding. The 
increase of functional diversity through tillage contrasts with 
the studies of Kazakou et al. (2016) and Hall et al. (2020) that 
demonstrated that tillage decreased functional diversity (rich-
ness and Rao) compared with weed cover in the Mediterranean 
and European vineyards, respectively. In our study, tilled 
communities were composed of species covering most of the 
lignin:N, C:N and leaf nitrogen variability, from acquisitive to 
more conservative strategies relative to the other communities 
of the vineyard network (Fig. 6B). In the vineyard network of 
this study, tilled vineyards were also more fertilized than the 
other vineyards: tilled vineyards received 9.2 kg N ha–1 while 
mowed and chemically weeded communities received 6.9 and 
3.2 kg N ha–1 on average, respectively. Thus, tillage treatment 
was characterized by a high level of disturbance (2.4 tillages 
per year on average while chemical weeding was applied once 
a year maximum) but also a high potential level of resources. 
In grasslands, Niu et al. (2014) demonstrated that fertilization 
increased the Rao index: we assume that higher resource avail-
ability due to fertilization might enhance the coexistence of dif-
ferent strategies in a limited competition environment due to 
a higher level of nutrients and could explain higher functional 
diversity in tilled communities.

The relationships between community functional properties 
and decomposition might be explained by the presence of some 
dominant species. For instance, Poa annua was very abun-
dant in chemical weeded communities (26 % of mean cover in 
chemically weeded communities and only 3 % in tilled com-
munities and 1 % in mowed communities) and had a high leaf 
C:N (18.9), high leaf lignin:N (3.4) and a low LNC (2.4%). 
Poa annua’s control through chemical weeding has been re-
ported to be problematic because of its prolific seed produc-
tion and its high genetic diversity (e.g. multiple P. annua 
biotypes were found on the same golf course) (Baldwin et al., 
2012). However, to our knowledge, no study has yet reported 
leaf adaptation linked to chemical weeding tolerance. Further 
studies could explore these possible adaptations by measuring 
other traits such as the presence of cuticles or the presence and 
density of hairs. Moreover, legume species were absent from 
the chemically weeded communities while they covered 28 % 

60
A

B

50

40

–5.0 –2.5 0

CWM1
N + Lign:N + C:N +

Management type Chem Mow Till

M
as

s 
lo

ss
 o

f g
re

en
 o

rg
an

s 
(%

)

2.5

0

0.2

0.4

0.6

D
en

si
ty

Fig. 6. (A) Mass loss of green organs as impacted by the first axis of community-
weighted means PCA (CWM1) and management practice types (Chem, 5 years 
of chemical weeding; Mow, 5 years of mowing; Till, 5 years of tillage). CWM1 
is positively correlated with the weighted means of C:N (leaf carbon to nitrogen 
ratio) and Lignin:N (leaf lignin to nitrogen ratio), and negatively related to leaf 
nitrogen content (N). (B) Distribution of the coordinates of the 50 communities 

along the CWM1 axis according to weed management types.



Bopp et al. —Weed decomposition is driven by traits and weed management in vineyards558

of tilled communities and 33 % of mowed communities. As 
nitrogen-fixing species, legume species had a high LNC (4.7 
%) and low lignin:N (1.0), while other species had a lower LNC 
(2.9 % on average) and higher lignin:N (2.4 on average). Thus, 
the presence of N-fixing plants could have increased the de-
composition potential of tilled and mowed communities.

Surprisingly, our results showed no effects of the pedoclimate 
on the functional properties that were significantly related to 
decomposition (CWM1, LNC, C:N and lignin:N). The reduced 
geographical range of this study (a circle of 40 km radius around 
Montpellier) might have not been sufficient for the climate to 
influence the functional properties related to decomposition.

No direct effect of functional diversity of weed communities on 
the mass loss of green organs

Although our results emphasized the impact of weighted 
means of traits on mass loss, we found no direct effect of 
within-community functional diversity measured by the Rao 
index on the mass loss of green organs. This contrasts with 
the results of recent studies that found a significant link (posi-
tive or negative) with functional diversity and decomposition 
(Finerty et al., 2016; García-Palacios et al., 2017; Migliorini 
and Romero, 2020; Plazas-Jiménez and Cianciaruso, 2021). 
Our results highlighted that the most dominant species were 
the main driver of mass loss, while the diversity of strategy of 
species co-occurring in the same community did not have a sig-
nificant effect. However, the functional diversity of lignin and 
hemicellulose within communities covaried positively with the 
weighted means of lignin:N, C:N and the LNC that were sig-
nificantly related to mass loss. Thus, the high diversity of lignin 
and hemicellulose was indirectly linked to lower mass loss of 
green organs even though no direct effect was found.

All in all, our study emphasized the major impact of weed 
management practices on the mass loss of green organs 
through modifying the functional properties of weed commu-
nities. Chemical weeding favoured communities with higher 
investment-resistant leaves (16 % higher C:N, 38 % higher 
lignin:N and 22 % lower LNC) which were related to lower 
mass loss compared with tilled and mowed communities. 
Functional diversity did not influence mass loss. With the likely 
reduction of herbicide use because of regulatory restrictions 
(ANSES, 2020), we can expect higher decomposition poten-
tial of future weeds, managed by tillage and mowing in vine-
yards and potentially a faster release of nutrients in the soil and 
a higher green manure service (Krishna and Mohan, 2017). 
Assessing the mass loss of weeds ex situ is one step. From an 
agronomic perspective, the next step would be to quantify the 
nutrient supplies and carbon sequestration resulting from the 
litter decomposition process of weeds in situ. Although these 
quantifications have been estimated for sown cover crops 
(Cherr et al., 2006), the green manure effect of mowed weeds 
has been still scarcely evaluated in agrosystems.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Figure S1: circle 

of correlation of the PCA based on weed management and 
fertilization practices and vineyard clustering according to 
their PCA coordinates. Figure S2: correlation circles of agro-
environmental variables of the first two axes of the PCA and 
the first and the third axes of the PCA. Table S1: correlation 
matrix of climate, soil and vegetation management and fertil-
ization practice variables. Table S2: list of the 50 species on 
which traits were measured. Table S3: descriptive statistics of 
community-weighed means and Rao index for each trait ac-
cording to the weed management type. Table S4: standardized 
estimated coefficients of the selected explanatory variables 
of the mass loss of green organs. Table S5: dry biomass, per-
centage of nitrogen content and nitrogen content of biomass of 
weeds in vineyards.
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