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Abstract

Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for 

the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise 

in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived 

microstructural parameters and leads to prolonged acquisition time for achieving improved signal-

to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks 

(CNNs) has superior performance but often requires additional high-SNR data for supervising the 

training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. 

In this work, we develop a self-supervised deep learning-based method entitled “SDnDTI” for 

denoising DTI data, which does not require additional high-SNR data for training. Specifically, 

SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms 

DWIs from each subset to along the same diffusion-encoding directions through the diffusion 

tensor model, generating multiple repetitions of DWIs with identical image contrasts but different 

noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a 

deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, 

following the same approach as normal supervised learning based denoising methods, and then 

averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is 

demonstrated in terms of the similarity of output images and resultant DTI metrics compared 

to the ground truth generated using substantially more DWI volumes on two datasets with 

different spatial resolution, b-values and number of input DWI volumes provided by the Human 
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Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image 

sharpness and textural details and substantially improve upon those from the raw data. The results 

of SDnDTI are comparable to those from supervised learning-based denoising and outperform 

those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and 

MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to 

use CNN-based denoising methods in practice and has the potential to benefit a wider range of 

research and clinical applications that require accelerated DTI acquisition and high-quality DTI 

data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living 

human brain.

Keywords

convolutional neural network; supervised learning; residual learning; image synthesis; diffusion 
tensor transformation; normal aging

Introduction

Diffusion tensor magnetic resonance imaging (DTI)1–5 is a neuroimaging method that 

noninvasively maps the brain tissue properties and white matter tracts in the in vivo 

human brain, which has a wide range of applications in research and clinical studies. 

DTI has proven to be a useful tool for characterizing and monitoring microstructural 

changes related to development6,7, normal aging6,8, neurodegeneration9, plasticity10 and a 

number of neurological11,12 and psychiatric13,14 disorders. In addition to investigating white 

matter, high-resolution DTI has also been used for mapping human cerebral cortical gray 

matter anisotropy and microstructure15–19. For these reasons, DTI is an essential imaging 

modality adopted in many large-scale neuroimaging studies such as the Alzheimer’s Disease 

Neuroimaging Initiative20,21, the Parkinson Progression Marker Initiative22, and the UK 

Biobank Imaging Study23.

Nonetheless, relatively long acquisition times pose a barrier to performing high-quality 

DTI. Since diffusion-weighted MRI creates image contrast by attenuating the MR signal 

based on how readily water molecules diffuse, diffusion-weighted images (DWIs) are noisy, 

especially in acquisitions using strong diffusion encoding (i.e., high b-values) or high spatial 

resolution. Consequently, DTI often needs several times more measurements (e.g., 20 DWI 

volumes, 5–10 seconds per volume) than the theoretical minimum of 6 DWI volumes to 

derive the six unique elements of the tensor. For DTI performed at high (1.25 to 1 mm 

isotropic) or ultra-high (sub-millimeter isotropic) spatial resolution, the required number of 

measurements may be far more than 20, for example, in mapping cortical microstructure15.

Image denoising provides a feasible alternative to improve the quality of DTI from a 

shorter scan. Image denoising aims to recover a clean image with high signal-to-noise ratio 

(SNR) from noise-degraded observations, which is a highly ill-posed inverse problem. In 

the computer vision field, numerous denoising algorithms have been proposed to remove 

noise from natural and biomedical images such as non-local means (NLM) filtering24, 

block-matching and 3-dimentional filtering (BM3D)25 and K-singular value decomposition 

(K-SVD) denoising26 and their 3-dimensional extensions for volumetric data27–31. Many of 
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these algorithms are able to deal with spatially varying non-Gaussian noise and therefore 

can be readily applied to denoise diffusion MRI data. MRI reconstruction methods that often 

regularize the image formation process using prior knowledge, such as sparseness32–36 and 

low rank37–43, can also achieve denoising effects. Many image restoration methods are also 

designed to exploit the additional redundant information originating from multiple diffusion 

encodings along various directions for increased denoising efficacy. A representative 

example is the widely adopted Marchenko–Pastur principal component analysis (MPPCA) 

algorithm44,45, which isolates and suppresses the noise-only component of the spatial-

diffusion signals in the eigenspectrum domain. Many variants of this algorithm based on 

similar principles have been proposed31,46,47. Along this line of research, another novel 

method “Patch2Self”48 approximates the signal intensity of each voxel in a DWI volume 

from a multi-b-value and multi-directional diffusion dataset by learning a locally linear 

relationship between it and the signal intensities of small spatial patches around this voxel 

from other DWI volumes of this dataset in a self-supervised manner. Since the random noise 

cannot be approximated, Patch2Self removes noise and has been demonstrated useful for a 

variety of empirical and simulated diffusion datasets. Moreover, multiple DWIs have also 

been jointly reconstructed to exploit their inter-image correlation for enhanced SNR38,49,50. 

Another category of methods explicitly imposes a model of the signals in diffusion space to 

remove noise51,52.

Emerging deep learning technologies, particularly convolutional neural networks (CNNs), 

offer another powerful tool set for image denoising. With supervision, CNNs can 

automatically learn to fully utilize the redundancy embedded in the data and effectively 

restore noise-free images from their noisy observations. It has been shown that the 

CNN for denoising (i.e., DnCNN53) with a simple network architecture outperforms the 

state-of-the-art BM3D denoising method. CNN-based denoising has been widely adopted 

for fluorescence microscopy54,55, optical coherence tomography56, x-ray imaging57, x-ray 

computed tomography58, PET59–63 and MRI58,64–71. For diffusion MRI, many studies 

have proven the superiority of CNNs in estimating high-quality scalar diffusion metrics 

from DTI72–77 and more advanced diffusion models73,76–78 as well as voxel-wise axonal 

orientations79 from a small amount of input data for faster imaging. In parallel to these 

studies, the DeepDTI70 method leverages CNNs to denoise six DWI volumes sampled along 

optimally selected diffusion-encoding directions with the target clean images synthesized 

from tensors fitted using more data, achieving approximately four-fold acceleration over 

non-denoised images.

Despite their superior performance, most deep learning-based denoising methods require 

additional high-SNR data for the supervised training of CNNs and are therefore more 

difficult to use in practice compared to conventional algorithms. On the one hand, the 

performance of a pre-trained CNN might be compromised when it is directly applied to a 

new dataset acquired with different hardware systems and sequences, which exhibit different 

image contrast, spatial resolution, SNR level, and so on. On the other hand, to create a 

custom CNN optimized for the data in a new application requires additional high-SNR 

image data as the training target from numerous subjects, even for fine-tuning parameters 

of pre-trained CNNs. These high-quality training targets are usually obtained from a large 
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number of measurements from longer scans, which might be challenging to acquire and are 

also unavailable for legacy data.

To address this challenge, we present a self-supervised deep learning framework for 

denoising DTI data entitled “SDnDTI” that does not require external high-SNR data for 

training. Specifically, SDnDTI generates multiple repetitions of DWI volumes exhibiting 

identical image contrasts but independent noise observations from multi-directional 

diffusion DTI data through the diffusion tensor model. SDnDTI removes noise by first 

denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of 

all repetitions as the higher-SNR training target, following the same approach as normal 

supervised learning based denoising methods, and then averaging CNN-denoised images 

for achieving higher SNR. In this work, we lay out the framework for SDnDTI and then 

systematically quantify the similarity of denoised images and resultant DTI metrics from 

SDnDTI compared to the ground truth generated from substantially more DWI volumes 

using two separate datasets acquired with different spatial resolutions and b-values, namely, 

those from the Human Connectome Project (HCP) and Lifespan HCP in Aging. We show 

that SDnDTI results substantially improve upon those from the raw data, outperform those 

from state-of-the-art denoising algorithms, including BM4D25,30, adaptive optimized NLM 

(AONLM)29 and MPPCA, and are comparable to those from supervised deep learning-based 

denoising using external ground-truth data as the training target. Because of the superior 

performance and reduced requirement for training data, we anticipate easier deployment 

and wider use of SDnDTI in practice that might benefit a broader range of clinical and 

neuroscientific research.

METHODS

SDnDTI pipeline

SDnDTI employs the approach of first denoising, followed by averaging. Acquiring and 

averaging multiple repetitions of noisy images is a common practice to increase image 

SNR. Instead of directly averaging the acquired images, this approach first denoises each 

single noisy image using a CNN with the averaged image as the higher-SNR training 

target, following normal supervised learning based denoising methods. Since each denoised 

image has equivalent SNR compared to the averaged image due to the superior denoising 

performance of the CNN, the average of all denoised images recovers higher SNR than 

the averaged image and thus achieves denoising effects. Take n acquired noisy images 

for example, each CNN-denoised image is similar to the average of n noisy images and 

therefore averaging n CNN-denoised images is approximately equivalent to averaging n2 

noisy images, which achieves higher SNR than directly averaging n acquired noisy images 

(i.e., n2 – n difference). The denoising effect is stronger for larger n.

Implementing the approach of denoising first followed by averaging for multiple 

interspersed b = 0 image volumes of a DTI dataset is straightforward. If multiple repetitions 

of DWI volumes are acquired, this approach can be readily applied. However, DWI volumes 

in a DTI dataset are normally sampled along uniformly distributed directions exhibiting 

different image contrasts, and therefore the raw acquired data do not readily provide 

multiple repetitions of DWI volumes with identical image contrasts but independent noise 
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observations. SDnDTI leverages the diffusion tensor model to transform the image contrast 

of DWIs. Specifically, SDnDTI divides all DWI volumes into several subsets (e.g., m 

subsets), each with six DWI volumes along diffusion-encoding directions optimized for the 

tensor fitting, then estimates diffusion tensors from each subset of DWI volumes (along with 

the averaged b = 0 image volume), and finally synthesizes DWI volumes along a fixed set of 

six directions from the estimated diffusion tensors. Consequently, m repetitions of six DWI 

volumes with identical image contrasts but independent noise observations are generated. To 

avoid the loss of angular sampling coverage, SDnDTI instead synthesizes volumes along all 

acquired directions rather than six directions.

The SDnDTI pipeline for a DTI acquisition consisting of three b = 0 image volumes and 

18 DWI volumes is demonstrated in Figure 1 and could be extended to any number of DWI 

volumes. The diffusion-encoding directions of the 18 DWI volumes need to be optimized 

such that they can be divided into three subsets of six directions which are optimal for the 

diffusion tensor fitting, and the 18 directions are also uniformly distributed on a sphere to 

ensure uniform angular coverage.

For each subset of six DWI volumes, tensor fitting is performed along with the averaged b = 

0 image volume to estimate low-quality diffusion tensors, which are then used to synthesize 

DWI volumes sampled along the 18 acquired encoding directions. The synthesis of these 

DWI volumes serves to transform DWI volumes sampled along different encoding directions 

to the same directions while maintaining full angular coverage. A single b = 0 image 

volume and 18 synthesized DWI volumes serve as the inputs to the CNN. Specifically, for 

each voxel, the diffusion tensor D6 = Dxx Dyy Dzz Dxy Dxz Dyz
T  consisting of six unique 

elements is estimated using ordinary linear squares fit as:

D6 = A6
−1C6, (1)

where C6 = c1 c2 c3 c4 c5 c6
T  represents the apparent diffusion coefficients (ADCs) along 

the 6 diffusion-encoding directions, with ci = −ln Si/S0 /bi (i = 1, 2, 3, 4, 5, 6), S0 

as the non-diffusion-weighted signal intensity from the average of the three b = 0 

image volumes, Si as the diffusion-weighted signal intensity and bi as the b-value, 

and A6 = α1 α2 α3 α4 α5 α6
T  represents the diffusion tensor transformation matrix, with 

αiT = gix2 giy2 giz2 2gixgiy 2gixgiz 2giygiz  (i = 1, 2, 3, 4, 5, 6) solely depending on the diffusion-

encoding directions gix, giy, giz
T . In order to avoid large noise amplification when solving 

the tensor, the six diffusion-encoding directions need to be selected to minimize the 

condition number of A680. The image intensities of each voxel in the synthesized DWI 

volumes along the 18 acquired diffusion-encoding directions are calculated as:

S18 = S0e−diag b · A18D6 = S0e−diag b · A18A6
−1C6 (2)

, where A18 is the diffusion tensor transformation matrix associated with the 18 acquired 

directions, and diag stands for the diagonalization operation of a vector of the b-values b 
of the 18 DWI volumes. The calculated image intensities of S18 along the directions of 

Tian et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the six DWI volumes used for the tensor fitting are identical to the raw acquired image 

intensities since the diffusion tensor transformation is well conditioned and fully invertible 

(except for very few outlier voxels where some DWI intensities because of noise happen to 

be higher than the b = 0 image intensity such as on the edge of the brain where the b = 0 

image intensities are very low). Only the remaining 12 computed image intensities of S18 are 

actually synthesized, which are different from the raw acquired image intensities and also 

exhibit different noise characteristics.

The tensor fitting is also performed on three b = 0 image volumes and all 18 DWI volumes 

to estimate a diffusion tensor with higher quality, which is then used to generate synthesized 

DWI volumes with higher SNR along the 18 acquired diffusion-encoding directions in a 

similar way as described above. The averaged b = 0 image volume and the 18 synthesized 

DWI volumes with higher SNR serve as the target of the CNN.

For each subject, three pairs of inputs and targets consisting of one b = 0 image volume 

and 18 DWI volumes are created. The b = 0 image volume and DWI volumes are 

jointly denoised to enhance data redundancy for boosted CNN performance. Any CNN for 

denoising can be trained in a supervised fashion to improve the SNR of each subset of input 

image volumes. The training can be performed using data from many subjects in a project 

which need to be denoised or from a single subject in a subject-specific fashion. Generally 

speaking, denoising the data of numerous subjects jointly is beneficial because the increased 

amount of training data can be used to train deeper CNNs with more parameters for boosted 

denoising performance. The denoised images of all three subsets from the CNN are averaged 

to obtain the final denoised results, which are then used for tensor fitting to derive scalar and 

orientation DTI metrics.

A simple approach can be used to select the optimal 18 diffusion-encoding directions. First, 

the six optimized diffusion-encoding directions from the DSM scheme80 that minimize the 

condition number of the diffusion transformation matrix to 1.3228 while being as uniform as 

possible are chosen. Second, three sets of the six optimized directions are randomly rotated 

for many times and the 18 most uniform directions, i.e., with the minimal electrostatic 

potential energy81, are chosen.

Modified U-Net

A modified 10-layer 3-dimensional (3D) U-Net82 (MU-Net) was used to learn the mapping 

from the input noisy image volumes to the residuals between the input and output image 

volumes with higher SNR (i.e., residual learning), which were then added to the input image 

volumes to generate resultant denoised image volumes. Specifically, all max pooling and 

up-sampling layers of U-Net were removed to preserve the native spatial resolution at each 

layer, and the number of kernels at each layer was kept constant (k = 192). Compared 

to 2D convolution, 3D convolution (d×d×d = 3×3×3 kernel size, 1×1×1 stride) increases 

the data redundancy from an additional spatial dimension for improved image synthesis 

performance and avoids boundary artifacts between 2D image slices. Essentially, MU-Net 

is composed of a sequence of paired convolution, batch normalization and rectified linear 

unit (ReLU) activation layers with several short paths from early layers to later layers. These 

skip connections serve to alleviate the vanishing-gradient problem and strengthen feature 
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propagation. MU-Net represents an intermediate network between a plain network (e.g., 

VDSR83 and DnCNN53) without any short paths and a densely connected network (e.g., 

DenseNet84) that comprehensively connects each layer to every other layer.

Human Connectome Project data

Pre-processed diffusion MRI data of 20 unrelated young healthy subjects from the 

HCP WU-Minn-Ox Consortium (https://www.humanconnectome.org) were used for this 

study. The acquisition methods and parameter values have been described in detail 

previously85–87, and those relevant to this study are briefly described below. Diffusion 

MRI data were acquired in the whole brain at 1.25 mm isotropic resolution using a 

two-dimensional diffusion-weighted pulsed-gradient spin-echo echo-planar imaging (DW-

PGSE-EPI) sequence, with three b-values (1, 2, 3 ms/μm2) and two phase-encoding 

directions (left–right and right–left). For each b-value, 90 diffusion-encoding directions 

uniformly distributed on a sphere were acquired88. The diffusion data were corrected for 

gradient nonlinearity, eddy current and susceptibility induced distortions and co-registered 

using the FMRIB Software Library (FSL) software89–92 (https://fsl.fmrib.ox.ac.uk). The 

image volumes acquired with the left–right and right–left phase-encoding directions were 

combined into a single image volume by FSL’s “eddy” function. Only the 18 interspersed 

combined b = 0 image volumes and 90 combined DWI volumes at b = 1 ms/μm2 were 

used in this study. In addition, the volumetric segmentation results from the FreeSurfer93,94 

(https://surfer.nmr.mgh.harvard.edu) reconstruction on the T1-weighted data were also used 

in this study to derive brain tissue masks for results evaluation.

Human Connectome Project in Aging data

The diffusion and T1-weighted MRI data of 20 unrelated healthy adults (ages 36–93, mean 

age 65.8±19.1, 10 female) from the Lifespan HCP in Aging (HCP-A) study95,96 were used 

for this study. The data were acquired as part of the HCP-A at the Massachusetts General 

Hospital Martinos Center for Biomedical Imaging with approval from the institutional 

review board and written informed consent from all participants. The subjects were 

randomly selected with uniformly distributed ages. The data acquisition was performed 

using a 3-T MRI scanner (MAGNETOM Prisma; Siemens Healthcare, Erlangen, Germany) 

equipped with the Siemens 32-channel Prisma head coil for signal reception.

Whole-brain diffusion data were acquired at 1.5 mm isotropic resolution using a two-

dimensional DW-PGSE-EPI sequence with the following parameters: repetition time = 3,230 

ms, echo time = 89.2 ms, contiguous axial slices, simultaneous multi-slice factor = 4, 

without in-plane acceleration, with two b-values (1.5, 3 ms/μm2) and two phase-encoding 

directions (anterior–posterior and posterior–anterior). For b=1.5 ms/μm2 and b=3 ms/μm2, 

93 and 92 diffusion-encoding directions uniformly distributed on a sphere were acquired. 

Only the 28 interspersed b = 0 image volumes and 186 DWI volumes at b = 1.5 ms/μm2 

were used in this study.

Whole-brain T1-weighted data were acquired at 0.8-mm isotropic resolution using a 3-

dimensional sagittal multi-echo magnetization-prepared rapid acquisition with gradient echo 

(ME-MPRAGE) sequence97 with the following parameters: repetition time = 2,500 ms, echo 
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time = 1.8/3.6/5.4/7.2 ms, inversion time = 1000 ms, flip angle = 8°, partial Fourier factor = 

6/8, generalized autocalibrating partial parallel acquisition (GRAPPA) factor = 2.

Human Connectome Project in Aging data Processing

The HCP-A diffusion data were corrected for eddy current and susceptibility induced 

distortions and co-registered using the “topup” and “eddy” functions from the FSL software. 

In order to compare to results from the MPPCA denoising method44,45, which needs to 

be applied to the unprocessed raw data from the scanner, to other methods, the resultant 

warp field maps for correcting and aligning each image volume from the “eddy” function 

were saved out with the “--dfields” option. Each warp field map was applied to individual 

image volume from the MPPCA-denoised raw data using FSL’s “applywarp” function with 

the “spline” interpolation to obtain the distortion-free and co-registered MPPCA-denoised 

data. Each warp field map was also applied to individual image volume from the raw 

diffusion data using FSL’s “applywarp” function with the “spline” interpolation to obtain 

the distortion-free and co-registered raw data, which were used for the subsequent image 

processing and denoising. The “topup” and “eddy” processing were not performed on 

the raw data and MPPCA-denoised data separately because the resultant warp field maps 

might be different due to distinctive input images, which might confound the subsequent 

comparison of denoising methods. The image volumes acquired with the opposite phase-

encoding directions were averaged and combined into a single image volume to account 

for the signal loss in the brain regions with large susceptibility induced distortions due 

to the absence of in-plane acceleration, resulting in 14 combined b = 0 image volumes 

and 93 combined DWI volumes at b = 1.5 ms/μm2. The corrected data directly from the 

“eddy” function were not used, because the “eddy” function internally replaces the detected 

outlier image slices with its own estimation, which introduces a confounding factor for the 

comparison of MPPCA and other denoising methods.

FreeSurfer reconstruction was performed on the T1-weighted data using the “recon-all” 

function.

Image processing

For each subject, the diffusion data were corrected for spatially varying intensity 

biases using the averaged b = 0 image volume with the unified segmentation 

routine implementation in the Statistical Parametric Mapping software (SPM, https://

www.fil.ion.ucl.ac.uk/spm) with a full-width at half-maximum of 60 mm and a sampling 

distance of 2 mm.

The volumetric brain segmentation results (i.e., aparc+aseg.mgz) from FreeSurfer 

reconstruction on the T1-weighted data were re-sampled to the diffusion image space 

with an affine transformation using nearest neighbor interpolation. For the HCP data, 

the diffusion data and the T1-weighted were co-registered already and therefore the 

affine transformation was simply an identity matrix. For each HCP-A subject, the affine 

transformation was derived using the averaged b = 0 image volume with FreeSurfer’s 

“bbregister” function98. Binary masks of brain tissue that excluded the cerebrospinal fluid 
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(CSF) were obtained using FreeSurfer’s “mri_binarize” function with “--gm” and “--all-

wm” options which were used for evaluating results.

Input data selection

Three b = 0 image volumes and 18 DWI volumes of each subject from HCP and two b = 0 

image volumes and 12 DWI volumes of each subject from HCP-A were used to demonstrate 

the denoising efficacy of SDnDTI on input data with different spatial resolution, b-values 

and number of input DWI volumes as well as compare to other denoising methods. Because 

the diffusion-encoding directions of the pre-acquired HCP and HCP-A data were fixed, it 

was impossible to obtain the optimal 6 diffusion-encoding directions from the DSM scheme 

or their rotations that minimized the condition number of the diffusion transformation matrix 

to 1.3228. Therefore, all possible sets of six diffusion-encoding directions that associate 

with a diffusion tensor transformation matrix with a condition number lower than 1.6 were 

used (31 sets for HCP data and 46 sets for HCP-A data). These sets of diffusion-encoding 

directions were selected by randomly rotating the 6 optimal directions from the DSM 

scheme to six new directions and then keeping the set of the six nearest directions if 

their associated condition number was lower than 1.6. Then three out of 31 sets of six 

directions for the HCP data and two out of 46 sets of six directions for the HCP-A data 

were randomly picked many times, and the 18 or 12 selected directions with the lowest 

electrostatic potential energy99 were chosen, which were uniformly distributed on a sphere 

(Figure 1, Supplementary Figure 1).

SDnDTI denoising implementation

The MU-Net of SDnDTI was implemented using the Keras application programming 

interface (https://keras.io) with a Tensorflow backend (https://www.tensorflow.org). The 

mean absolute error (MAE, i.e., L1 loss) was used to optimize the CNN parameters using 

the Adam optimizer100 with default parameters (except for the learning rate). The learning 

rate was empirically set to 0.0001. Only the MAE within the brain mask was used.

To account for subject-to-subject variations in image intensity, the intensities of the input 

and target images of SDnDTI were standardized by subtracting the mean image intensity 

and dividing by the standard deviation of image intensities across all voxels within the 

brain mask from the input images. Input and target images were brain masked. The training 

data were flipped along the anatomical left-right direction to augment the training data. All 

3D convolutional kernels were randomly initialized with a “He” initialization101. Blocks of 

64×64×64 voxel size were used for training (8 blocks from each subject) due to the limited 

memory of graphics processing unit (GPU).

The training and validation were performed on 20 subjects using a Tesla V100 GPU with 

16 GB memory (NVIDIA, Santa Clara, CA). For each epoch, 80% randomly selected blocks 

were used for training and the remaining 20% were used for validation. The batch size 

was set to one, the largest size that can be accommodate by the GPU. The training and 

validation were performed for 40 epochs for the HCP data (~60 minutes per epoch) and 

60 epochs for the HCP-A data (~30 minutes per epoch). During the training, the training 

error kept decreasing while the validation error decreased at first, reached the minimum 
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and then started increasing when the CNN parameters started to be overfitted. The MU-Net 

parameters with the minimum validation errors were used (from the 34th epoch for the HCP 

data and the 19th epoch for the HCP-A data).

The learned network parameters were applied to the whole brain volume of each subject. 

The standardized image intensities were transformed back to the normal range by 

multiplying with the standard deviation of image intensities across all voxels within the 

brain mask from the input images and then add the mean image intensity of brain voxels.

The network implementation and training parameters (e.g., learning rate, the way to select 

the suitable number of training epoch based on tracking the validation error) were kept the 

same in the following sections if not explicitly specified.

Effects of the amount of training data

Experiments were performed on the HCP data to assess the effects of the amount of training 

data on the SDnDTI performance. For the HCP data, the MU-Net of SDnDTI was trained on 

data from subsets of 10 subjects, 5 subjects, or 1 subject out of the 20 subjects in the similar 

way as described above, resulting in 2, 4, and 20 networks with optimized parameters 

respectively. Each optimized MU-Net was then applied to the data of subjects used for its 

training to denoise images.

For the training using 10 subjects, the training and validation were performed for 80 epochs 

(~60 minutes per epoch) and the networks from the 50th and 57th epoch with the lowest 

validation errors were used for denoising the data from the first 10 subjects and the last 

10 subjects, respectively. For the training using 5 subjects, the training and validation were 

performed for 80 epochs (~15 minutes per epoch) and the networks from the 52nd, 47th, 

52nd and 43rd epoch were used for denoising the data from each quarter of the 20 subjects, 

respectively. For the training using 1 subject, the training and validation were performed 

for 100 epochs (~3 minutes per epoch) and the networks from the 69th, 84th, 41st, 98th, 

57th, 88th, 81st, 89th, 86th, 98th, 89th, 79th, 98th, 96th, 78th, 77th, 79th, 72nd, 95th, 79th 

epoch with the lowest validation errors were used for denoising the data from each of the 20 

subjects.

Network generalization and fine tuning

In order to evaluate the generalization of the MU-Net of SDnDTI, two b = 0 image volumes 

and 12 DWI volumes of each of the 20 subjects from HCP (1.25 mm isotropic resolution, 

b = 1 ms/μm2) were selected and used to train a MU-Net in the same way as described 

above. In order to be directly applied to the HCP-A data, the input and target DWIs were 

synthesized along the encoding directions from the HCP-A input data from the tensor fitted 

using each subset of the HCP data and all selected data, respectively. The training and 

validation were performed for 40 epochs (~40 minutes per epoch) and the network from the 

30th epoch with the lowest validation error was directly applied to denoise the data (1.5 mm 

isotropic resolution, b = 1.5 ms/μm2) from each of the HCP-A subjects.

The data from the HCP-A were used for fine-tuning parameters of the pre-trained MU-Net 

using the HCP data. Specifically, for each of the 20 subjects from the HCP-A, another 
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MU-Net, initialized with parameters of the MU-Net learned from the HCP data, were further 

fine-tuned on the data of this subject. The training and validation were performed for 40 

epochs (~1 minute per epoch) and the networks from the 23rd, 12nd, 32nd, 18th, 23rd, 29th, 

23rd, 23rd, 34th, 20th, 30th, 14th, 17th, 29th, 27th, 30th, 33rd, 19th, 21st, 8th epoch with 

the lowest validation errors were used for denoising the data from each of the 20 HCP-A 

subjects.

For comparison, an MU-Net was also trained from randomly initialized parameters on the 

data from each of the 20 HCP-A subjects. The training and validation were performed for 80 

epochs (~1 minute per epoch) and the networks from the 40th, 30th, 41st, 36th, 48th, 37th, 

38th, 46th, 65th, 44th, 30th, 33rd, 40th, 35th, 37th, 42nd, 43rd, 36th, 41st, 25th with the 

lowest validation errors were used to denoise the data from each of the 20 HCP-A subjects. 

Compared to the fine tuning, training from random initialization required more epochs to 

converge.

Denoising using other methods

For comparison, diffusion data were also denoised using three state-of-the-art traditional 

denoising methods, including BM4D, AONLM and MPPCA, as well as using supervised 

learning with external high-SNR data. BM4D and AONLM were applied to pre-processed 

HCP and HCP-A diffusion data. MPPCA should only be used for raw unprocessed diffusion 

data since the image resampling of the preprocessing steps changes the noise characteristics 

and makes the noise assumption of MPPCA invalid. Therefore, MPPCA was not evaluated 

on the preprocessed HCP data. MPPCA was only applied to the unprocessed HCP-A data. 

The MPPCA-denoised HCP-A data were then corrected for distortions and co-registered as 

described above.

BM4D denoising, an extension of the well-known BM3D algorithm for volumetric 

data, was set to estimate the unknown noise standard deviation of the Rician 

noise and perform collaborative Wiener filtering with “modified profile” option 

and default parameters using the publicly available MATLAB-based software (https://

www.cs.tut.fi/~foi/GCF-BM3D). The AONLM was performed assuming Rician noise 

with 3×3×3 block and 7×7×7 search volume28,29 using the publicly available MATLAB-

based software (https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-

imaging/mri-denoising/mri-denoising-software). The MPPCA denoising was performed 

with 5×5×5 kernel and “full” sampling using the publicly available MATLAB-based 

software (https://github.com/NYU-DiffusionMRI/mppca_denoise).

Supervised learning-based denoising using MU-Net with external high-SNR data as the 

training target was also performed for comparison. In this case, the input of the MU-Net 

is the raw acquired three b = 0 image volumes and 18 DWI volumes or two b = 0 image 

volumes and 12 DWI volumes with low SNR for the HCP and HCP-A data, respectively. 

The output of the MU-Net is three b = 0 image volumes and 18 DWI volumes or two 

b = 0 image volumes and 12 DWI volumes with high SNR for the HCP and HCP-A 

data, respectively. For each subject, the high-SNR b = 0 image volume was computed 

by averaging all available b = 0 image volumes (i.e., 18 or 14 volumes for each HCP 

or HCP-A subject, respectively). The high-SNR DWI volumes were synthesized from the 
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diffusion tensor generated using all diffusion data (i.e., 18 b = 0 image volumes and 90 

DWI volume for each HCP subject, 14 b = 0 image volumes and 93 DWI volumes for each 

HCP-A subject) as described in Equation 2. For both the HCP and HCP-A data, training 

and validation were performed on the data from 20 subjects for 40 epochs (~21 minutes 

per epoch for the HCP data and ~14 minutes per epoch for the HCP-A data). The MU-Net 

from the 31st epoch and the 32nd epoch were used for denoising the HCP and HCP-A data, 

respectively.

Quantitative comparison

Resultant denoised images and the DTI metrics including the primary eigenvector 

(V1), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and 

radial diffusivity (RD) were compared to the ground truth for evaluating the denoising 

performance. The ground-truth b = 0 image volumes were computed by averaging all 

available b = 0 image volumes for each subject and the ground-truth DWI volumes were 

synthesized from the diffusion tensor generated using all available diffusion data. Diffusion 

tensor fitting was performed using ordinary linear squares fitting using FSL’s “dtifit” 

function to derive the diffusion tensor, V1, FA, MD, AD and RD.

The MAE, Peak SNR (PSNR) and structural similarity index (SSIM)102 were used to 

quantify the similarity between the raw input images and denoised images using different 

methods compared to the ground-truth images. For these calculations, the image intensities 

of BM4D-, AONLM- and MPPCA-denoised image volumes were first standardized in 

the same way as for preparing the input and output data for SDnDTI. The standardized 

image intensities for denoised image volumes from all methods, within the range [−3, 3], 

were transformed to the range of [0, 1] by adding 3 and dividing by 6. PSNR and SSIM 

were computed using MATLAB’s “psnr” and “ssim” function. The group mean and group 

standard deviation of the MAE, PSNR and SSIM across the 20 subjects from HCP and 

HCP-A were calculated, respectively.

The MAE of V1, FA, MD, AD, RD compared to the ground-truth DTI metrics within the 

brain (excluding the cerebrospinal fluid) were used to quantify the accuracy of the DTI 

results. The difference of V1 was computed as the angle (between 0 and 90°) between the 

two primary eigenvectors for comparison. The group mean and group standard deviation 

of the mean values of the MAE for different metrics across the 20 subjects from HCP and 

HCP-A were calculated, respectively.

Results

Figure 3 shows significantly improved SNR and quality for the denoised DWIs from 

SDnDTI (denoised b = 0 images are available in Supplementary Fig. S2). The DWI from 

subset 2 of SDnDTI input data (Fig. 3, a–c, iii), which was synthesized from the diffusion 

tensor generated using 6 DWIs, exhibited only slightly higher noise level than that of the raw 

acquired DWI from subset 1 of SDnDTI input data (Fig. 3, a–c, ii). The image similarity 

was comparable to the ground-truth DWI (0.033 vs. 0.031 MAE, 27.10 dB vs 27.82 dB 

PSNR, and 0.875 vs 0.891 SSIM) due to the use of optimized diffusion-encoding directions, 

which did not make the subsequent denoising task more challenging. Consequently, the 
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SDnDTI-denoised raw DWI (Fig. 3, d–f, i) and SDnDTI-denoised synthesized DWI (Fig. 3, 

d–f, ii) were indeed visually and quantitatively similar (0.017 vs. 0.017 MAE, 32.51 dB vs 

32.32 dB, and 0.960 vs 0.961), as well as similar to the target DWI synthesized from the 

diffusion tensor generated using all 18 DWI volumes (Fig. 3, a–c, iv, 0.018 MAE, 32.04 dB 

PSNR, 0.956 SSIM).

The final result of SDnDTI, i.e., the average of the three denoised DWIs from all three 

subsets, achieved further improved image quality (Fig. 3, d–f, iii, 0.012 MAE, 34.85 

dB PSNR, 0.979 SSIM). The SDnDTI-denoised DWI outperformed the training target of 

SDnDTI (Fig. 3, a–c, iv), as well as the raw acquired DWI, and the BM4D-denoised (Fig. 

3, d–f, iv, 0.022 MAE, 30.72 dB PSNR, 0.942 SSIM) and AONLM-denoised raw DWI (Fig. 

3, d–f, v, 0.023 MAE, 30.62 dB PSNR, 0.939 SSIM). The SDnDTI-denoised DWI also 

preserved more textural details around the internal capsule (Fig. 3, e, iii) compared to the 

BM4D (Fig. 3, e, iv) and AONLM (Fig. 3, e, v) results. The resultant DWI from supervised 

denoising (Fig. 3, a–c, v) with the ground-truth DWI as the training target achieved the 

highest image similarity compared to the ground-truth DWI (0.012 MAE, 36.43 dB PSNR, 

0.982 SSIM) as expected. The residual maps between all denoised images and ground-truth 

images do not contain anatomical structure or biases reflecting the underlying anatomy (Fig. 

3, rows c, f).

The group mean (± the group standard deviation) across the 20 HCP subjects of the 

MAE, PSNR and SSIM for the b = 0 images and the DWI shown in Figure 3derived 

from the different methods are quantified in Table 1 (results for all DWIs available 

in Supplementary Tables 1–3). The MAE of SDnDTI-denoised DWI was approximately 

one third of that of the raw DWI (0.012±0.00073 vs. 0.033±0.0021), two thirds of 

that of the target DWI during the SDnDTI training (0.019±0.0012), half of those of 

BM4D (0.023±0.0012) and AONLM results (0.024±0.0012), and equivalent to that of 

the supervised denoising results (0.012±0.00072). The group mean (± the group standard 

deviation) of the PSNR of SDnDTI-denoised DWI was approximately 7 dB higher than 

that of the raw DWI (34.50±1.32 dB vs. 27.13±0.57 dB), 3 dB higher than that of the 

target DWI during the SDnDTI training (31.55±0.92 dB), 4 dB higher than those of BM4D 

(30.23±0.47 dB) and AONLM results (30.16±0.46 dB), and 1.3 dB lower than that of 

the supervised denoising results (35.83±0.54 dB). The group mean (± the group standard 

deviation) of the SSIM of SDnDTI results was about 0.1 higher than that of the raw DWI 

(0.98±0.0024 vs. 0.88±0.013), 0.03 higher than that of the target DWI during the SDnDTI 

training (0.95±0.0054), 0.04 higher than those of BM4D (0.94±0.0056) and AONLM results 

(0.94±0.0058), and equivalent to that of the supervised denoising results (0.98±0.0023).

Figure 4 demonstrates the capability of SDnDTI for estimating noise. The noise estimated 

by different methods (i.e., the residual maps between the acquired DWI and the denoised 

DWI) did not contain any noticeable anatomical structure or biases reflecting the underlying 

anatomy. The estimated noise maps of the synthesized DWI from the tensor fitted using 18 

DWIs (Fig. 4b), the supervised denoising results (Fig. 4c) and the SDnDTI results (Fig. 4d) 

were visually more similar to the noise map from the ground-truth DWI (Fig. 4a) than those 

from the BM4D (Fig. 4e) and AONLM (Fig. 4f) results.
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Figure 5 shows the ability of SDnDTI to recover detailed anatomical information from the 

noisy inputs as mapped in primary eigenvector V1-encoded FA maps. The FA maps from a 

single subset of SDnDTI-denoised data (Fig. 5d, e) were substantially less noisy compared 

to the map derived from the raw data (Fig. 5b). The FA map from the average of three 

subsets of SDnDTI-denoised data (Fig. 5f) further improved upon the maps from each single 

subset data (Fig. 5d, e) and was visually similar to the map from the supervised denoising 

(Fig. 5c). The SDnDTI map (Fig. 5f) was slightly blurred compared to the ground-truth map 

(Fig. 5a), but sharper than the map derived from BM4D (Fig. 5g) and AONLM (Fig. 5h), 

which was clearly depicted in the gray matter bridges that span the internal capsule with 

characteristic stripes (Fig. 5f–h, yellow boxes). These textures were buried in noise in the 

map derived from raw data (Fig. 5b, yellow box). Because of the blurring, the FA of the 

cortical gray matter in the BM4D- and AONLM-denoised results also significantly reduced 

(the green contour surrounding the gyrus in Fig. 5g, h, red boxes), which was preserved 

more in the SDnDTI-denoised results (Fig. 5f, red box).

The difference of five common DTI metrics, including V1, FA, MD, AD, RD between the 

results derived from different methods and ground-truth data is displayed for a representative 

subject (Fig. 6, Supplementary Fig. S3) and quantified for 20 HCP subjects (Table 2). The 

group means of the MAE derived from each subset of SDnDTI-denoised data (Fig. 6, iv, 

Table 2, f–h) remarkably improved upon the SDnDTI inputs (Table 2, b–d), which was 

similar to those from the raw data (Fig. 6, ii, Table 2, a). Because of the averaging, the 

group mean of the MAE derived from the final results of SDnDTI (Fig. 6, v, Table 2, i) 

substantially outperformed those from the raw data (Fig. 6, ii, Table 2, a) and were superior 

to those from BM4D-denoised (Fig. 6, vi, Table 2, j) and AONLM-denoised (Fig. 6, vii, 

Table 2, k) raw data. The group means of the MAE of BM4D- and AONLM-denoised 

raw data were in general very similar. The supervised-denoising (Fig. 6, iii, Table 2, e) 

achieved the lowest MAE for all DTI metrics, which were marginally lower than those 

from SDnDTI results (i.e., 0.025±0.0014 vs. 0.026±0.0015 for FA, 0.028±0.0023 μm2/ms 

vs. 0.028±0.0023 μm2/ms for MD, 0.040±0.0025 μm2/ms vs. 0.041±0.0027 μm2/ms for 

AD, and 0.030±0.0024 μm2/ms vs. 0.030±0.0025 μm2/ms for RD), except for the MAE for 

primary eigenvector (i.e., 10.52°±0.75° vs. 11.20°±0.81°).

The denoising performance of SDnDTI using different numbers of training subjects is 

depicted in Figure 7. The primary eigenvector V1-encoded FA maps were visually very 

similar without noticeable differences. Even when the MU-Net of SDnDTI was trained on 

the data of each single subject, SDnDTI could still preserve image sharpness, such as the 

striated texture spanning the internal capsule (Fig. 7d), better than BM4D and AONLM 

(Fig. 5g, h). Quantitatively, the group means of the MAE in DTI metrics were the lowest if 

the data of the 20 HCP subjects were jointly denoised, in which case there was plenty of 

training data for optimizing the MU-Net of SDnDTI. When the number of training subjects 

was reduced from 20 to 10, the group means of the MAE in DTI metrics only marginally 

increased, presumably because the data from 10 subjects were still sufficient to train the 

MU-Net of SDnDTI. The denoising performance decreased more rapidly from 10 to 5 

subjects, and 5 to 1 subject, especially for the primary eigenvector. Even when the MU-Net 

of SDnDTI was trained on the data of each single subject for denoising, the group means of 

the MAE in DTI metrics of SDnDTI were still slightly lower than those from BM4D and 
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AONLM (e.g., 12.44°±0.97° vs. 12.46°±0.89° and 12.64°±0.87° for primary eigenvector, 

0.031±0.0026 μm2/ms vs. 0.036±0.0027 μm2/ms and 0.033±0.0027 μm2/ms for MD).

The difference of five common DTI metrics, including V1, FA, MD, AD, RD between 

the results derived from different approaches and ground-truth data is displayed for a 

representative HCP-A subject (Fig. 8 for V1, Fig. 9 for FA, Supplementary Figs. S4–S6 for 

MD, AD and RD) and quantified for the 20 HCP-A subjects (Table 3). SDnDTI substantially 

improved the SNR of the V1 and FA maps from the raw data (Figs. 8, 9, a, ii, vs. c, ii). The 

FA maps from supervised denoising (Fig. 9, a, iii), SDnDTI (Fig. 9, c, ii) and MPPCA (Fig. 

9, c, i) appear sharper than those from BM4D (Fig. 9, a, iv) and AONLM (Fig. 9, a, v) and 

are visually more similar to the ground-truth map (Fig. 9, a, i).

Quantitatively, the group means of the MAE from SDnDTI (Table 3f) were substantially 

lower than those from the raw data (Table 3, a), as well as were superior to those from 

BM4D (Table 3, c), AONLM (Table 3, d) and MPPCA (Table 3, e), especially for MD, AD 

and RD for BM4D and AONLM and primary eigenvector, FA, AD and RD for MPPCA. 

As expected, the group means of the MAE of supervised denoising were the lowest (Table 

3, a), which were slightly lower than those from SDnDTI for scalar metrics FA, MD, AD 

and RD while showing a greater advantage compared to those from SDnDTI for the primary 

eigenvector. The MU-Net of the SDnDTI generalized to different data reasonably well. 

When applying the MU-Net of SDnDTI trained on the data from HCP subjects directly to 

the data from HCP-A subjects acquired with very different hardware systems and protocols, 

the resultant maps were cleaner than those from the raw data (Figs. 8, 9, a, ii vs. c, iii), with 

the group means of the MAE (Table 3, g) lower than those from the raw data (Table 3, a) 

and MPPCA (Table 3, e), but higher than those from BM4D (Table 3, c), AONLM (Table 

3, d) and SDnDTI trained on data from the 20 HCP-A subjects (Table 3, f). If the HCP 

MU-Net was further fine-tuned using the data of each single HCP-A subject, the denoising 

performance of the fine-tuned MU-Net was equivalent to the one optimized using much 

more training data from 20 HCP-A subjects (Figs. 8, 9, c, ii, vs. c, iv, Table 3, f vs. h). In 

contrast, the denoising performance of the MU-Nets trained from random initialization on 

each single HCP-A subject was slightly inferior to that of the fine-tuned ones (Table 3, h vs. 

i), which still outperformed the raw data (Table 3, a) and MPPCA (Table 3, e).

Discussion

In this study, we have developed a self-supervised deep learning approach called SDnDTI 

for denoising DTI data that does not require external high-SNR data for training. SDnDTI 

works by first denoising each single image volume of the multi-directional DTI data with 

the averaged image volume as the target using CNNs and then averaging multiple denoised 

results. The performance of SDnDTI is systematically evaluated in terms of the quality of 

output images and DTI metrics, as well as compared to supervised learning based denoising 

and conventional state-of-the-art denoising algorithms BM4D, AONLM and MPPCA on 

two different datasets provided by HCP and HCP-A. SDnDTI-denoised images preserve 

textural details and are sharper than those from BM4D and AONLM as well as similar to 

the ground truth with low MAEs of ~0.01 for b = 0 images and ~0.012 for DWIs, high 

PSNR of ~36 dB for b = 0 images and ~35 dB for DWIs, and high SSIM of ~0.99 for b = 
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0 images and ~0.98 for DWIs. SDnDTI derived images and DTI metrics are comparable to 

those from supervised denoising, substantially outperform those from the raw data, and are 

superior to those from BM4D, AONLM and MPPCA. SDnDTI is capable to generalize to 

different datasets and benefits from further fine tuning and more training data when the data 

of numerous subjects are jointly denoised.

“Patch2Self”48 is another recently proposed self-supervised learning based method for 

removing noise from diffusion MRI data (publicly available as the “patch2self” function 

from the Dipy software103, https://dipy.org), with a different denoising mechanism 

comparing to SDnDTI. Specifically, Patch2Self assumes a linear relationship between the 

signal intensity of a voxel in a DWI volume and the signal intensities from local spatial 

patches (e.g., (2r+1)×(2r+1)×(2r+1) where r represents the patch radius) around this voxel 

from other DWI volumes (e.g., n-1) in a diffusion dataset. Patch2Self automatically learns 

the (2r+1)3×(n-1) to one mapping using linear regression (e.g., ordinary least squares 

regression, Ridge regression). Since the independent and random noise in each DWI volume 

cannot be approximated, the approximated DWI signals are free of noise, thereby achieving 

denoising. On the other hand, SDnDTI employs the approach of first denoising, followed 

by averaging. Specifically, when multiple repetitions of noisy images are available, instead 

of directly averaging these repetitions, each single noisy image is first denoised using the 

averaged image with higher SNR as the target for training the CNN, following the same 

approach as supervised learning based denoising methods. The CNN-denoised images are 

then averaged. The major difference between Patch2Self and SDnDTI lies in the training 

target. Patch2Self uses noisy DWI signals as the training target while SDnDTI uses higher-

SNR DWI signals obtained from data averaging as the training target. The approach of 

first denoising, then averaging, rather than directly averaging, could also be applied to any 

applications in which multiple measurements are acquired, such as many repetitions of noisy 

T1-weighted and T2-weighted data at sub-millimeter isotropic spatial resolution. Patch2Self 

can be readily used for any type of diffusion data while SDnDTI is specifically designed 

for denoising DTI data with the potential to be extended to multi-shell data with higher 

b-values. In terms of denoising performance, Patch2Self-denoised images (“ols” option, r = 

0, 1, and 2) are similar to those from BM4D and AONLM (Supplementary Figure S8, a–d, 

Supplementary Table S4a), quantified using data from the 20 HCP healthy subjects from our 

study. The primary eigenvectors and FA derived from Patch2Self are slightly less accurate 

compared to those from BM4D and AONLM, while the MD, AD and RD derived from 

Patch2Self are similar to those from BM4D and AONLM (Supplementary Figure S8e, f, 

Supplementary Table S4b).

The efficacy of the “first denoising then averaging” concept relies on the superior 

performance of deep learning-based denoising using CNNs, which are capable to map the 

noisier image data to the cleaner image data without compromising image quality (Figure 

3, Supplementary Figure S2, Table 1, Supplementary Table 1–3). The superior performance 

is due to the use of residual learning and deep 3D CNNs. On the one hand, residual 

learning (i.e., learning the residuals between the input noisier image data and the target 

high-SNR image data) not only boosts the CNN performance53,83,104,105 since the CNN 

only needs to synthesize the high-spatial-frequency information, but also preserves image 

sharpness and textual details. On the other hand, deep 3D CNNs (i.e., 10-layer 3D MU-Net 
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in SDnDTI) can fully exploit the redundant information contained in the data. DTI is the 

imaging modality that benefits the most from the “first denoising then averaging” concept 

since numerous DWI volumes are acquired by nature.

Implementing the “first denoising then averaging” concept for denoising multi-directional 

DWI volumes leverages domain knowledge of diffusion MRI physics. The challenge lies in 

the fact that DWI volumes in DTI data are sampled along uniformly distributed directions 

thus exhibiting different image contrast, while this concept requires several repetitions of 

DWI volumes with identical image contrasts but different noise observations. SDnDTI 

addresses this challenge by transforming DWIs sampled along one set of directions to 

another set of directions through the diffusion tensor model (Equations 1, 2), i.e., first fitting 

a tensor model using DWIs along one set of directions and then synthesizing DWI volumes 

along another set of directions. In this way, the DWI volumes from all subsets can be 

transformed to along the same diffusion-encoding directions. To avoid the loss of angular 

sampling coverage, SDnDTI synthesizes DWIs along all acquired directions rather than 

fewer directions as in each subset of data. Directly averaging multiple repetitions of DWI 

volumes that are synthesized in SDnDTI does not improve the overall SNR of the original 

DTI dataset or the quality of derived DTI metrics (Supplementary Figure S7). The increased 

SNR originates from the supervised learning based denoising using the CNN. The minimum 

required number of DWI volumes for SDnDTI is 12, for which two subsets of six DWI 

volumes could be obtained for generating two repetitions of DWI volumes with identical 

contrast but different noise observations. SDnDTI could be extended for diffusion data with 

higher b-values and multiple shells using more sophisticated signal models, such as diffusion 

kurtosis106,107, multi-compartment model108 and spherical convolution model109,110. For 

example, the DWI volumes of a diffusion dataset could be divided into subsets for diffusion 

kurtosis fitting, and the estimated kurtoses from each subset are then used for generating 

DWI volumes along the same diffusion-encoding directions for CNN based denoising as 

in SDnDTI. The denoised data could be used for advanced fiber orientation estimators 

(e.g., CSD109,110 and BEDPOSTX111–113) and microstructural models (e.g., NODDI114 and 

WMTI115,116) that require multiple and higher b-values. Since SDnDTI requires model 

fitting, it only works for pre-processed diffusion MRI data and therefore could be easily used 

as an additional post-processing step without intervening the standard diffusion MRI data 

processing pipeline.

The diffusion-encoding directions in each subset of DTI data must be carefully selected 

such that the noise is not amplified during the image transformation process. Otherwise, the 

subsequent denoising task becomes more difficult and the denoising results cannot match 

the target DWIs even using a CNN. SDnDTI adopts the uniform encoding directions from 

the DSM scheme that minimize the condition number of the diffusion tensor transformation 

matrix to 1.3228, which successfully suppress noise amplification during the transformation. 

The transformed images are only slightly noisier than the raw acquired images (Fig. 3, 

a–c, ii, Table 2, a–d). Since the HCP and HCP-A data are pre-required and thus the 

directions used in this study are only approximately as designed in the DSM scheme (i.e., 

the condition number of the diffusion tensor transformation matrix is ~1.6). We expect 

SDnDTI performance to be improved if the actual DSM directions could be used for the 

data acquisition. Moreover, SDnDTI uses 6 DWI volumes for each subset because the HCP 
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and HCP-A date are not very noisy. For extremely noisy DTI data such as those from 

sub-millimeter isotropic resolution, data along much more directions are often acquired 

(e.g., two repetitions of 256 directions at 1-mm isotropic spatial resolution15) and more DWI 

volumes (e.g., 20, 30 DSM directions) should be assigned for each subset for robust tensor 

fitting and image transformation. In these cases, advanced tensor fitting methods such as 

weighted least squares and RESTORE117 could also be utilized for improving the fitting 

performance.

It is beneficial to jointly denoise the DTI data of all subjects in a study using SDnDTI 

because the CNN performance improves as the amount of training data increases (Figure 7). 

It is not trivial to theoretically determine the required number of subjects for training, which 

depends on the number of parameters of the CNN (~12 million for the adopted 3D MU-Net) 

and the information contained in the image data of each subject (influenced by factors such 

as the brain size, image resolution and the number of DWI volumes in a DTI dataset). 

Empirically, the performance of SDnDTI trained and validated using data from 10 subjects 

from HCP is almost identical to that of using data from 20 subjects while decreases if using 

data from 5 subjects (Figure 7), suggesting that data from at least 10 subjects are required 

to optimize the MU-Net of SDnDTI given the HCP imaging parameters (e.g., 1.25 mm 

isotropic resolution) and DTI protocol (e.g., 3 b = 0 image volumes and 18 DWI volumes). 

On the other hand, a CNN with fewer parameters (e.g., shallower or with less kernels at each 

layer) can be adopted, which might be well trained using limited data and be more effective, 

but the trade-off between the CNN parameter number and the subject number needs to be 

determined empirically.

A preferable approach to account for the limited training data is to fine-tune parameters 

of the SDnDTI CNN pre-trained using big data provided by large-scale neuroimaging 

studies such as HCP. Our experiments show that SDnDTI results from the MU-Nets trained 

and validated using data from each single HCP-A subject cannot compare to those from 

BM4D and AONLM, even though they outperform those from the raw data, MPPCA and 

the MU-Nets trained and validated on the HCP data (Table 3). This is presumably due 

to insufficient training data, since SDnDTI results from the MU-Net trained and validated 

using data from 20 HCP-A subjects indeed improve and outperform those from BM4D 

and AONLM (Table 3). However, further adapting parameters of the MU-Net trained and 

validated on the HCP data using the data from each single HCP-A subject substantially 

increases the quality of denoising (Table 3), which then outperforms that from all tested 

conventional denoising algorithms and is essentially identical to that from the MU-Net 

trained and validated using 20 HCP-A subjects. In addition to reducing the requirement for 

training data, fine-tuning also helps accelerate training convergence and reduce training 

time. Fine-tuning the HCP MU-Net using data from each single HCP-A subject only 

requires 8 to 34 minutes of training and validation time, while training and validating the 

MU-Net with randomly initialized parameters on data from 20 HCP-A subjects take ~20 

hours, even though they produce identical results. We will make our codes for SDnDTI 

publicly available (https://github.com/qiyuantian/SDnDTI) which can be used to pre-train 

the CNN of SDnDTI using HCP data for fine-tuning, a recommended approach in practice, 

or train the CNN for supervised learning using HCP data for fine-tuning if additional high-
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quality data is available from a few subjects in some applications, after all the supervised 

denoising achieves the highest performance (Figs. 5, 6, 8, 9, Tables 2, 3).

There are several limitations of our work. First, it is worth noting that SDnDTI is a 

denoising algorithm specifically designed for DTI data while other denoising algorithms 

evaluated in our work are more general. MPPCA and Patch2Self can denoise any diffusion 

MRI data while BM4D and AONLM can denoise any images. Second, since SDnDTI 

requires specially designed uniform diffusion-encoding directions that can be divided into 

subsets of six directions optimal for diffusion tensor fitting, the performance of SDnDTI on 

data acquired with standard diffusion-encoding directions including a large amount of legacy 

data is unclear, which we will characterize in future work. Future work will also focus 

on reducing the requirement of SDnDTI for optimized diffusion-encoding directions and 

render SDnDTI generalizable to any DTI or diffusion MRI data. Finally, the comparisons 

and evaluations in our study were only performed on empirical data provided by HCP 

and HCP-A. Future work may focus on characterizing different denoising algorithms using 

simulated diffusion MRI data118.

Summary

This study presents a data-driven self-supervised deep learning-based denoising method 

entitled SDnDTI for DTI that does not require additional high-SNR data as the target for 

training. SDnDTI works by first denoising each single image volume of the multi-directional 

DTI data with the averaged image volume as the target using CNNs and then averaging 

multiple denoised results for recovering even higher SNR, a concept known as “first 

denoising then averaging”. SDnDTI-denoised DWIs preserve image sharpness and textural 

details and are similar to the ground-truth DWIs with low MAEs of ~0.012, high PSNR 

of ~35 dB, and high SSIM of ~0.98. SDnDTI-denoised images and derived DTI metrics 

are comparable to results from supervised learning-based denoising that use ground-truth 

images as the training target, and are superior to results from the raw data, and BM4D-, 

AONLM- and MPPCA-denoised data. SDnDTI generalizes well to different datasets and 

fine-tuning parameters of the pre-trained CNN of SDnDTI further improves denoising 

performance as well as shortens training time. By excluding the need for external high-SNR 

data and the generalization of CNNs, SDnDTI increases the feasibility of deep learning and 

CNN-based denoising methods in a wider range of clinical and neuroscientific studies that 

benefit from faster DTI acquisition and improved DTI data quality.
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Figure 1. SDnDTI pipeline.
The SDnDTI pipeline for a DTI acquisition consisting of three b = 0 image volumes and 18 

diffusion-weighted image volumes is demonstrated.
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Figure 2. Modified U-Net (MU-Net) architecture.
MU-Net is modified from U-Net by removing all max pooling and up-sampling layers 

and keeping the number of kernels constant across all layers. The input is c noisy image 

volumes (one b = 0 image and c - 1 diffusion-weighted image volumes). The output is c 
residual images volumes between the input noisy image volumes and high-quality target 

image volumes. Network parameters of k = 192 and d = 3 were adopted in this study.
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Figure 3. Denoised images.
Diffusion-weighted images (DWIs) sampled approximately along the superior-inferior 

direction (i.e., [−0.18, 0.26, −0.95]) of a representative HCP subject from the ground-truth 

data (i.e., synthesized from the diffusion tensor fitted using all 18 b = 0 images and 90 

DWIs) (a, i), subset 1 of SDnDTI input data (i.e., raw acquired image) (a, ii), subset 2 of 

SDnDTI input data (i.e., synthesized image using the diffusion tensor fitted using three b 

= 0 images and six DWIs) (a, iii), synthesized data from the diffusion tensor fitted using 

three b = 0 images and 18 DWIs (a, iv), supervised learning denoised data using MU-Net 
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with the ground-truth data as the training target (a, v), subset 1 of SDnDTI-denoised data 

(d, i) (i.e., the raw DWI (a, ii) denoised by SDnDTI), subset 2 of SDnDTI-denoised data (d, 

ii) (i.e., the synthesized DWI (a, iii) denoised by SDnDTI), the average of all three subsets 

of SDnDTI-denoised data (d, iii), BM4D-denoised data (d, iv), and AONLM-denoised data 

(d, v), along with a region of interest in the deep white matter with fine textures (yellow 

box in a, i) displayed in enlarged views (rows b, e) and residual images compared to the 

ground-truth DWI (rows c, f). The mean absolute error (MAE), peak signal-to-noise ratio 

(PSNR) and the structural similarity index (SSIM) of different images compared to the 

ground-truth DWI are used to quantify image similarity compared to the ground truth.
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Figure 4. Noise map.
Maps of the difference between the raw acquired diffusion-weighted image (DWI) sampled 

approximately along the superior-inferior direction (i.e., [−0.18, 0.26, −0.95]) shown in 

Figure 3 and the denoised DWIs from different methods (i.e., the estimated noise maps) of a 

representative HCP subject.
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Figure 5. Structure mapping.
Fractional anisotropy (FA) maps color encoded by the primary eigenvector (red: left–right; 

green: anterior–posterior; blue: superior–inferior) derived from the diffusion tensors fitted 

using all 18 b = 0 and 90 diffusion-weighted images (DWIs) (ground truth, a), raw data 

consisting of three b = 0 and 18 DWIs (b), the raw data denoised by supervised learning 

with the ground-truth images as the training target (i.e., supervised denoising) (c), the subset 

1 of SDnDTI-denoised data (d), the subset 2 of SDnDTI-denoised data (e), the average of 

all three subsets of SDnDTI-denoised data (f), and the raw data denoised by BM4D (g) and 

AONLM (h) from a representative HCP subject. Three regions of interest in the deep white 

matter (yellow boxes) and sub-cortical white matter surrounded by gray matter (red boxes) 

or with intersecting fiber tracts (blue boxes) are displayed in enlarged views.
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Figure 6. DTI metrics.
Maps of color-encoded primary eigenvector (red: left–right; green: anterior–posterior; blue: 

superior–inferior) (row a), fractional anisotropy (row c) and mean diffusivity (row e) derived 

from the diffusion tensors fitted using all 18 b = 0 and 90 diffusion-weighted images (DWIs) 

(ground truth, column i), raw data consisting of three b = 0 and 18 DWIs (column ii), the 

raw data denoised by supervised learning with the ground-truth images as the training target 

(i.e., supervised denoising) (column iii), the subset 2 of SDnDTI-denoised data (column 

iv), the average of all three subsets of SDnDTI-denoised data (column v), and the raw data 
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denoised by BM4D (column vi) and AONLM (column vi), and their residual maps (rows 

b, d, f) compared to the ground-truth maps from a representative HCP subject. The mean 

absolute error (MAE) of each map compared to the ground truth within the brain (excluding 

the cerebrospinal fluid) is displayed at the bottom of the residual map. The unit of the 

diffusivity is μm2/ms.
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Figure 7. Effects of training data.
Fractional anisotropy maps color encoded by the primary eigenvector (red: left–right; green: 

anterior–posterior; blue: superior–inferior) derived from the raw data consisting of 3 b = 0 

and 18 DWIs denoised by SDnDTI trained using data of 20 subjects (a), 10 subjects (b), 

5 subjects (c) and 1 subject (d) from the HCP. Three regions of interest in the deep white 

matter (yellow boxes) and sub-cortical white matter surrounded by gray matter (red boxes) 

or with intersecting fiber tracts (blue boxes) are displayed in enlarged views. The table 

lists the group mean (± group standard deviation) across the 20 HCP subjects of the mean 

absolute error (MAE) of different DTI metrics compared to the ground-truth DTI metrics 

derived from 18 b = 0 and 90 DWIs.
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Figure 8. Primary eigenvector.
Maps of color-encoded primary eigenvector (red: left–right; green: anterior–posterior; blue: 

superior–inferior) modulated by the fractional anisotropy (row a, c) derived from the 

diffusion tensors fitted using all 14 b = 0 and 93 diffusion-weighted images (DWIs) (ground 

truth, a, i), raw data consisting of two b = 0 and 12 DWIs (a, ii), the raw data denoised 

by supervised learning with the ground-truth DWIs as the training target (i.e., supervised 

denoising) (a, iii), BM4D (a, iv), AONLM (a, v) and MPPCA (c, i), and SDnDTI (c, ii–v), 

and their residual maps (rows b, d) compared to the ground-truth map from a representative 
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HCP-A subject. SDnDTI results were generated by an MU-Net trained on the data from 

20 HCP-A subjects (c, ii), an MU-Net trained on the data from 20 HCP subjects (c, iii), 

an MU-Net with parameters from the MU-Net trained on the data from 20 HCP subjects 

as initialization and further fine-tuned using the data of each HCP-A subject (c, iv), and an 

MU-Net trained on the data from the data of each HCP-A subject (c, v). The mean absolute 

error (MAE) of each map compared to the ground truth within the brain (excluding the 

cerebrospinal fluid) is displayed at the bottom of the residual map.
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Figure 9. Fractional anisotropy.
Maps of fractional anisotropy (row a, c) derived from the diffusion tensors fitted using all 

14 b = 0 and 93 diffusion-weighted images (DWIs) (ground truth, a, i), raw data consisting 

of two b = 0 and 12 DWIs (a, ii), the raw data denoised by supervised learning with the 

ground-truth DWIs as the training target (i.e., supervised denoising) (a, iii), BM4D (a, iv), 

AONLM (a, v) and MPPCA (c, i), and SDnDTI (c, ii–v), and their residual maps (rows 

b, d) compared to the ground-truth map from a representative HCP-A subject. SDnDTI 

results were generated by an MU-Net trained on the data from 20 HCP-A subjects (c, ii), an 
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MU-Net trained on the data from 20 HCP subjects (c, iii), an MU-Net with parameters from 

the MU-Net trained on the data from 20 HCP subjects as initialization and further fine-tuned 

using the data of each HCP-A subject (c, iv), and an MU-Net trained on the data from the 

data of each HCP-A subject (c, v). The mean absolute error (MAE) of each map compared 

to the ground truth within the brain (excluding the cerebrospinal fluid) is displayed at the 

bottom of the residual map.
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Table 1.
Image similarity.

The group mean (± group standard deviation) across the 20 HCP subjects of the mean absolute error (MAE), 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of b = 0 images and the 

diffusion-weighted images (DWI, along the same diffusion-encoding direction as the DWI shown in Figure 3) 

from the raw data (a), each subset of SDnDTI input data (b–d) (a single raw b = 0 image or DWIs synthesized 

from the diffusion tensor fitted using three b = 0 images and six DWIs), the averaged b = 0 image or DWIs 

synthesized from the diffusion tensor fitted using three b = 0 images and 18 DWIs (f), the raw data denoised 

by supervised learning with the ground-truth images as the training target (i.e., supervised-denoising) (f), each 

subset of SDnDTI-denoised data (g–i), the average of all three subsets of SDnDTI-denoised data (j), and the 

raw data denoised by BM4D (k) and AONLM (l) compared to the ground-truth images generated from the 

tensor fitted using all 18 b = 0 and 90 DWIs.

a b c d e f 9 h i j k I

Raw
Synth. 
(subset 

1)

Synth. 
(subset 

2)

Synth. 
(subset 

3)

Synth. 
(18 

DWIs)
Supervised

SDnDTI 
(subset 

1)

SDnDTI 
(subset 

2)

SDnDTI 
(subset 

3)

SDnDTI 
(average) BM4D AONLWI

MAE

b = 
0

0.017 ± 
0.00097

0.015 ± 
0.00098

0.015 ± 
0.00088

0.011 ± 
0.00087

0.0099 ± 
0.00073

0.014 ± 
0.00091

0.013 ± 
0.00087

0.013 ± 
0.00078

0.01 ± 
0.00082

0.014 ± 
0.00063

0.013 ± 
0.0007

DWI
0.033 

± 
0.0021

0.034 ± 
0.0021

0,035 ± 
0.0021

0.035 ± 
0.0022

0.019 ± 
0.0012

0.012 ± 
0.00072

0.018 ± 
0.0011

0.018 ± 
0.00099

0.018 ± 
0.0011

0.012 ± 
0.00073

0.023 ± 
0.0012

0.024 ± 
0.0012

PSNR 
(dB)

b = 
0

32.19 ± 
0.62

32.94 ± 
0.58

33.41 ± 
0.6

35.31 ± 
0.75

36.54 ± 
0.76

33.18 ± 
0.69

34.00 ± 
0.6

34.35 ± 
0.63

35.85 ± 
0.77

33.67 ± 
0.46

34.12 ± 
0.55

DWI 27.13 
± 0.57

26.89 ± 
0.61

26.34 ± 
0.61

26.45 ± 
0.71

31.55 ± 
0.8

35.83 ± 
0.54

31.87 ± 
0.86

31.68 ± 
0.93

31.70 ± 
1.09

34.50 ± 
1.32

30.23 ± 
0.47

30.16 ± 
0.46

SSIM

b = 
0

0.96 ± 
0.0042

0.97 ± 
0.004

0.97 ± 
0.0039

0.99 ± 
0.0023

0.99 ± 
0.0019

0.98 ± 
0.0029

0.98 ± 
0.0025

0.98 ± 
0.0024

0.99 ± 
0.0018

0.98 ± 
0.002

0.98 ± 
0.0022

DWI 0.88 ± 
0.013

0.88 ± 
0.013

0.86 ± 
0.013

0.87 ± 
0.013

0.95 ± 
0.0054

0.98 ± 
0.0023

0.96 ± 
0.0047

0.96 ± 
0.0047

0.96 ± 
0.0047

0.98 ± 
0.0024

0.94 ± 
0.0056

0.94 ± 
0.0058
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Table 2.
Errors of DTI metrics.

The group mean (± group standard deviation) across the 20 HCP subjects of the mean absolute error (MAE) 

of different DTI metrics derived from the raw data consisting of three b = 0 and 18 diffusion-weighted images 

(DWIs) (a), each subset of SDnDTI input data (b–d), the raw data denoised by supervised learning with the 

ground-truth images as the training target (i.e., supervised-denoising) (e), each subset of SDnDTI-denoised 

data (f–h), the average of all three subsets of SDnDTI-denoised data (i), and the raw data denoised by BM4D 

(j) and AONLM (k) compared to the ground-truth DTI metrics derived from 18 b = 0 and 90 DWIs.

HCP Data Primary 
eigenvector (°)

Fractional 
anisotropy

Mean diffusivity 
(μm2/ms)

Axial diffusivity 
(μm2/ms)

Radial diffusivity 
(μm2/ms)

a Raw 15.48 ± 1.05 0.042 ± 0.0031 0.033 ± 0.0028 0.057 ± 0.0041 0.037 ± 0.003

b Raw (subset 1) 24.90 ± 1.25 0.086 ± 0.0069 0.043 ± 0.0030 0.10 ± 0.0071 0.056 ± 0.0044

c Raw (subset 2) 24.92 ± 1.32 0.086 ± 0.0067 0.043 ± 0.0032 0.10 ± 0.0075 0.056 ± 0.0043

d Raw (subset 3) 24.86 ± 1.34 0.085 ± 0.0069 0.043 ± 0.0033 0.10 ± 0.0079 0.056 ± 0.0043

e Supervised 10.52 ± 0.75 0.025 ± 0.0014 0.028 ± 0.0023 0.040 ± 0.0025 0.030 ± 0.0024

f SDnDTI (subset 
1) 15.73 ± 1.05 0.036 ± 0.0021 0.039 ± 0.0029 0.058 ± 0.0034 0.042 ± 0.0030

g SDnDTI (subset 
2) 15.99 ± 1.11 0.036 ± 0.0021 0.037 ± 0.0027 0.057 ± 0.0034 0.041 ± 0.0027

h SDnDTI (subset 
3) 15.80 ± 1.09 0.035 ± 0.0019 0.037 ± 0.0027 0.056 ± 0.0033 0.040 ± 0.0027

i SDnDTI 
(average) 11.20 ± 0.81 0.026 ± 0.0015 0.028 ± 0.0025 0.041 ± 0.0027 0.030 ± 0.0025

j BM4D 12.46 ± 0.89 0.029 ± 0.0016 0.036 ± 0.0027 0.051 ± 0.0031 0.037 ± 0.0026

k AONLM 12.64 ± 0.87 0.030 ± 0.0016 0.033 ± 0.0027 0.050 ± 0.0032 0.035 ± 0.0026
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Table 3.
Errors of DTI metrics.

The group mean (± group standard deviation) across the 20 HCP-A subjects of the mean absolute error (MAE) 

of different DTI metrics derived from the raw data consisting of two b = 0 and 12 diffusion-weighted images 

(DWIs) (a), the raw data denoised by supervised learning with the ground-truth DWIs as the training target 

(i.e., supervised denoising) (b), BM4D (c), AONLM (d), MPPCA (e), and SDnDTI (f–i) compared to the 

ground-truth DTI metrics derived from 14 b = 0 and 93 DWIs. SDnDTI results were generated by an MU-Net 

trained on the data from 20 HCP-A subjects (f), an MU-Net trained on the data from 20 HCP subjects (g), 

an MU-Net with parameters from the MU-Net trained on the data from 20 HCP subjects as initialization and 

further fine-tuned using the data of each HCP-A subject (h), and an MU-Net trained on the data from the data 

of each HCP-A subject (i).

HCP-A data Primary 
eigenvector (°)

Fractional 
anisotropy

Mean diffusivity 
(μm2/ms)

Axial diffusivity 
(μm2/ms)

Radial diffusivity 
(μm2/ms)

a Raw 16.17 ± 0.72 0.043 ± 0.0029 0.025 ± 0.0023 0.054 ± 0.0035 0.030 ± 0.0024

b Supervised 10.14 ± 0.56 0.023 ± 0.00092 0.020 ± 0.0023 0.032 ± 0.0021 0.023 ± 0.0023

c BM4D 12.78 ± 0.58 0.031 ± 0.0014 0.032 ± 0.0040 0.049 ± 0.0040 0.034 ± 0.0034

d AONLM 13.04 ± 0.61 0.033 ± 0.0016 0.027 ± 0.0027 0.046 ± 0.0028 0.030 ± 0.0023

e MPPCA 15.71 ± 0.69 0.036 ± 0.0019 0.025 ± 0.0024 0.047 ± 0.0028 0.028 ± 0.0024

f SDnDTI (20 
subj) 12.63 ± 0.61 0.028 ± 0.0014 0.022 ± 0.0022 0.039 ± 0.0021 0.024 ± 0.0022

g SDnDTI (HCP 
MU-Net) 14.06 ± 0.58 0.036 ± 0.0014 0.023 ± 0.0023 0.045 ± 0.0019 0.027 ± 0.0022

h SDnDTI (fine 
tuned) 12.66 ± 0.70 0.028 ± 0.0016 0.022 ± 0.0023 0.039 ± 0.0025 0.025 ± 0.0023

i SDnDTI (1 subj) 13.65 ± 0.65 0.031 ± 0.0015 0.024 ± 0.0024 0.043 ± 0.0025 0.027 ± 0.0023
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