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Abstract
Overcoming drug resistance in cancer therapies remains challenging, and the tumor microenvironment plays an 
important part in it. Microvesicles (MVs) are functional natural carriers of cellular information, participate in 
intercellular communication, and dynamically regulate the tumor microenvironment. They contribute to drug 
resistance by transferring functional molecules between cells. Conversely, due to their specific cell or tissue 
targeting ability, MVs are considered as carriers for therapeutic molecules to reverse drug resistance. Thus, in this 
mini-review, we aim to highlight the crucial role of MVs in cell-to-cell communication and therefore their diverse 
impact mainly on liver cancer progression and treatment. In addition, we summarize the possible mechanisms for 
sorafenib resistance (one of the main hurdles in hepatocellular carcinoma treatments) and recent advances in 
using MVs to reverse sorafenib resistance in liver cancer therapies. Identifying the functional role of MVs in cancer 
therapy might provide a new aspect for developing precise novel therapeutics in the future.
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INTRODUCTION
Liver cancer (LC), including hepatocellular carcinoma (HCC), hepatoblastoma, and cholangiocarcinoma, 
remains one of the malignant cancers worldwide with high mortality[1]. Surgery, radiotherapy and 
chemotherapy are considered as the main treatments for LCs at present, but their therapeutic effects are 
limited in advanced stages[2]. Sorafenib, an oral drug approved by the FDA for the treatment of advanced 
HCC, has shown excellent therapeutic effects by inhibiting tumor growth and angiogenesis in vitro[3,4]. 
However, reported resistance limits its therapeutic effects[5-9]. Microvesicles (MVs), functional mediators in 
cell-to-cell communication by transferring bioactive cargoes[10], play an important role in tumor progression 
and metastasis[11-14]. Interestingly, recent studies reported that HCC-derived MVs promoted sorafenib 
resistance in recipient liver cancer cells by transporting cancerous cargo compared to normal liver cell-
derived MVs[15]. Thus, the role of these tiny functional vesicles needs to be cautiously studied for the in-
depth understanding and successful treatment of HCC over sorafenib resistance.

Considering the necessity of overcoming sorafenib resistance while developing a successful treatment 
process for the challenging HCC, in the present review, we summarize the mechanism of action of sorafenib 
and sorafenib resistance. In addition, recent advances of MVs in intercellular communication and the 
intriguing contribution of MVs in cancer treatment are discussed. Especially, the review closely considers 
the possibilities for utilizing MVs as a potential therapeutic tool to alleviate sorafenib resistance in future 
cancer treatments.

SORAFENIB DRUG AND RESISTANCE
Mechanism of action of sorafenib
The revelation of the crucial involvement of Raf1 and vascular endothelial growth factor (VEGF) mediated 
signaling pathways in the molecular pathogenesis of liver cancer provided an interesting theoretic basis for 
applying sorafenib drugs to liver cancer treatment[16,17]. As a multikinase inhibitor, sorafenib strongly 
inhibits the tyrosine kinase Raf. Meanwhile, it has been shown to inhibit vascular endothelial growth factor 
receptor and platelet-derived growth factor receptor, which in turn inhibits the activation of other 
downstream multikinase that are normally essential for cell growth, angiogenesis, proliferation and 
metastasis of HCC cells [Figure 1]. Liu et al.[18] recorded that sorafenib inhibited the proliferation of HCC 
cells and reduced angiogenesis signal transduction in HCC tumor xenograft, promoting tumor cell 
apoptosis as well. In addition, the same therapeutic advances have also been revealed in clinical studies[19]. 
Nevertheless, several studies stated that the therapeutic effects of sorafenib varied among patients, some of 
whom experienced severe side effects[20-23].

Mechanism of sorafenib resistance
Drug resistance limits the therapeutic effects of HCC treatments. Roughly 30% of patients were reported to 
respond to sorafenib well at the beginning, while the subsequently acquired resistance to sorafenib usually 
happens within six months[24], which is far from satisfactory. As an obvious contributor that hinders the 
effectiveness of cancer treatment, sorafenib resistance and the possible molecular mechanisms involved in 
sorafenib resistance become prominently important to be discussed here.

Due to the heterogenicity of liver cancer, some patients are resistant to sorafenib primarily, while others 
obtain sorafenib resistance during treatment, which further limits the application of the drug and leaves the 
treatment process questionable. Thus, the acquired resistance of sorafenib attracted the attention of a wide 
range of researchers[8,25]. To date, studies on the potential mechanism of sorafenib resistance have mainly 
focused on the activation of drug targets and downstream signaling, regulation of cell proliferation and 
apoptosis signaling[5-9]. In addition, stemness and mesenchymal states of sorafenib-resistant HCC cells 
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Figure 1. Mechanism of actions of sorafenib. Sorafenib inhibits tyrosine kinase receptor (VEGFR, PDGFRβ, Kit and RET) signaling and 
suppresses the activation of Raf, thus could suppress tumor progression by inhibiting angiogenesis and cell proliferation. Created with 
BioRender.com. VEGFR: Vascular endothelial growth factor receptor.

provided a new aspect of this challenging problem[26]. Altogether, the mechanism of sorafenib resistance and 
its influence on the treatment process remain complicated and require more research for a better 
understanding.

The epidermal growth factor receptor (EGFR) has been found to be overexpressed or hyperactivated in the 
cancer cells of most liver cancer patients as well as be the reason for continuous activation of its 
downstream signaling of the Ras/Raf/MEK/ERK pathway. This contributes to the abnormal proliferation of 
cancer cells and therefore might promote sorafenib resistance[27]. For instance, an attenuated level of 
phosphorylated ERK was reported to be associated with sorafenib resistance in HCC[28]. In addition, 
hyperactivated EGFR/HER3 and its overexpressed ligands were reported to suppress the curative effect of 
sorafenib by interfering with the phosphorylation of EGFR/HER3, by which the enhanced anti-proliferative 
and pro-apoptotic abilities of sorafenib could be achieved during the treatment[29].

A body of evidence reveals that the PI3K/Akt pathway plays an important role in sorafenib resistance[5,30]. 
For instance, Chen et al.[5] found that exposure of Huh7 liver cancer cells to a high concentration of 
sorafenib could result in sorafenib resistance and an accelerated expression of Akt in the treated cells. 
Furthermore, the PI3K/Akt pathway has been identified to have a close relationship with cell apoptosis. In 
the pathway, the combination of pro-survival factor and tyrosine kinase receptor activates the kinase PI3K, 
which triggers the downstream cascade to endorse phosphorylation of Akt and thus contributes to the 
suppression of cell apoptosis. In turn, inhibition of Akt could make the tumor cell more responsive to 
sorafenib treatment[31]. Hence, silencing of PI3K/Akt signaling with Akt inhibitor alone or with other 
combination therapy has gained attention for reversing sorafenib resistance for better HCC treatment[32,33]. 
Furthermore, Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has been 
reported to be activated by sorafenib, which in turn could negatively regulate pSTAT3 and suppress 
transduction of JAK/STAT signaling. Dysfunctional JAK/STAT has been observed in sorafenib-resistant 
liver cancer cells, including induced expression of pSTAT3 and its downstream anti-apoptotic protein Mcl-
1 and reduced expression of SHP-1/pSHP-1[34].
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Moreover, cancer stem cells (CSCs), which represent a subpopulation of cancer cells with a self-renewal 
nature, are considered to participate in tumorigenesis, drug resistance, tumor metastasis and recurrence, 
and they are innovative targets for cancer therapy[35-37]. Label-retaining cancer cells (LRCCs) can be used to 
label CSCs. Xin et al.[38] used this methodology to observe sorafenib treated HCC cells and found that 
LRCCs were highly enriched in the remaining HCC cells that escaped sorafenib treatment, which strongly 
evidenced the resistance to sorafenib-induced cytotoxicity and apoptosis. In addition, specific ATP binding 
box (ABC) transporters have been reported to be highly expressed on CSCs, which control the outflow of 
chemical agents to protect cells from toxic compound accumulation and damage, and hence could reduce 
the sensitivity of cells towards drug treatment[39,40]. ABCB1 has been attested to have a close relationship with 
multidrug resistance; thereby, knocking out ABCB1 in drug-resistant cancer cell lines made those cells more 
responsive to chemotherapies[41]. It was also revealed that CSCs isolated from HCC cell lines showed 
resistance to sorafenib both in vitro and in vivo with abnormal IL-6/STAT3 signaling[6]. Through VEGF, 
liver cancer stem cells could promote tumor angiogenesis to sustain their stemness as well as drug resistance 
features[42]. In addition, Wnt/β-catenin signaling, one of the classic pathways involved in stemness 
regulation[43,44], was proven to be hyperactivated in HCC cells, resulting in β-catenin accumulation in 
cytoplasm and nucleus, which finally led to enhanced self-renewal ability of CSCs[45,46]. Inhibition of Wnt 
signaling has been shown to be beneficial to CSC clearance and tumor development[46,47].

Dual biotransformation routes including oxidation and glucuronidation were witnessed in the sorafenib 
metabolism[48-50]. After hepatocellular uptake, sorafenib was N-oxidized by CYP3A4, one of the drug-
metabolizing enzymes, to the pharmacologically active sorafenib-N-oxide metabolites[51,52]. However, 
CYP3A4 was identified as poorly expressed in liver cancer[53]. Well-studied oncomiRs (e.g., miR 21, miR-142 
and miR-27b) overexpressed in HCC, which could be transferred by tumor-derived microvesicles (TMVs), 
were proved to be negatively associated with CYP3A4 mRNA in human liver[54], which might downregulate 
the expression of this main enzyme and thus could inhibit the active biotransformation of sorafenib drug. 
Apart from oxidation, sorafenib underwent glucuronidation, mainly mediated by UGT1A1 and UGT1A9, 
to inactive glucuronide metabolites[48,55]. A recent study revealed that sorafenib inhibits the above-mentioned 
UGT enzyme[56], which might be the blockage for sorafenib secretion to bile and later systemic circulation 
and clearance. Taken together, the insufficient oxidation and complex interaction between sorafenib and 
UGT enzymes need further investigation for a deep understanding of their role in resistance.

Anti-angiogenesis is one of the therapeutic effects of sorafenib, while the tumor vessel depletion along with 
pericyte could induce hypoxia and allow the maintenance and enhancement of CSCs in HCC[57,58]. Apart 
from specific niches, different stroma cells in the microenvironment render sorafenib sensitivity[59], where 
MVs play a significant role.

MVS: THE TINY MEDIATORS IN INTERCELLULAR COMMUNICATION
MVs, a subpopulation of extracellular vesicles (EVs), act as functional mediators by transferring bioactive 
molecules among various types of cells and thus have been considered as potential candidates in 
intercellular communication[10]. Through unconventional secretion mechanisms, eukaryotic cells were 
reported to release membrane-enclosed vesicles both in vivo and in vitro[60]. In general, MVs can be collected 
from cell culture media and blood from animals and patients via ultracentrifuge method, filtration, or 
commercial kits[61]. MVs are also identified as shedding microvesicles or microparticles, budding directly 
from the plasma membrane and are 100 nm-1000 nm in diameter. They participate in cell-to-cell 
communication by carrying the information from parental cells to others and orchestrate complicated 
physiological and pathological processes[14,62]. At the molecular level, symmetrical perturbation of membrane 
lipids leads to the surface expression of phospholipid serine acid pairs, which translocate from the inner 
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lobule to the outer surface lobule of the membrane bilayer through special biological enzymes (floppases, 
flippases and scramblases), contributing to MVs formation[63]. However, the detailed mechanism of MVs 
formation and shedding remains to be further studied.

Evidence reveals that most MVs tend to be decomposed after shedding to release their cargo[64]. Especially, 
various cytoplasmic proteins, excluded from the classic signal-peptide secretion pathways, are discharged 
out regularly through MV decomposition[65]. For instance, fibroblast growth factor 2 (FGF2) was proved to 
be released in response to the breakdown of MVs derived from neurons, HCC and endothelial cells[66]. 
Similarly, MVs secreted by dendritic cells, macrophages and microglias have been demonstrated to release 
the pro-inflammatory cytokine interleukin 1B (IL-1B); IL-1B has also been found to aggregate in MVs along 
with proteases such as caspase 1[67]. A study on tumor-stromal interactions noted that when MVs were co-
released with extracellular matrix metalloproteinase inducer (EMMPRIN/CD147), they prompted lung 
cancer cells to obtain increased mobility and invasion ability by promoting metalloproteinase to capture and 
digest extracellular matrix (ECM)[68]. In addition, Kornek et al.[69] demonstrated that EMMPRIN released by 
circulating T cell-derived MVs accelerated hepatic stellate cells to transform into a fibrolytic phenotype, 
which promotes ECM degradation.

Conversely, MVs are able to stimulate the receptor cells to complete signal transduction through their 
surface ligands. It has been confirmed that MVs derived from platelet arouse the intra-hemopoietic signal 
cascade by ligands such as CD40L/PF-4 and thus cause the proliferation and survival of hematopoietic 
cells[70]. Simultaneously, the adhesion molecules could be transferred to hematopoietic cells via MVs to 
enhance their adhesion to fibrinogen or endothelium[70]. Proteomic and transcriptomic studies have shown 
that MVs are natural vectors for transferring bioactive molecules, including protein, mRNA and miRNA, 
between cells[71], effectively facilitating intercellular communication[72,73]. In addition, MVs hold natural 
stability in the blood, low immunogenicity and special homing ability to specific organs or tissues[74]. 
Evidence shows that vesicle-associated integrins α6β4 and α6β1 are correlated with lung metastasis while αV
β5 with liver metastasis, which indicates the various origins of MVs encoded with different tags for the 
corresponding cells or organ targeting[74]. Moreover, it has also been demonstrated that MVs could possibly 
transport even complete organelles (e.g., mitochondria) to target cells[75], which declares its potential to act 
as a promising novel drug carrier system.

Several studies revealed that TMVs transport cancerous molecules to recipient cells, which eventually 
contribute to tumor progression and metastasis[11-14,76] [Figure 2]. Interestingly, the transport of anti-cancer 
drugs out of ovarian cancer cells through their secreted EVs supported the role of EVs in cancer progression 
and treatment. Conversely, the observation of more sorafenib resistance in HCC tumors that were treated 
with tumor cell-derived MVs added evidence to the noticeable link between MVs and sorafenib 
resistance[15,78].

THE DYNAMIC IMPACT OF MVS ON SORAFENIB RESISTANCE
MV-mediated sorafenib resistance
The physiological status of parental cells decides the composition of their secreted MVs, having direct or 
indirect effects on the uptake of MVs by recipient cells. Tumor cells that undergo hypoxic stress and obtain 
stemness or mesenchymal state for survival[57,58] promote tumor progression and therapy resistance. By 
inducing hypoxic stress, the hypoxia-inducible factor-1 α could stimulate the release of MVs along with the 
modulation of its packed cargoes[79]. Similarly, Wang et al.[80] reported that chemotherapeutic agents could 
enhance the secretion of ABCB-1-enriched EVs, which promote resistant phenotype transformation in 
recipient cells. Specifically, growth and pro-angiogenic factors transferred between CSCs and vascular 
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Figure 2. The bidirectional role of TMVs in tumor development. TMVs derived from tumor cells could promote tumor progression via 
transferring cancerous molecules[13,62]. Simultaneously, they act as a functional regulator to modulate DC cells based on CD8+ T cell 
activation, which provokes cytotoxic T cell infiltration and inhibits tumor development[77]. Created with BioRender.com. TMVs: Tumor-
derived microvesicles.

niches via vesicles under hypoxia were witnessed[81] to limit the therapeutic effect of sorafenib.

Cancer-associated fibroblasts (CAFs), one of the main stroma cells, advance the self-renewal feature of 
CSCs in HCC and thus could induce sorafenib resistance by secretion of hepatocyte growth factor 
(HGF)[82,83]. A reduction in cancer cell stemness was recorded by inhibiting the paracrine behavior of 
CAFs[84]. Conversely, TMVs have been shown to activate CAFs to improve the mobility of tumor cells, while 
the activated fibroblasts could secret MVs and in turn facilitate tumor progression[12,85]. Moreover, small 
GTPases and RHO-associated protein kinase, key factors in the biogenesis of MVs[73], were found to be 
highly expressed in both CAFs and cancer cells[86], which indicates the possible role of CAFs in the alteration 
of MVs secretion.

As the messengers and mediators between cells, MVs could regulate the sorafenib sensitivity in the recipient 
cells via their cargoes [Table 1]. For example, miRNAs involved in the regulation of multiple mRNA targets 
in recipient cells were found to be enriched in TMVs[94-97]. In recent years, our group also found that HCC 
cell-derived MVs could increase sorafenib drug resistance by inducing FOXM1 expression via miR-25 
transferred to the recipient liver cancer cells from the parent cells both in vitro and in vivo[15]. Similarly, long 
non-coding RNA (lnc-ROR and lnc-VLDLR)-enriched HCC cells-secreted vesicles (especially after 
sorafenib exposure) were proved to reduce apoptosis induced by chemotherapy[88,89]. However, MVs released 
from modified adipose tissue-derived MSCs have been shown to carry miR-199a/miR-122 and have the 
ability to improve chemosensitivity in HCC[90,91]. Elevated miR-214 in human cerebral endothelial cell-
released vesicles was noted to enhance the anti-tumor efficacy of sorafenib[92] [Figure 3]. However, complete 
genomic and proteomic analyses of preclinical MVs cargoes need to be performed in the future.

Targeting MVs to reverse sorafenib resistance
Recently, the promising outcome of targeted gene therapy has motivated more researchers to meet 
sorafenib resistance in HCC. A lower expression of miR-34 has been found to have a direct relationship 
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Table 1. Key molecules transferred by MVs modulating sorafenib resistance

Key 
molecules MVs sources Function Ref.

miR-25 HCC cells Increase sorafenib resistance [15]

miR-494-3p GOLPH3 overexpressed HCC cells Promote the angiogenesis ability of HUVECs and induce sorafenib 
resistance in HCC cells

[87]

lnc-ROR HCC cells Reduce chemotherapy-induced cell death [88]

lnc-VLDLR HCC cells Reduce chemotherapy-induced cell death [89]

miR-199a Adipose tissue derived MSCs Increase chemosensitivity in HCC [90]

miR-122 Adipose tissue derived MSCs Increase chemosensitivity in HCC [91]

miR-214 Human cerebral endothelial cells Sensitize HCC cells to sorafenib treatment [92]

siGRP78 Modified bone-marrow-derived mesenchymal 
stem cells

Suppress sorafenib resistance [93]

MVs: Microvesicles; HCC: hepatocellular carcinoma.

Figure 3. The dynamic role of MVs in sorafenib resistance modulation. MVs transfer biomolecules including miRNAs and lncRNAs to 
recipient cells and regulate their sensitivity to sorafenib. Created with BioRender.com. MVs: Microvesicles.

with patient survival, while the restoration of the miR-34a expression level in HCC cells has been noted to 
significantly downregulate the expression of BCL2 and enhance the cells’ sensitivity towards sorafenib-
induced apoptosis and toxicity[7]. Dai et al.[98] found that BikDD gene therapy combined with low-dose 
sorafenib could enhance the anti-tumor efficacy of sorafenib and improve the survival rate of tumor-bearing 
mice. Furthermore, the simultaneous release of sorafenib and USP22 shRNA (shUSP22) by galactose-
modified lipopolysaccharide revealed that the encapsulated sorafenib along with shUSP22 could obtain a 
synergistic anti-proliferative effect in HCC cells by inducing reactive oxygen cascade to promote the release 
of shUSP22 and inhibit the expression of USP22 in HCC cells, which promoted the accumulation of 
sorafenib by downregulating the expression level of multidrug resistance-related proteins[99].

Several emerging studies reported utilizing modified EVs to overcome chemoresistance during cancer 
treatments. As a naturally secreted nanoparticle, MVs exhibited excellent specific tissue homing ability and 
acted as good functional carriers for various therapeutic molecules[15,74,100]. To achieve bioactive and 
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continuous drug containing MVs, the pre-loading strategy has been applied to modify donor cells. This 
strategy includes incorporating cargo into donor cells, so the donor cells could encapsulate the cargo during 
secretion production. Both biologically produced molecules (proteins and nucleic acids) and synthetic 
chemicals can be encapsulated into secreted vesicles[2]. By combined regulation of Akt/mTOR/PTEN, EVs 
secreted from human liver stem cells were proved to upgrade CSCs’ sensitivity to sorafenib[101]. Lou et al.[91] 
stated that treating HCCs with exosomes derived from miR-122 overexpressed AMSCs rendered HCCs 
more responsive to sorafenib. In the same way, miR-744-enriched exosomes have been demonstrated to be 
a potential tool for reducing sorafenib resistance[102]. Apart from utilizing the intrinsic homing ability, 
controllable targeting methods, including genetic engineering (pre-targeting)[103] and conjugation of ligands 
(post-targeting)[104], have also been developed for further clinical research. Engineering the donor cells by 
inserting sequences that encode desired targeting protein makes the affibody express on the surface of 
MVs[105]. In this way, our group also recently recorded that CRISPR system-carried engineered MVs derived 
from HEK293 cells could precisely disrupt IQGAP1, which is involved in PI3K/Akt signaling, and achieved 
an enhanced synergistic anti-cancer effect when combined with sorafenib treatment[106].

CONCLUSION
Sorafenib resistance remains challenging in HCC treatment, while targeting the suspicious genes involved in 
the resistance mechanism to shut off the pathological cycle provides a new chance for advancing the cancer 
treatment as well as the existing anti-cancer drug[107]. For instance, by delivering sorafenib and CRISPR 
system via nanoparticles, Zhang et al.[108] achieved effective modification of EGFR, following synergistic 
inhibition of angiogenesis and tumor cell proliferation. Even though emerging synthetic nanomaterials have 
shown great abilities as therapeutic vectors, their long-term safety remains uncertain.

MVs, cell-derived natural carriers, are advanced promising gene therapy vehicles that could specifically 
deliver therapeutic bioactive molecules[109]. Platelet-derived MVs have been reported to hold good 
biocompatibility to target leukemia cells naturally and thus have been utilized as targeted delivery vehicles 
for multiple drugs in leukemia treatment[110]. Macrophage-derived MVs have been noted to have the ability 
to transport cargoes specifically to hematopoietic stem and progenitor cells (HSPCs) both in vivo and in 
vitro. In addition, Kao et al.[100] showed that plasmids and small RNAs (miRNA and siRNA) that were 
encapsulated by macrophage-derived MVs exhibit successful modification of heat shock protein in the 
recipient HSPCs. In addition, MVs were used to transport engineered minicircle DNA by researchers to 
achieve good gene-mediated prodrug transformation and effectively promote tumor cell death in breast 
cancer cells as well as mouse models[111]. However, the unexpected combination, modification, and 
dissociation of the above-mentioned therapeutic nucleic acids are the main concerns in gene manipulation 
techniques, in which the off-target effect needs to be well controlled in future clinical trials.

Considering the challenges of sorafenib resistance and MVs as the functional regulator in cancer 
microenvironment, in this review, we discuss the potential role of MVs in sorafenib resistance. On the one 
hand, in cancer progression, MVs transport bioactive molecules to participate in cell-to-cell 
communication, making the microenvironment favor tumor growth, which could facilitate the tumor cells 
to be resistant to sorafenib treatment. On the other hand, therapeutic molecules could be transferred 
specifically to tumor cells to alleviate the sorafenib resistance via MVs. Thus, a better understanding of these 
tiny players’ role in tumor microenvironment and cancer progression is necessary to appropriately use this 
double-edged sword for precise anti-cancer therapies in the future.
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