Skip to main content
. 2022 Oct;12(10):4758–4770. doi: 10.21037/qims-22-252

Table 3. Performance of different machine learning pipelines.

Machine learning pipeline Training AUC Cross-validation mean AUC Test AUC
BorutaShap + RF* 0.98* 0.85* 0.88*
BorutaShap + SVM 0.99 0.82 0.84
BorutaShap + LR 0.96 0.82 0.83
BorutaShap + MLP 0.99 0.83 0.85
Boruta + RF 0.98 0.84 0.87
Boruta + SVM 0.97 0.84 0.86
Boruta + LR 0.95 0.83 0.84
Boruta + MLP 0.99 0.85 0.87
LASSO + RF 0.94 0.78 0.80
LASSO + SVM 0.94 0.78 0.80
LASSO + LR 0.98 0.84 0.86
LASSO + MLP 0.97 0.83 0.85
RFE + RF 0.97 0.84 0.86
RFE + SVM 0.96 0.85 0.87
RFE + LR 0.97 0.80 0.86
RFE + MLP 0.97 0.82 0.85

*, the best-performing pipeline. AUC, area under the receiver operating characteristic curve; RF, random forest; SVM, support vector machine; LR, logistic regression; MLP, multilayer perceptron; LASSO, least absolute shrinkage and selection operator; RFE, recursive feature elimination.