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Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the 
treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) 
metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably 
develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment 
response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal 
limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers 
that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. 
Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have 
focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive 
biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review 
outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment 
response.
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INTRODUCTION
Breast cancer is the most diagnosed cancer in women globally, with approximately 70% of diagnoses being 
tumors that express estrogen receptors (ER+) but not human epidermal growth factor receptor 2 (HER2-)[1]. 
In jurisdictions that have implemented breast cancer screening programs, many ER+/HER2- breast cancers 
are diagnosed in localized or locoregional stages and are amenable to curative intent therapy. However, 
despite multimodality treatments, patients have a lifelong risk of metastatic recurrence, and once distant 
metastasis presents clinically, it is typically incurable[2,3].

In the past decade, novel therapeutic strategies for metastatic breast cancer patients have been implemented 
in the clinic. Among these, the new standard treatment for ER+/HER2- locally advanced and metastatic 
breast cancer consists of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine 
therapy[4]. Three CDK4/6 inhibitors have been approved (i.e., abemaciclib, palbociclib, and ribociclib) after 
displaying significant clinical benefit in pivotal phase III clinical trials[5-12]. CDK4/6 inhibitors have been 
shown to improve response rate, median progression-free survival (PFS), health-related quality of life, and 
overall survival (OS) of metastatic breast cancer patients[13-19]. However, CDK4/6 inhibitor resistance 
remains a significant obstacle. A minority of patients have intrinsic resistance, defined as progression 
(without response) within six months of starting treatment. Even for patients who experience initial 
response and clinical benefit from these agents, acquired resistance inevitably develops over subsequent 
months (median PFS ranges from 23.8-28.2 months in the first-line metastatic setting)[11,17,20]. Therefore, 
biomarkers are urgently needed to predict CDK4/6 inhibitor efficacy or resistance in metastatic breast 
cancer patients, allowing clinicians to tailor treatment and potentially add additional therapies for patients 
at high risk of early progression.

Biomarkers for CDK4/6 inhibitors have been thoroughly investigated through molecular profiling of tumor 
material, but to date, the only clinically available biomarker remains breast cancer subtype as defined by 
traditional tissue markers (i.e., ER+/HER2-)[21,22]. Despite significant research efforts, tumor heterogeneity 
and difficulties distinguishing endocrine resistance from CDK4/6 inhibitor resistance have impeded 
predictive biomarker discovery[23]. Given practical challenges to obtaining and repeating metastatic tissue 
biopsies, blood-based profiling of tumor-derived material (i.e., “liquid biopsy”) has significant potential to 
facilitate biomarker explorations. For instance, circulating tumor cells (CTCs) and circulating tumor DNA 
(ctDNA) are promising liquid biopsy analytes because they harbor cancer-specific molecular aberrations[24].

In this review, we discuss biomarker-directed treatment for breast cancer, mechanisms of resistance to 
CDK4/6 inhibitors, and attempts to uncover ctDNA liquid biopsy biomarkers of efficacy and resistance to 
CDK4/6 inhibitors. Lastly, we highlight undeveloped areas for future advances, namely epigenetic-based 
liquid biopsy biomarkers for patients treated with CDK4/6 inhibitors.

BIOMARKER-DIRECTED PRECISION ONCOLOGY AND BREAST CANCER
Precision oncology relies on molecular information from each patient’s cancer to optimize and individualize 
treatment regimens. Leveraging these patient-specific molecular biomarkers allows clinicians to select the 
best treatment for individual patients to improve therapeutic efficacy and reduce adverse effects on healthy 
cells[25]. Molecular biomarkers include prognostic biomarkers, which may provide information on the 
expected disease course independent of treatment, and predictive biomarkers, which provide insight into 
the effect of a specific therapy. Both prognostic and predictive biomarkers may be used to personalize 
treatment via risk-stratification or directing effective treatments.
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Current standard-of-care breast cancer treatments provide several archetypal examples of biomarker-
directed precision oncology. For instance, OncotypeDx is a commercial 21-gene assay for ER+ early-stage 
breast cancer that returns a recurrence score indicating the probability of relapse without adjuvant 
chemotherapy, with higher scores associated with a poorer prognosis. OncotypeDx serves a prognostic role; 
its clinical utility stems from identifying patients with a higher absolute recurrence risk and, therefore, a 
higher likelihood of benefiting from adjuvant chemotherapy[26,27]. Similarly, the MammaPrint microarray 
assay is a prognostic biomarker that uses the expression levels of 70 genes to classify patients according to 
recurrence risk[28,29].

Other breast cancer biomarkers highlight the impact of predictive biomarkers in precision oncology. 
Intrinsic molecular subtypes and associated hormone receptors (ER, PR) and HER2 expression levels are 
critical for drug selection in breast cancer patients[30]. For instance, HER2+ breast cancer preferentially 
responds to HER2-targeted agents, such as trastuzumab and trastuzumab emtansine (T-DM1)[31]. Likewise, 
hormone receptor expression denotes tumors that preferentially respond to endocrine therapy. Resistance 
to endocrine therapy can occur over time through a variety of mechanisms (e.g., genetic alterations of 
ESR1, increased activity of cyclin-dependent kinases (CDKs), and mitogen-signaling pathways such as PI3K 
and RAS, or a decrease in proteins that inhibit CDKs such as p16, p21, and p27), several of which converge 
on the cyclin D-CDK4/6 axis[32]. Therefore, simultaneous treatment with endocrine therapy and CDK4/6 
inhibitors has emerged as a highly successful treatment paradigm for ER+/HER2- metastatic breast cancer.

MOLECULAR MECHANISMS OF CDK4/6 INHIBITOR EFFICACY AND RESISTANCE
The cyclin D-CDK4/6-Retinoblastoma protein (Rb) axis regulates cell cycle progression from G1 to the S 
phase [Figure 1]. Before entering the cell cycle, Rb is hypophosphorylated and bound to the E2F 
transcription factors (TFs), causing their inhibition[33]. When the appropriate mitogenic signals are present, 
quiescent cells may enter the cell cycle at the G1 phase. These mitogenic signals lead to the expression of 
cyclin D, which competes with CDKN2 family proteins to bind CDK4/6, forming the cyclin D-CDK4/6 
complex[34]. This active complex can then phosphorylate Rb, causing a conformational change and 
subsequent release of the E2F TFs, which drive S phase entry and further cell cycle progression via 
downstream transcriptional activation[33]. Furthermore, the cyclin D-CDK4/6 complex triggers the forkhead 
box protein M1 (FOXM1) TF, promoting the advancement of later cell cycle phases (G2/M)[35]. ER+ breast 
cancer is highly reliant on an intact cyclin D-CDK4/6-Rb axis, as estrogen drives cyclin D1 expression 
leading to the formation of the cyclin D-CDK4/6 complex, ultimately inducing cell proliferation through 
the CDK4/6 pathway[36]. CDK4/6 inhibitors leverage this by binding the ATP domain of CDK4/6 and 
halting progression from the G1 to S phase of the cell cycle[37].

The mechanisms of resistance to CDK4/6 inhibitors have yet to be fully elucidated, and in many cases, the 
clinical relevance of putative mechanisms discovered in preclinical models remains unconfirmed[38,39]. 
Recognized resistance mechanisms include amplification of members of the cyclin D-CDK4/6 axis or 
downregulation of CDK4/6 repressor proteins, such as p21 and p27, which may thwart the direct effects of 
these drugs[38,40-42]. Additionally, alterations in RB1, FAT1, or the PI3K/AKT/mTOR and KRAS signaling 
pathways may act to circumvent the G1/S checkpoint in the presence of CDK4/6 inhibitors, inducing cell 
cycle progression independent of the cyclin D-CDK4/6 axis[38,39,43-46].

CIRCULATING CELL-FREE DNA FOR LIQUID BIOPSY AND COMPANION DIAGNOSTICS
In recent years, liquid biopsy approaches have emerged, intending to provide molecular information for 
biomarker-directed precision oncology from a fluid sample[24]. Traditionally, accessing this information has 
required invasive procedures, like tissue biopsy, which are not always feasible depending on the nature and 
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Figure 1. Overview of CDK4/6 inhibitor treatment and liquid biopsy in ER+/HER2- metastatic breast cancer patients. CDK4/6 
inhibitors prevent the phosphorylation of Rb and downstream activation of the transcriptional profile required for progression to the S-
phase of the cell cycle. In the anti-CDK4/6 therapy clinical setting, a liquid biopsy may be used to direct therapy, monitor patient 
response over time, and detect progression. Currently, research efforts focused on monitoring genetic alterations in cfDNA through 
liquid biopsy have made limited progress. Epigenetic profiling of cfDNA may reveal new biomarkers of CDK4/6 inhibitor efficacy or 
resistance.

location of the tumor, as well as the health of the patient. These limitations are particularly relevant for 
metastatic breast cancer patients, where ER+/HER2- breast cancer recurrences often occur past 5 years. In 
this clinical setting, the primary tissue sample may not represent metastatic disease, and the metastatic sites 
are often in areas difficult to biopsy (e.g., bone and lung)[47,48]. Here, a liquid biopsy may bypass the 
procedural, spatial, and temporal obstacles of tissue biopsy by encompassing disease heterogeneity and new 
metastases while being easily repeated throughout tumor progression and different lines of treatment[49]. 
Therefore, liquid biopsy is advancing as a valuable approach to enable contemporaneous and minimally 
invasive testing of tumor-specific analytes in cancer patients[50].

For most liquid biopsy applications, the body fluid of choice is peripheral blood plasma. This has previously 
presented challenges in detecting brain tumors or metastatic sites, likely due to the blood-brain barrier; 
however, newer liquid biopsy technologies have led to improvements in sensitivity[51,52]. Regardless, other 
accessible fluids may be more informative depending on the tumor type (e.g., saliva for oral cancer, urine 
for bladder cancer, and cerebrospinal fluid for glioma)[53]. There are also a variety of components from the 
tumor which may be assessed through liquid biopsy, including intact tumor cells (e.g., CTCs), cell-free 
DNA (cfDNA), extracellular vesicles, cell-free RNA, and more[24]. Herein, we focus our discussion on 
ctDNA as a liquid biopsy biomarker of response to anti-CDK4/6 therapy due to the wealth of recent studies 
on this topic and the precedent of ctDNA in other settings of precision oncology (e.g., for EGFR tyrosine 
kinase inhibitors in lung cancer)[49,54]. Other liquid biopsy analytes and their role as biomarkers for CDK4/6 
inhibitor treatment have been reviewed elsewhere[23,55,56].

ctDNA molecules containing tumor-derived genetic and epigenetic features are released into the 
bloodstream as tumor cells die[49]. ctDNA usually represents a small portion of the total circulating cfDNA 
pool, where most other cfDNA molecules are derived from cells of hematopoietic origin and alternative 
tissues[57-59]. The release of ctDNA is related to cellular turnover (i.e., many apoptotic and necrotic cells), 
during which a subset of double-stranded DNA fragments associated with chromatin components enters 
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the extracellular space[60-62]. ctDNA levels can be as low as < 0.01% of the entire cfDNA pool, with variations 
depending on tumor size, stage, anatomical location, treatment, and the biological propensity of tumor cells 
to release their DNA into the circulation[51,58,63-65]. Once in the circulation, clearance of ctDNA by multiple 
mechanisms (e.g., nuclease-mediated degradation, phagocytosis, and renal excretion) occurs quickly with a 
half-life between 16 minutes and two hours[66-68]. This property enables cfDNA to portray a “real-time” 
snapshot of the patient’s disease state[49,69].

Analysis of ctDNA through liquid biopsy may be relevant in many clinical stages of CDK4/6 inhibitor 
treatment, such as prognostication, personalizing therapeutics (e.g., determining which patients should 
receive anti-CDK4/6 therapy or adding other agents), monitoring treatment response, and identifying 
resistance [Figure 1]. ctDNA can be analyzed by polymerase chain reaction (PCR)[70,71], which targets a 
single gene locus, or next-generation sequencing (NGS), which simultaneously profiles dozens or hundreds 
of genes[64,72-74]. Of relevance in ER+/HER2- advanced breast cancer, the therascreen PIK3CA RGQ PCR kit 
detects PIK3CA mutations to help direct PI3Ka inhibitor treatment (alpelisib)[75,76]. NGS-based liquid biopsy 
assays often include PIK3CA in addition to genes of potential relevance to resistance mechanisms to 
endocrine therapy, such as ESR1 and PTEN[77]. Thus, although not yet established in the CDK4/6 setting, 
ctDNA shows considerable promise as means of biomarker detection for genotype-guided precision 
oncology.

GENETIC-BASED LIQUID BIOPSY BIOMARKERS OF CDK4/6 INHIBITOR EFFICACY AND 
RESISTANCE
Currently, there are no clinically validated liquid biopsy biomarkers to distinguish patients with differential 
benefits to anti-CDK4/6 therapy. Here we report the main ctDNA liquid biopsy biomarkers for CDK4/6 
inhibitor treatment investigated at baseline or time of progression. The main focus of the studies outlined in 
this section are alterations of genes related to cell cycle regulation using ctDNA and their relationship to 
outcomes [Table 1].

Most studied resistance mechanisms converge on Rb modulation since it is the central target of CDK4/6 to 
control cell cycle progression[38]. Genetic alterations of RB1 may cause its inactivation and confer resistance 
to CDK4/6 inhibitors. For example, in the PALOMA-3 trial, loss of RB1 detected via baseline ctDNA was 
associated with worse PFS for patients in the palbociclib plus fulvestrant treatment group[78]. These results 
suggest that RB1 alterations may be prognostic and potentially predictive; however, this study could not 
determine the treatment interaction effect due to the small sample size. This was further supported by an 
analysis of ctDNA from patients in the MONALEESA 2, 3, and 7 trials, which found that for patients with 
RB1 mutations, ribociclib plus endocrine therapy did not significantly improve median PFS[79]. Furthermore, 
a small clinical report of three patients was the first to identify loss-of-function RB1 mutations in ctDNA 
sampled at the time of acquired CDK4/6 inhibitor resistance[44]. This was later supported by an analysis of 
PALOMA-3 matched baseline and end-of-treatment ctDNA samples, which found loss-of-function RB1 
mutations were exclusively acquired in 4.7% of patients treated with palbociclib plus fulvestrant, suggesting 
they were selected for in treatment resistance. However, due to the small number of acquired RB1 
mutations, no associations were made to PFS[39]. Altogether, these results and biological support of RB1 loss-
of-function as a resistance mechanism suggest that genomic alterations of RB1 detected in ctDNA may be 
predictive of CDK4/6 inhibitor resistance. However, the low prevalence of these alterations suggests other 
resistance mechanisms are involved, and RB1 mutations may serve as a predictive biomarker of resistance 
for a limited portion of patients on CDK4/6 inhibitors.
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Table 1. Summary of the main genomic alterations interrogated in ctDNA as biomarkers for CDK4/6 inhibitor resistance

Genomic 
alteration

ctDNA 
sample Cohort Prevalence Technique Main findings Reference

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

27 of 156 
patients (17.3%)

Target panel NGS (17 genes) Patients in the palbociclib treatment arm with loss of RB1 had worse median PFS compared 
to wild-type (exact PFS not reported)

O’Leary 
et al.[78]

Baseline MONALEESA 2,3,7: 
Ribociclib plus 
endocrine therapy

26 of 1,534 
patients (1.7%)

Target panel NGS (~600 
genes)

Patients with RB1 mutated tumors did not have significantly different median PFS with 
ribociclib treatment compared to placebo (mutant: 9.2 vs. 3.7 months placebo vs. ribociclib 
arm)

Bertucci 
et al.[79]

Progression Three case reports: 
Palbociclib plus 
fulvestrant or ribociclib 
plus letrozole 

NA Custom library for RB1 and 
TP53 coding sequence/ 
Guardant 360 assay (73 
genes) 

Patients had five different loss-of-function genetic alterations of RB1 after exposure to 
CDK4/6 inhibitors and coinciding with resistance 

Condorelli 
et al.[44]

RB1 

Baseline and 
End-of-
treatment

PALOMA-3: Palbociclib 
plus fulvestrant

Acquired in 6 of 
127 patients 
(4.7%) 

Exome sequencing/ Target 
panel NGS/ ddPCR

Patients exclusively acquired RB1 alterations in the palbociclib treatment arm O’Leary 
et al.[39]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

91 of 360 
patients (25.3%) 

ddPCR Patients in the palbociclib treatment arm had similarly improved median PFS regardless of 
ESR1 status, although patients in the placebo arm with ESR1 mutations had worse PFS 
compared to wild-type (palbociclib arm: 9.4 vs. 9.5 months mutant vs. wild-type; placebo 
arm: 3.6 vs. 5.4 months mutant vs. wild-type)

Fribbens 
et al.[80]

Baseline and 
End-of-
treatment

PALOMA-3: Palbociclib 
plus fulvestrant

Acquired in 25 of 
195 patients 
(12.8%) 

Exome sequencing/ Target 
panel NGS/ ddPCR

Patients acquired ESR1 Y537S mutations in both treatment arms and were associated with 
improved median PFS compared to patients who did not acquire the mutation (13.7 vs. 7.4 
months acquired vs. not acquired)

O’Leary 
et al.[39]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

72 of 331 
patients (21.8%) 

Target panel NGS (17 genes) Patients in the placebo arm with ESR1 mutations had worse PFS compared to wild-type 
(exact PFS not reported)

O’Leary 
et al.[78]

ESR1 

Baseline MONARCH-2: 
abemaciclib and 
fulvestrant

147 of 248 
patients (59.3%)

ddPCR Patients in the abemaciclib treatment arm had improved PFS regardless of ESR1 status but 
observed a higher numerical median PFS in patients with ESR1 mutant tumors compared to 
wild-type (abemaciclib arm: 20.7 vs. 15.3 months mutant vs. wild-type; placebo arm: 13.1 vs. 
11.3 months mutant vs. wild-type). Patients with ESR1 mutations also had improved OS 
(abemaciclib arm: not reached vs. 52.2 months mutants vs. wild-type; placebo arm: 42.2 vs. 
29.4 months mutant vs. wild-type)

Tolaney 
et al.[81]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

129 of 395 
patients (33%)

BEAMing assay Patients in the palbociclib treatment arm had similarly improved PFS regardless of PIK3CA 
status (palbociclib arm: 9.5 vs. 9.9 months mutated vs. wild-type; placebo arm: 3.6 vs. 4.6 
months mutated vs. wild-type)

Critstofanilli 
et al.[13]

Baseline MONARCH-2: 
abemaciclib and 
fulvestrant

96 of 219 
patients 
(43.8%)

ddPCR Patients in the abemaciclib treatment arm had similarly improved PFS regardless of PIK3CA 
status, although patients in the placebo treatment arm with PIK3CA mutations had worse 
median PFS compared to wild-type (abemaciclib arm: 17.1 vs. 16.9 months mutant vs. wild-
type; placebo arm: 5.7 vs. 12.3 months mutant vs. wild-type)

Tolaney 
et al.[81]

Baseline Palbociclib or ribociclib 
plus fulvestrant or 
letrozole

12 of 30 patients 
(40%)

ddPCR Patients treated with palbociclib or ribociclib plus endocrine therapy with PIK3CA mutations 
had a worse median PFS compared to wild-type (7.44 vs. 12.9 months mutant vs. wild-type)

Del Re 
et al.[82]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

55 of 331 
patients (16.6%)

Target panel NGS (17 genes) PIK3CA mutations were not identified as predictive (exact PFS not reported) O’Leary 
et al.[78]

Baseline and PALOMA-3: Palbociclib Acquired in 15 of Exome sequencing/Target Patients acquired PIK3CA mutations in both treatment arms and were associated with O’Leary 

PIK3CA
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End-of-
treatment

plus fulvestrant 195 patients 
(7.6%) 

panel NGS/ddPCR improved median PFS compared to patients who did not acquire a PIK3CA mutation (12.7 
vs. 9.2 months acquired vs. not acquired) 

et al.[39]

Baseline MONALEESA-7: 
Ribociclib plus 
endocrine therapy

139 of 489 
patients (28%)

Target panel NGS (~600 
genes)

Patients in the ribociclib treatment arm had improved median PFS compared to the placebo 
arm, and this was more prominent in patients with wild-type PIK3CA compared to PIK3CA 
mutations (ribociclib arm: 14.8 vs. 24.7 months mutant vs. wild-type; placebo arm 12.9 vs. 
12.2 months mutant vs. wild-type)

Bardia 
et al.[83]

Progression MONALEESA-2: 
Ribociclib plus letrozole

20 of 427 
patients (5%)

Guardant360 assay (73 
genes)

Patients in the ribociclib treatment arm with FGFR1 alterations had a worse median PFS 
(10.61 vs. 24.84 months mutant vs. wild-type), although significance was not achieved due 
to the small sample size

Formisano 
et al.[41]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

20 of 401 
patients (4.9%)

Target panel NGS (17 genes) Patients with FGFR1 amplifications had a worse median PFS in both treatment arms 
(palbociclib arm: 3.9 vs. 12 months mutant vs. wild-type; placebo arm: 1.8 vs. 4.8 months 
mutant vs. wild-type)

O’Leary 
et al.[78]

FGFR

Baseline and 
End-of-
treatment

PALOMA-3: Palbociclib 
plus fulvestrant

Acquired in 2 of 
195 patients 
(1%) 

Exome sequencing/Target 
panel NGS/ddPCR

Patients acquired FGFR2 alterations with no apparent difference between treatment arms. O’Leary 
et al.[39]

Baseline PALOMA-3: Palbociclib 
plus fulvestrant

52 of 331patients 
(15.7%)

Target panel NGS (17 genes) Patients with TP53 mutations had a worse median PFS in both treatment arms, and no 
interaction with treatment was observed (palbociclib arm: 3.7 vs. 12.7 months mutant vs. 
wild-type; placebo arm: 1.8 vs. 5.4 months mutant vs. wild-type)

O’Leary 
et al.[78]

TP53

Baseline MONALEESA-7: 
Ribociclib plus 
endocrine therapy

92 of 489 
patients (19%)

Target panel NGS (~600 
genes)

Patients with TP53 mutations had a worse median PFS in both treatment groups (ribociclib 
arm: 9.2 vs. 24.7 months mutant vs. wild-type; placebo arm: 7.2 vs. 13.0 months mutant vs. 
wild-type)

Bardia 
et al.[83]

KRAS Baseline and 
on treatment

Palbociclib plus 
fulvestrant

66 of 106 
patients (62.2%)

ddPCR Patients treated with palbociclib and fulvestrant with baseline KRAS mutations had a worse 
median PFS compared to wild-type (3 vs. 17.8 months mutant vs. wild-type)

Raimondi 
et al.[45]

CCND1 Baseline MONALEESA-7: 
Ribociclib plus 
endocrine therapy

51 of 489 
patients (10%) 

Target panel NGS (~600 
genes)

Patients with CCND1 alterations had a worse median PFS in both treatment arms and 
patients with altered CCND1 also had a significant treatment interaction effect (ribociclib 
arm: 12.9 vs. 22.1 months mutant vs. wild-type; placebo arm: 5.5 vs. 11.3 months mutant vs. 
wild-type)

Bardia 
et al.[83]

MYC Baseline MONALEESA-7: 
Ribociclib plus 
endocrine therapy

35 of 489 
patients (7.1%)

Target panel NGS (~600 
genes)

Patients with MYC alterations had a worse median PFS in both treatment arms (ribociclib 
arm: 7.3 vs. 24.7 months mutant vs. wild-type; placebo arm: 7.2 vs. 12.9 months mutant vs. 
wild-type)

Bardia 
et al.[83]

ctDNA: Circulating tumor DNA; NGS: next-generation sequencing; PFS: progression-free survival; ddPCR: droplet digital polymerase chain reaction; OS: overall survival.

In addition to RB1 mutations, genomic alterations in ESR1 have been investigated due to the ER mitogenic pathway being critical to cyclin D-CDK4/6 
dependence and the inactivation having a potential role in resistance to CDK4/6 inhibitors[46]. First, multiple analyses of the PALOMA-3 trial revealed that 
patients with baseline ctDNA ESR1 mutations had a worse median PFS solely in the placebo treatment arm[78,80]. These findings support the role of ESR1 
mutations as a biomarker of endocrine resistance, and no treatment interaction effect was observed, indicating the lack of predictive potential of ESR1 
mutations for CDK4/6 inhibitor resistance. A later study of PALOMA-3 found that 13 of 195 patients lost ESR1 mutations between baseline and end-of-
treatment, whereas 25 patients in both treatment groups acquired the alteration, suggesting ESR1 mutations promote resistance to fulvestrant and do not 
predict CDK4/6 inhibitor treatment benefit[39]. Lastly, a recent analysis of ctDNA from the MONARCH-2 trial found that abemaciclib plus fulvestrant 
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improved PFS regardless of ESR1 status, but patients with ESR1 mutations had a higher numerical median 
PFS in both treatment arms[81]. This study also observed an unexpectedly high prevalence of ESR1 mutations 
and increased OS for patients with ESR1 mutations. The contrast of these findings is unclear but may be 
explained by differences in sample size, patient criteria, and analytical techniques. Altogether, ESR1 
mutations are not a promising candidate biomarker for CDK4/6 inhibitor resistance and may be more 
informative for endocrine resistance.

PIK3CA mutations have also been interrogated by ctDNA due to their upstream role in cell cycle regulation 
through the PI3K/AKT/mTOR pathway, which interacts with estrogen receptors and potentially impacts 
CDK4/6 inhibitor resistance[38]. For instance, analyses of the PALOMA-3 trial found that palbociclib plus 
fulvestrant treatment similarly improved PFS in patients with mutated or wild-type PIK3CA in baseline 
ctDNA, indicating that PIK3CA genomic alterations are not predictive of CDK4/6 inhibitor benefit[13,78]. In 
support of this finding, a study of baseline ctDNA from the MONARCH-2 trial found patients in the 
abemaciclib treatment arm had similarly improved PFS regardless of PIK3CA mutation status[81]. In 
addition, patients in the placebo arm with mutant PIK3CA had a worse median PFS, suggesting the role of 
PIK3CA mutations in endocrine therapy resistance instead of as a biomarker of CDK4/6 inhibitor 
treatment. In contrast, another study of baseline ctDNA of advanced breast cancer patients treated with 
palbociclib or ribociclib found that patients with PIK3CA mutations had a shorter median PFS than wild-
type[82]. Due to a lack of a control treatment arm, this study could not assess the treatment effect with 
PIK3CA. Still, these findings suggest PIK3CA mutations may act as a prognostic biomarker for advanced 
breast cancer patients receiving treatment with CDK4/6 inhibitors.

Furthermore, the lack of predictive potential of PIK3CA has been supported in multiple studies. An 
additional PALOMA-3 analysis of matched baseline and end-of-treatment ctDNA samples found that 7.6% 
of patients acquired PIK3CA mutations across both treatment arms, suggesting that PIK3CA mutations 
emerge due to fulvestrant resistance[39]. Interestingly, patients with acquired PIK3CA mutations had an 
improved PFS than those who did not; however, this trend was seen with the acquisition of any new 
mutation (including ESR1), suggesting that novel alterations are more likely to emerge in patients with a 
longer duration of treatment. Moreover, a recent study analyzing ctDNA from the MONALEESA-7 trial 
found that patients in the ribociclib treatment arm had an improved median PFS, but this was more 
pronounced in patients with wild-type PIK3CA[83]. However, this difference was not statistically significant, 
reinforcing the limited potential of PIK3CA as a predictive biomarker of CDK4/6 inhibitor resistance.

In addition, FGFR genetic alterations have been investigated in plasma ctDNA of patients treated with 
CDK4/6 inhibitors due to evidence of abnormal FGFR signaling, driving CCND1 overexpression and 
MAPK activation, contributing to resistance[38]. One analysis of baseline ctDNA from the MONALEESA-2 
trial found that for patients in the ribociclib treatment arm, FGFR1 alterations were related to worse PFS, 
although significance was not achieved due to the small sample size[41]. In further support, a study of ctDNA 
from the PALOMA-3 trial found that FGFR1 amplifications were associated with worse PFS in both 
treatment groups, suggesting that the alteration may be related to endocrine resistance[78]. Furthermore, in 
an assessment of pre- and post-treatment ctDNA samples from PALOMA-3, FGFR2 was acquired in 2 of 
195 patients, with no apparent difference between treatment groups[39]. Altogether these findings support 
FGFR alterations, specifically FGFR1 amplifications, as a possible prognostic biomarker for patients treated 
with CDK4/6 inhibitors and endocrine therapy.

TP53 is a tumor suppressor gene whose product induces antiproliferative factors, such as CDKN1A, and its 
modification in ctDNA has also been investigated in many studies. For example, genomic alterations of 
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TP53 in ctDNA from the PALOMA-3 trial were assessed, revealing that patients with TP53 mutations had 
significantly worse PFS in both treatment arms, and no interaction with treatment was observed[78]. This 
work also found that TP53 mutations were connected to a distinct aggressive phenotype with more 
metastases but could not rule out the presence of these mutations due to clonal hematopoiesis. Moreover, a 
MONALEESA-7 biomarker analysis found that TP53 mutations in baseline ctDNA were associated with 
progression independently from treatment with ribociclib and did not predict response to therapy[83]. 
Overall, these studies support TP53 alterations as prognostic biomarkers and suggest they are not candidate 
predictive biomarkers of anti-CDK4/6 therapy.

In addition, genomic alterations of KRAS in ctDNA have recently been interrogated due to its role upstream 
of CDK4/6, transducing mitogenic signaling and affecting cyclin D1[38]. One study investigated KRAS 
mutations in ctDNA of 106 HR+/HER2- metastatic breast cancer patients treated with palbociclib plus 
fulvestrant and found that after 18 months, all patients with KRAS alterations had progressive disease[45]. In 
contrast, only one KRAS wild-type patient had progressed. Accordingly, patients with mutated KRAS had a 
worse median PFS compared to wild-type, supporting the potential of KRAS mutations as a prognostic 
biomarker. Further study with a control treatment group is required to determine the treatment interaction 
effect before conclusions can be made. For instance, previous studies on ctDNA from the PALOMA-3 trial 
have investigated KRAS mutations, but likely due to the low frequency of aberrations, have not made 
associations with PFS[39,78].

Many other genomic alterations have been investigated in plasma ctDNA of patients treated with CDK4/6 
inhibitors due to their role around the cyclin D-CDK4/6-Rb axis or in breast cancer in general, namely 
CCND1, CDK4, CDK6, CDKN1, CDKN2, NF1, ERBB2, AKT1, NRAS, HRAS, GATA3, a n d  MYC[39,78,83]. I n  
particular, a recent study of the MONALEESA-7 samples found that patients with CCND1 alterations in 
baseline ctDNA had a worse median PFS for both treatment arms, indicating the role of CCND1 as a 
prognostic biomarker[83]. The benefit of ribociclib was also greater in patients with CCND1 altered ctDNA, 
supporting CCND1 as a candidate predictive biomarker. Alterations in MYC have also been reported as a 
potential prognostic biomarker for patients treated with CDK4/6 inhibitors in combination with or solo 
endocrine therapy[83]. Otherwise, associations with PFS and treatment have not been reported for many of 
the above alterations.

In summary, current work suggests ESR1 and PIK3CA mutations in ctDNA have limited CDK4/6 inhibitor 
biomarker potential, which may be clouded due to implications with endocrine resistance. Alterations in 
FGFR1, TP53, and MYC may also be prognostic biomarkers of resistance to anti-CDK4/6 therapy, whereas 
RB1, KRAS, and CCND1 may be prognostic and putative predictive biomarkers of CDK4/6 inhibitor 
resistance. Although numerous potential biomarkers have been identified, many studies have not confirmed 
the effect of interaction with treatment, and further validation is needed. While considering this, the 
evidence so far indicates that no singular genetic alteration will serve as an ideal prognostic or significantly 
predictive biomarker for CDK4/6 inhibitor efficacy or resistance. While some potential predictive 
biomarkers, such as RB1 alterations, seem promising, their low prevalence indicates multifactorial resistance 
mechanisms. As such, analyses that only evaluate one genomic alteration are limited in assessing whether 
other alterations add predictive value. To assess the vast landscape of CDK4/6 inhibitor resistance 
mechanisms, future studies should consider a broader range of genomic alterations in ctDNA or, as 
discussed in later sections, expand to longitudinal monitoring to assess ctDNA dynamics or investigate 
epigenetic-based features.



Page 10 Main et al. Cancer Drug Resist 2022;5:727-48 https://dx.doi.org/10.20517/cdr.2022.37

DYNAMIC CTDNA BIOMARKERS OF CDK4/6 INHIBITOR EFFICACY AND RESISTANCE
Monitoring changes in ctDNA levels throughout treatment may reveal more prognostic and predictive 
information than a single time point measurement. Serial monitoring of ctDNA levels could provide a 
dynamic biomarker that allows personalized modifications to treatment, such as adding or switching to a 
more effective therapy for non-responsive patients[84]. In investigations of the utility of dynamic liquid 
biopsy biomarkers, questions remain concerning sampling time points, assays used, and change thresholds. 
This section discusses research on dynamic ctDNA biomarkers relevant to CDK4/6 inhibitor treatment 
[Table 2].

Dynamic ctDNA levels in response to CDK4/6 inhibitor treatment were first investigated by monitoring 
PIK3CA and ESR1 mutant ctDNA from the PALOMA-3 trial collected at baseline, cycle one day 15, and 
progression[85]. PIK3CA and ESR1 mutations were detected in 100 and 114 of 455 baseline samples (22% and 
25.6%), with 73 and 65 matched day 15 samples, respectively. For both PIK3CA and ESR1, a significant 
decline in ctDNA occurred on day 15, with a more apparent decrease in mutant PIK3CA ctDNA in the 
palbociclib arm and mutant ESR1 ctDNA in the placebo arm. This group also defined a circulating DNA 
ratio (CDR15) as the concentration of ctDNA on day 15 compared to baseline. They found that all patients 
on palbociclib had a CDR15 less than one, possibly due to the cytostatic effect of CDK4/6 inhibitors. For 
PIK3CA, patients with CDR15 above the median had a worse PFS than those below the median; however, 
this was not seen for ESR1. Using an optimal threshold determined by Harrell’s c-index and Benjamini-
Hochberg p-value corrections, they found that patients with a high PIK3CA CDR15 had an inferior median 
PFS than those with a low CDR15. Ultimately, this study determined that relative change in ctDNA based 
on commonly truncal PIK3CA mutations was predictive of PFS for patients treated with palbociclib and 
fulvestrant. Alternatively, ctDNA dynamics based on ESR1 mutations, which are generally subclonal due to 
selection of prior endocrine therapy, were not predictive of clinical outcome. Altogether, these results 
indicate that early evaluation of ctDNA dynamics with truncal mutations may be a predictive biomarker of 
PFS for patients on CDK4/6 inhibitor treatment.

In addition, a subsequent study also assessed ESR1 mutations longitudinally in the ACLINA cohort of 59 
ER+/HER2- metastatic breast cancer patients treated with palbociclib plus fulvestrant[86]. They found ESR1 
mutations in 28.8% of the baseline samples, but these were not associated with PFS. In addition, they found 
that all patients experienced a decrease in ctDNA on day 15 relative to baseline. In contrast, on day 30, 
patients with early progression had increased ctDNA, and patients with longer PFS had lower or consistent 
ctDNA levels. They found that the presence of ESR1 mutant ctDNA on day 30, as opposed to ctDNA 
clearance, was correlated with worse PFS, suggesting the potential of ctDNA detection on day 30 of 
treatment as a prognostic biomarker.

Further support for ctDNA ratios on day 30 as a biomarker comes from additional analysis of ctDNA from 
patients in the ALCINA cohort[87]. First, this study used archived tumor tissue to identify trackable 
mutations based on a panel of 15 driver genes. Next, they assessed serial plasma samples for 25 patients with 
either PIK3CA, TP53, or AKT1 mutations and found that baseline ctDNA levels had no association with 
PFS. In addition, they found that all patients had a decrease in ctDNA on day 15, which was not associated 
with PFS. In contrast, three kinetic patterns appeared on day 30, with nine patients displaying a continuous 
decreased or undetected ctDNA, one patient with consistent ctDNA levels, and five patients with an 
increase in ctDNA. Patients with undetectable ctDNA on day 30 had an improved PFS compared to those 
with detectable ctDNA. Furthermore, the radiological response had high concordance with ctDNA 
detection, with general decreases or undetectable ctDNA for non-progressive disease compared to rising 
ctDNA between days 15 and 30 for progressive disease. However, this study assessed concentrations of 



Page 11Main et al. Cancer Drug Resist 2022;5:727-48 https://dx.doi.org/10.20517/cdr.2022.37

Table 2. Summary of dynamic ctDNA biomarkers investigated in the CDK4/6 inhibitor treatment setting

Technique ctDNA sample 
time points

Genetic 
alteration Cohort Metric Main findings Reference

ddPCR Baseline, cycle 1 
day 15, and 
progression

ESR1 and PIK3CA PALOMA-3: 
Palbociclib plus 
fulvestrant

High and low CDR15 based on a 
threshold determined by Harrell’s c-
index and Benjamini-Hochberg p-
value corrections

All patients in the palbociclib treatment arm had a CDR15 less than one. For 
PIK3CA, patients with a high CDR15 had a worse median PFS than those with a 
low CDR15 (4.1 vs. 11.2 months high vs. low)

O’Leary 
et al.[85]

ddPCR Baseline, day 15, 
day 30, and 
progression

ESR1 ALCINA: 
Palbociclib plus 
fulvestrant

Ratio relative to baseline (mutant 
copies/mL)

All patients experienced a decrease in ctDNA on day 15 relative to baseline. 
Patients with early progression had increased ctDNA on day 30, and patients 
with longer PFS had lower or consistent ctDNA levels relative to baseline. 
ESR1 mutations ctDNA on day 30, as opposed to ctDNA clearance, was 
correlated with worse PFS

Jeannot 
et al.[86]

ddPCR monitoring 
one tumor-specific 
mutation per patient

Baseline, day 15, 
day 30 and 
progression

PIK3CA (n = 21), 
TP53 (n = 2), or 
AKT1 (n = 2) 

ALCINA: 
Palbociclib plus 
fulvestrant

Ratio relative to baseline (mutant 
copies/mL)

All patients had a decrease in ctDNA on day 15, but this was not associated 
with PFS. Patients with undetectable ctDNA on day 30 had an improved PFS 
compared to those with detectable ctDNA (25 vs. 3 months undetectable vs. 
detectable, respectively). ctDNA ratios (day 30/baseline) greater than or less 
than one were significantly associated with PFS

Darrigues 
et al.[87]

Guardant360 assay Baseline, four 
weeks

73 genes Palbociclib or 
ribociclib plus 
endocrine 
therapy

mVAFR for the 79 mutations found 
between baseline and week 4 assess 
in groups of high, medium, and low 
mVAFR groups and as a continuous 
variable

mVAFR was significantly associated with PFS, whereas single timepoint mean 
VAFs or absolute changes in mean VAF were not. Patients with high mVAFR 
had a worse median PFS than those with low mVAFR (4.2 months vs. not 
reached high vs. low)

Martinez-
Saez et al.[88]

mFAST-seq Various Aneuploidy CDK4/6 
inhibitor plus 
endocrine 
therapy

z-score trajectories Raised z-score trajectories were significantly related to worse PFS, whereas 
baseline z-scores were not predictive of progression. A single z-score 
increased in a consecutive blood sample at any follow-up point was not 
associated with PFS

Dandachi 
et al.[89]

ctDNA: Circulating tumor DNA; ddPCR: droplet digital polymerase chain reaction; CDR15: circulating DNA ratio at cycle one day 15 compared to baseline; PFS: progression-free survival; mVAFR: mean variant allele 
fraction ratio; mFAST-seq: modified Fast Aneuploidy Screening Test-Sequencing System.

ctDNA with respect to disease progression and found overlap in progressive versus non-progressive disease at all time points, highlighting the challenge of 
absolute abundance as a biomarker. Therefore, they assessed ctDNA ratios relative to baseline and found low ratios on day 15, with no significant difference in 
decline between patients with and without disease progression. Instead, they found that ctDNA ratios on day 30 relative to baseline distinguished patients with 
non-progressive disease (ratio < 1) and progressive disease (ratio > 1) and that high ctDNA ratios were associated with worse PFS. This study supports that 
monitoring of ctDNA is related to radiological progression and demonstrates the potential of ctDNA dynamics on day 30 relative to baseline as a prognostic 
biomarker for patients treated with CDK4/6 inhibitors.

In contrast to the studies highlighted above, ctDNA dynamics can be monitored using the combined signal from profiling changes in many mutated genes 
instead of specific mutations. For instance, a recent study assessed ctDNA levels at baseline and four weeks for 45 patients treated with CDK4/6 inhibitors and 
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endocrine therapy using the 73-gene Guardant360 assay[88]. This work defined a mean variant allele fraction 
ratio (mVAFR) as an average of mutations found between baseline and week 4 for each patient. They found 
that mVAFR was significantly associated with PFS, whereas single timepoint mean VAFs or absolute 
changes in mean VAF were not. One consideration of this study is that they assessed PFS with respect to 
three mVAFR groups (high, medium, and low) with cutoffs based on their cohort before assessing mVAFR 
as a continuous variable. Another limitation of this study was that they could not distinguish mutations 
from clonal hematopoiesis. Altogether, this study illustrates that early ctDNA dynamics in multiple genes 
may act as a biomarker to identify patients who are likely to progress on CDK4/6 inhibitors and endocrine 
therapy, which may provide the opportunity to modify or add treatments early on.

An additional study evaluated ctDNA using an untargeted sequencing technique, modified Fast Aneuploidy 
Screening Test-Sequencing System (mFAST-seq) in longitudinal samples from 49 HR+/HER2- metastatic 
breast cancer patients treated with CDK4/6 inhibitors[89]. In this work, associations between z-score 
measurements, which are surrogate measurements to ctDNA fraction, were made to clinical outcomes using 
joint models, which link data over a protracted period of time and time-to-event. They found that raised z-
score trajectories were significantly related to worse PFS, whereas baseline z-scores were not predictive of 
progression. Interestingly, they found that a single rise z-score in a consecutive blood sample at any follow-
up point was not associated with PFS. This study highlights the use of different assays in dynamic 
monitoring and reinforces that trajectories, as opposed to single time points, may be useful biomarkers of 
progression on anti-CDK4/6 therapy. A limitation of this approach is that mutations were not assessed, 
which may be relevant in the future for potential interventions or modifications to treatments. Also, this 
study evaluated z-score measurements at 181 time points for 49 patients, but these were not standardized 
and did not address the optimal time to sample. They also observed that some patients with progressive 
disease did not have raised z-scores over time and may be due to long intervals in sampling failing to detect 
an increase. This may be elucidated by shorter and more consistent sampling in future studies.

Overall, the current literature on monitoring ctDNA dynamics for patients treated with CDK4/6 inhibitors 
is limited. Differences in methods, patient populations, sampling time points, assays, and change thresholds 
lead to discordance across studies. Determining ideal change thresholds and timepoints will be essential for 
downstream clinical decisions. Future research should evaluate a more comprehensive range of consistent 
time points. Another important consideration is the way mutations are interrogated in ctDNA. Methods 
can vary dramatically by the number of tumor-specific markers assessed. ddPCR and related single-locus 
approaches can have high analytical sensitivity and specificity for a specific mutation, but other mutations 
and subclones that may be relevant to treatment resistance are ignored. Broader targeted panel sequencing 
approaches can be more robust by simultaneously interrogating multiple mutations and accounting for 
potential mechanisms of resistance[64,72]. Bespoke assays designed for each patient based on tumor tissue 
sequencing results [e.g., TARgeted DIgital Sequencing (TARDIS) and Signatera] show promise for sensitive 
and specific ctDNA detection[63,73,90,91], although emergent subclones that are not present in the tissue 
specimen can be missed[54]. Future studies may benefit from combining these approaches to achieve high 
analytical performance while enabling broad discovery.

EPIGENETIC-BASED LIQUID BIOPSY BIOMARKERS OF CDK4/6 INHIBITOR EFFICACY 
AND RESISTANCE
As outlined in the previous sections, most CDK4/6 inhibitor ctDNA studies have focused on genetic 
alterations (e.g., small nucleotide variants, copy number aberrations, etc.). In contrast, epigenetic alterations 
have been relatively understudied in this context. Emerging methodologies now make it easier to profile 
epigenetic aberrations in ctDNA, including DNA methylation, fragmentation, and histone modifications[92]. 
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This new generation of liquid biopsy investigations has expanded the potential diagnostic use of cfDNA 
compared to genetic alterations on their own (e.g., providing information on the tissue of origin). 
Investigating epigenetic-based features has also expanded the number of cfDNA fragments of interest 
beyond solely mutated tumor-derived fragments. Supporting these new methods is a maturing research 
infrastructure (e.g., bioinformatics infrastructure, machine learning tools) for handling increasingly 
complex cancer liquid biopsy data[93]. Since genetic alterations in ctDNA have failed to identify clear 
predictive biomarkers of CDK4/6 inhibitor efficacy and resistance, there is interest in exploring the 
potential value of epigenetic-based biomarkers in this setting.

Phenotype of CDK4/6 inhibitor resistance and gene expression profiling
Support for epigenetic liquid biopsy approaches comes from previous work highlighting that phenotypic 
biomarkers that reflect transcriptomic programs are likely to predict response to CDK4/6 inhibitors. As 
summarized below, multiple gene expression analyses have demonstrated the effect of CDK4/6 inhibitors 
on proliferation and cell cycle genes, and patterns associated with resistance have been proposed.

An analysis of ER+/HER2- breast cancer patients in the NeoPalAna trial explored gene expression changes 
through serial tissue biopsies at baseline, cycle one day 1, cycle one day 15, and surgery. High expression of 
CCNE1, CCND3, and CDKN2D at cycle one day 15 was associated with resistance to neoadjuvant 
palbociclib plus anastrozole but not anastrozole alone[94]. These gene expression changes suggest that 
resistant tumors have continual E2F1 activity. Similarly, a gene expression analysis on tissue samples from 
baseline and surgery from patients treated with preoperative palbociclib found large-scale changes in genes 
related to proliferation and cell cycle after treatment, including a significant decrease in CCNE2 expression 
in antiproliferative responders compared to nonresponders[95].

A substudy of the PALOMA-3 trial yielded partially confirmatory findings[96]. Gene expression of 2534 
cancer-related genes from 302 patient tumors revealed that high expression of CCNE1 - but not other genes 
related to cell cycle regulation (CDK4, CDK6, CCND1, and RB1) - was associated with resistance to 
palbociclib (median PFS palbociclib arm: 7.6 vs. 14.1 months high vs. low; placebo arm: 4.0 vs. 4.8 months 
high vs. low). The increased predictive power of CCNE1 mRNA in metastatic biopsies suggests that 
sampling closer to treatment allows improved identification of predictive biomarkers, which may be 
facilitated by liquid biopsy. The authors also confirmed the potential role of CCNE1 as a predictive 
biomarker in an independent validation cohort of breast cancer patients from the preoperative palbociclib 
study, where high CCNE1 levels were associated with a decreased antiproliferative effect with palbociclib.

Further support for CCNE1 mRNA as a predictive biomarker stems from a series of studies examining 
expression levels relative to those of RB1. One study of ER+/HER2- preclinical models found that joint 
decreased expression of RB1 and increased expression of CCNE1 commonly occurred at resistance[97]. The 
ratio of CCNE1 to RB1 was then confirmed to be associated with palbociclib resistance among patients in 
the NeoPalAna trial. Another study of patients treated with abemaciclib and anastrozole alone or combined 
within the neoMONARCH trial found that resistant tumors had higher expression levels of CCNE1 and 
lower levels of RB1[98]. High tumor CCNE1 expression was again associated with poor PFS among 391 
patients treated with letrozole plus ribociclib in the MONALEESA-2 trial[41]; interestingly, this study also 
identified FGFR1 expression as a putative biomarker for CDK4/6 inhibitors (PFS of 22 months vs. not 
reached for patients with high vs. low FGFR1 expression, respectively).

One limitation of many studies correlating gene expression and PFS is that high and low expression 
thresholds are often determined above and below the median expression level in the cohort. Thresholds that 
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are biased to the study cohort make it challenging to assess the prognostic or predictive potential, make 
comparisons across studies, and translate biomarker development to the clinic. Regardless, the current 
evidence supports that gene expression may predict CDK4/6 inhibitor efficacy or resistance. Considering 
gene signature assays can become routine in the clinical management of ER+ breast cancer patients, such as 
MammaPrint and OncotypeDx, specific gene signatures that are predictive of therapy with CDK4/6 
inhibitors may be defined and developed[27,29]. However, these assays require tissue samples, which have 
barriers to accessibility and are often limited by the quality and quantity of RNA after FFPE chemical 
degradation[99]. This becomes especially difficult to derive from archival tissue specimens collected years 
before metastatic relapse. Many of these obstacles may be overcome by assessing transcriptional and 
epigenetic profiles with liquid biopsy.

Opportunities of non-mutational signatures of cfDNA
The potential of epigenetic mechanisms and biomarkers for CDK4/6 inhibitor resistance has so far not been 
examined in detail, and investigating these avenues may provide novel insight. For instance, one recent 
study showed that treatment with CDK4/6 inhibitors in ER+ breast cancer causes extensive enhancer 
activation through activator protein-1 (AP-1) transcriptional changes. They found that the widespread 
chromatin remodeling with CDK4/6 inhibitor treatment may explain the effects of these drugs beyond cell 
cycle arrest and may be involved in early adaptations leading to resistance[100]. These epigenomic changes 
may also be inferred from various features of ctDNA, such as methylation, fragmentation patterns, and 
histone modifications [Figure 1].

DNA methylation, namely 5-methylcytosines at CpG sites, is a vital part of cell-type-specific transcriptional 
regulation, and methylation profiles differ between tumor and normal tissues[101]. These differential 
methylation patterns are maintained in plasma cfDNA and can classify cancer types with high sensitivity in 
both early and late-stage disease[102,103]. Differential plasma cfDNA methylation patterns can also be leveraged 
to delineate the contribution of various tissues to the cfDNA pool and infer the expression of genes 
implicated in cancer[57,103,104]. One study investigated methylation-based biomarkers in the context of CDK4/6 
inhibitors by assessing the methylation status of ESR1 in plasma cfDNA from a cohort of 49 HR+/HER2- 
metastatic breast cancer patients treated mostly with endocrine therapy and CDK4/6 inhibitors. Using 
samples from baseline and at three months, they assessed methylation levels at two main promoters with 
methylation-specific ddPCR. They found that a greater than 2-fold increase in promoter B or both 
promoters was associated with a worse prognosis[105]. While this study has various limitations, such as a 
small heterogeneous cohort, inability to dissect endocrine and CDK4/6 inhibitor effects, and analysis of 
limited loci, it paves the way for both epigenetic and dynamic cfDNA biomarker discovery approaches.

Future studies of DNA methylation in the CDK4/6 inhibitor treatment setting should consider other 
technical approaches. For instance, while the analysis of limited CpG sites is practical in many clinical 
settings for simplicity of interpretation and lower costs, expanding to genome-wide explorations may 
uncover novel candidate resistance biomarkers. Furthermore, bisulfite conversion is necessary for most 
methylation techniques but can result in excessive loss of DNA due to degradation, which is a substantial 
challenge for low-input cfDNA samples[106]. Forthcoming research should leverage other methods that 
surpass these limitations by enriching specifically for methylated fragments of cfDNA before 
sequencing[104,107,108]. Moreover, hydroxymethylation is a related epigenetic modification produced by TET 
enzymes during cytosine demethylation and acts as a marker of active promoters[109]. Though less studied in 
cfDNA, similar enrichment techniques have been developed to assess regions with 5-hydroxymethyl 
cytosines[110,111]. These approaches may be especially useful for revealing surrogates of gene expression that 
could confer sensitivity or resistance to CDK4/6 inhibitors.
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Phenotypic information can also be inferred from distinct fragmentation patterns between ctDNA and 
other sources of cfDNA. The fragmentation of cfDNA is a non-random process associated with chromatin 
structure, gene expression, and nuclease content. Differences in nucleosome occupancy patterns at open 
versus closed chromatin and across varying gene expression levels affect where nucleases can access and 
fragment the DNA[92]. This, in turn, is reflected in the physical characteristics of the cfDNA fragments and 
their distribution over the genome (i.e., fragmentation features), revealing information about cell and tissue 
of origin. Early work on cfDNA fragments revealed differences in fragment length, a phenomenon that 
multiple studies have leveraged to enrich ctDNA and improve the accuracy of cancer detection[112-117].

Beyond fragment length, many other fragmentation features have also been investigated, including relative 
sequence coverage[118-124], end motifs[125-129], and more[130-132]. There is substantial evidence that these features 
convey information about DNA protection from digestion, which multiple studies have used to create 
cfDNA deduced nucleosome maps[58,118,120,133]. The fragmentation profiles from this work have been 
correlated with gene expression profiles and permitted identification of cancer type[118,120,123].

The association of fragmentation profiles with transcriptional activity may present opportunities to infer 
existing candidate gene expression biomarkers of CDK4/6 inhibitor resistance (e.g., CCNE1 expression) 
with cfDNA in blood plasma while simultaneously permitting assessment of clinically actionable mutations 
to direct subsequent therapies. While promising, there remain several practical hurdles to implementing 
such biomarkers in the clinic. Pre-analytical variables could influence fragmentation features, and their 
extraction from sequencing data requires complex bioinformatics analysis. However, if these hurdles can be 
overcome, fragmentation-based biomarkers could greatly extend the utility of ctDNA analysis in the 
CDK4/6 inhibitor biomarker setting and beyond.

Another class of epigenetic modification has recently been proposed for liquid biopsy applications: post-
translational modifications of nucleosomal histones in circulation. These modifications differ in 
euchromatin compared to heterochromatin and may signal transcriptionally active (e.g., H3K4me3, 
H3K36me3) or repressed (e.g., H3K27me3, H3K9me3) regions of the genome[134]. Furthermore, histone 
modifications may signal chromatin remodeling and transcriptional changes between cancer and healthy 
cells. Initial work found a global decrease in repressive histone markers across multiple cancer types[135,136]. In 
a recent study, cell-free chromatin immunoprecipitation and sequencing (ChIP-seq) was conducted to 
identify regions associated with transcriptionally active histone modifications[137]. This approach revealed 
signals reflective of distinct tissues and cancer types, potentially expanding the toolbox for biomarker 
discovery in the context of CDK4/6 inhibitors for breast cancer patients.

Overall, epigenetic profiling of cfDNA has many potential benefits that have gone mostly unexplored in the 
context of breast cancer resistance to CDK4/6 inhibitors. More investigation is needed to elucidate 
epigenetic signatures and determine which features are the most informative from the vast list growing in 
the literature. A combination of approaches may increase the predictive power compared to any method 
alone and increase the ability to direct subsequent therapies[138-140].

CONCLUSION
Biomarkers are essential for precision oncology, and despite widespread research efforts, no clinically 
validated biomarkers beyond breast cancer subtype have been established to guide the use of CDK4/6 
inhibitors. Liquid biopsy presents many benefits for biomarker development due to being minimally 
invasive and encompassing the heterogeneity of metastatic sites. Accordingly, putative predictive 
biomarkers of resistance to treatment with CDK4/6 inhibitors have been found in ctDNA such as RB1, 
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KRAS, and CCND1 genomic alterations; dynamic changes in ctDNA, such as changes in truncal mutations 
between baseline and cycle one day 15 or 30, or ctDNA clearance on day 30. Expression of E2F target genes 
such as CCNE1 is also associated with resistance and could someday be reflected through emerging 
epigenetic ctDNA analysis methodologies. In addition, prognostic biomarkers such as ESR1, PIK3CA, 
FGFR1, TP53, and MYC alterations have also been identified.

To advance further biomarker discovery, future studies of trials or cohorts that included a control arm (e.g., 
endocrine therapy alone) will be especially valuable to permit the assessment of treatment interaction 
effects. In addition, it would be beneficial to investigate a broader range of alterations within ctDNA, given 
the low likelihood that a single alteration will be an ideal biomarker to the vast mechanisms of resistance. 
Thresholds for expression or dynamic changes in ctDNA should also be determined independently from the 
patient cohort in which they are studied to increase generalizability and reproducibility. Moreover, future 
work on ctDNA dynamics should sample a larger range of time points. There is also enormous potential for 
phenotype-based biomarkers, which may reflect widespread epigenetic changes and inform changes in 
tumor biology associated with resistance. There is a lack of established mutation-based liquid biopsy 
biomarkers, and features of cfDNA related to methylation, fragmentation, and histone modifications are 
uncharted in the context of CDK4/6 inhibitor resistance. These ctDNA epigenomic profiles should be 
leveraged for new biomarker discovery. Although this review has focused on the ER+/HER2- subtype of 
breast cancer, it is conceivable that novel predictive biomarkers could identify other patients likely to 
respond. Lastly, there have been substantial investigations into novel targeted agents for treatment after 
CDK4/6 inhibitor resistance. For instance, preclinical and clinical data indicate that treatment with novel 
endocrine therapies, PI3K/MAPK pathway inhibitors, downstream mitotic kinase inhibitors, and DNA-
damage related inhibitors may each have a role in the treatment of CDK4/6 inhibitor-resistant disease[46]. 
With further development, liquid biopsy biomarkers may help direct these subsequent therapies in the 
future, increasing the likelihood of successful clinical development and the potential impact on patient 
outcomes.
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