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Abstract

Cardiopulmonary Exercise Testing (CPET) is a unique physiologic medical test used to evaluate 

human response to progressive maximal exercise stress. Depending on the degree and type of 

deviation from the normal physiologic response, CPET can help identify a patient’s specific 

limitations to exercise to guide clinical care without the need for other expensive and invasive 

diagnostic tests. However, given the amount and complexity of data obtained from CPET, 

interpretation and visualization of test results is challenging. CPET data currently require 

dedicated training and significant experience for proper clinician interpretation. To make CPET 

more accessible to clinicians, we investigated a simplified data interpretation and visualization tool 

using machine learning algorithms. The visualization shows three types of limitations (cardiac, 

pulmonary and others); values are defined based on the results of three independent random 

forest classifiers. To display the models’ scores and make them interpretable to the clinicians, 

an interactive dashboard with the scores and interpretability plots was developed. This machine 
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learning platform has the potential to augment existing diagnostic procedures and provide a tool to 

make CPET more accessible to clinicians.

Index Terms—

Accuracy; cardiopulmonary exercise testing (CPET); exercise limitation; machine learning; 
interpretability

I. INTRODUCTION

Cardiopulmonary Exercise Testing (CPET) is a unique physiologically-based test for the 

assessment of human limitations to exercise through gas exchange analysis (i.e., O2 and 

CO2) via progressive maximal aerobic exercise [1]. Among its many uses in clinical 

medicine (e.g., diagnosis and prognosis of patients with cardiopulmonary disorders and 

those undergoing heart transplant) [2–4], CPET is used to identify impairments in individual 

body systems critical in sustaining the work of exercise: the lungs, heart, circulatory 

system, and skeletal muscle O2-CO2 exchange and mitochondrial metabolism [5]. Through 

simultaneous study of the responses of cardiovascular, pulmonary, peripheral vascular, 

and peripheral metabolic systems during exercise, CPET is a cost-effective and efficient 

diagnostic tool. It is capable of identifying and localizing primary functional limitations to 

exercise in a variety of disorders, i.e., myocardial ischemia, chronic obstructive pulmonary 

disease, or metabolic myopathies [6]. CPET is underutilized primarily due to the challenges 

of data interpretation, despite its advantages compared to more expensive and invasive 

testing to assess exertional dyspnea or exercise intolerance [1, 7].

Interpretation of CPET results for the purpose of identifying body system limitations in 

exercise requires incorporation of both maximal and submaximal data values into flowchart 

and graphical visualizations. One common method used to visualize and interpret CPET 

data is the Wasserman nine-panel plot (Figure 1), which takes advantage of the breadth 

and diversity of CPET data to display it in a format accessible to trained and experienced 

clinicians [8]. Even with the richness of data insights provided by platforms like the 

Wasserman nine-panel plot, however, correct CPET interpretation still requires many hours 

of specialized medical training and experience. Thus, CPET interpretation remains allusive 

to the less experienced reader, and different methods are needed to expand its use within the 

broader medical community [7].

To overcome barriers to CPET data interpretation, several solutions have been proposed to 

improve its utilization. Early attempts include changes to the scaling, styling the graphs, and 

standardizing the plots [8]. Another visualization alternative used changes in data variable 

relationships to classify severity in patients with heart failure [7]. In a preliminary proof-

of-concept study, our team previously used simple formulas from CPET-generated data to 

assess and present organ system-specific limitations to exercise using both 2D and 3D plot 

visualizations [9]. CPET results from this preliminary work are presented as pulmonary, 

cardiac, and skeletal muscle limitations in percentages from 0% to 100%[9].
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Machine learning algorithms hold considerable promise to simulate human analysis of 

CPET-generated data [10–13]. Machine learning methods use data engineering to identify 

key features from raw data and involve algorithms such as logistic regression, decision 

trees, time warping, and k-nearest neighbor matching [12, 14, 15]. Previous machine 

learning methods for CPET analysis used convolutional neural networks and recurrent 

neural networks to detect nonlinear patterns to determine the ventilatory threshold [12, 13]. 

Another study used data from CPET and support vector machine learning to differentiate 

patients with chronic heart failure (CHF) versus those with chronic obstructive pulmonary 

disease (COPD) [15].

In this study machine learning algorithms were applied to CPET-generated data for the 

purpose of identifying and differentiating among pulmonary, cardiac, and other system 

limitations to exercise and to aid clinical evaluation of exercise intolerance. Compared 

to previous studies, the model selection was done through the use of automatic machine 

learning.

II. METHODS

A. Data Collection and Labeling

Data from 225 CPET cases were used for analyses: 110 CPET cases obtained for the 

purposes of clinical assessment or for research purposes (from Duke University and the 

University of Virginia) and 115 cases used and transcribed from “Principles of Exercise 

Testing and Interpretation” by Wasserman K et. al. (with permission) [1]. All tests were 

conducted with the highest standard by expert exercise physiologists at each location to 

ensure participant achievement of maximal exertion. CPET data from Duke University and 

the University of Virginia were from cases where testing was performed on a treadmill, and 

data from the Wasserman textbook were from tests completed on a cycle ergometer. Our 

rationale for using cases with different protocols was to produce more generalizable results 

for real-world implementation. Both sets of cases were labeled and reviewed collaboratively 

by two of our experts in CPET assessments (BJA, WEK). Each CPET case was labeled 

as binary data with only one of the following: 1) primary cardiac limitation to exercise; 

2) primary pulmonary limitation to exercise; 3) primary limitation to exercise other than 

cardiac or pulmonary; or 4) normal exercise response. Labeling of CPET cases was based on 

expert opinion given available clinical and CPET data. For example, a patient with exercise 

limitation from congestive heart failure was labeled a primary cardiac limitation. A patient 

with exercise limitation from interstitial lung disease was labeled as primary pulmonary 
limitation. A patient with exercise limitation originating from any other peripheral system 

(i.e. a mitochondrial myopathy) or with no cardiac or pulmonary primary identified was 

labeled as other limitation. A healthy participant without pathological response to exercise 

was labeled as normal. Each label represents the primary effected organ system limiting 

exercise without consideration for disease severity or co-existing conditions. Patients with 

co-existing conditions (e.g., both ischemic heart disease and chronic obstructive pulmonary 

disease) were labeled by the primary limitation to exercise based on expert review. The goal 

of labeling only by the primary limitation was to better inform real-world clinical decision 
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making in patients presenting with co-existing conditions yet unclear etiology of exercise 

intolerance or dyspnea.

B. Data Sampling and Feature Engineering

Feature engineering was performed to extract necessary features from the CPET data prior 

to running machine learning algorithms. Our feature engineering pathway included both 

sampling of the dataset and selection of data features. As an initial step, data were sampled 

into 30-second intervals to minimize empty spaces in the dataset. As an example, the second 

30-second data point contained the mean value of all the data points between one and thirty. 

The size of the interval was chosen empirically.

The fundamental variables chosen for analyses were based on key parameters important for 

interpreting CPET data including slopes, sub-maximum values, maximum values, and the 

relationships between VO2, VCO2, HR, VE, RER, RR and VT. Only two parameters were 

estimated: the O2 pulse and VT. The O2 pulse was generated with a mathematical formula 

involving the quotient of VO2 and HR.

O2pulse = VO2/(HR)

VO2estimated = V′O2 ‧ 10−3 ‧ weight

where:

• V′O2, peak estimated in mL /min−1 ‧ kg−1

• weight: patient’s weight in kg

O2 peak estimated = O′2, peak ‧ 10−3

where:

• O′2, peak estimated from the SHIP study

HRmax = 208 − 0.7 ‧ age

where:

• HRmax : maximal Heart Rate estimated

• age: patient’s age

The first VT occurs when the slope of VCO2/VO2 increases its steepness from less than 1 

to greater than 1 [16] (see Figure 2 top). We first sqauredVCO2 to make the inflection point 

easily detectable for a computer algorithm (see Figure 2, bottom). To exclude the extremes 

in the VCO2 squared graph, we took the VO2 points with values between 25% and 75% of 

peak VO2. Then, for each point between the new extremes, we traced two linear regressions, 

the first with the lowest and the middle points, the second with the middle and the highest 

points. Then, we proceeded to get the R squared coefficients using the lowest to middle 

points for the first line and the middle to highest points for the second line. The inflection 

point tended to have the highest sum of R squared scores (Figure 2, yellow dot with green 

lines), while the other points had a lower score (Figure 2, red dot with red lines).
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Expected values for VO2 peak, and O2 pulse peak were calculated based on the Study of 

Health in Pomerania (SHIP) CPET reference equations [17]. Expected values for heart rate 

at peak exercise were calculated based on reference equations from healthy individuals [18]. 

We calculated the minimum, maximum, mean, standard deviation, and slope in each quarter 

of the total time of each CPET. The slope from 15 and 85 percent of all the variables in 

CPET test time was calculated based on a visual analysis to assess the most stable variable 

slopes while minimizing noise. In order to isolate the physiological variables from CPET 

that have the most relevance in the prediction of a patient’s limitation to exercise, the 

variables age, gender, anthropomorphic measures, and other clinical metrics (e.g., lab values, 

medical problems, and medications) were ignored. A complete list of the variables used is in 

the following link (https://dx.doi.org/10.21227/m4h8-z187 ).

C. Feature Selection

After feature engineering, the variables (106 in total) were filtered using the Boruta 

algorithm, a random forest-based method with the following steps [14, 19]:

• Generate copies of the variables with random data. These copies are shadow 

attributes; they have no predictive value.

• Shuffle the added variables to eliminate their correlations with the response.

• Create a random forest classifier to evaluate the variables.

• Compute Z scores from the classifier’s variables.

• Find the maximum Z score among shadow attributes (MZSA) and assign a value 

for each feature that scores better than MZSA.

• For each feature of undetermined importance, perform a two-sided equity test 

with the MZSA.

• Features with an importance significantly lower than MZSA can be considered 

unimportant and removed from the system.

• Attributes significantly greater than MZSA are important and remain.

• Remove all shadow attributes.

• Repeat the process until the importance is assigned to all the features or the 

algorithm reaches its defined limits.

• The iteration assures the selected attributes are not limited to one run.

The Boruta algorithm was applied to each organ system limitation (cardiac, pulmonary, or 

other system) to identify the most useful features. After the algorithm was run, the features 

were divided into three groups: important, tentative, and rejected. The “important” group has 

a strong influence in the model and removing one of the features may reduce the model’s 

precision. The “tentative” group has some importance, but the contribution is not as strong. 

The “rejected” group does not provide any improvement to the model. By analyzing the 

z-scores, the Boruta algorithm chose all the important features with some tentative features 

for its final selection. It is important to note that the Boruta algorithm’s feature importance 

may be different from the best performing model. The feature’s order from Boruta is from 
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an iteration of many random forests. The final model is only one algorithm depending 

on different configuration parameters; this makes its final selection slightly different from 

Boruta’s algorithm.

D. Classifier

Once the features were selected, automatic machine learning (AutoML) experiments 

were run in Microsoft Azure Machine Learning to generate different algorithms for 

primary pulmonary, cardiac, and other system limitations detection. With AutoML the data 

normalization, model selection, and hyper parameters’ optimization was done automatically. 

Then, the best performing models with their configurations from the AutoML experiments 

were chosen. Different experiments on each limitation were run with over 1000 models, 

including algorithms such as logistic regression, support vector machine, and K-nearest 

neighbors. Because it had the best results most of the time on each limitation, random 

forest was selected from all the types of models. This model is a combination of unpruned 

classification trees created from bootstrapping samples and random feature selection. 

Random forest predicts by aggregating the prediction from the ensemble of trees [20]. The 

final models from AutoML were manually tuned using K-fold validation. Due to the size of 

the data there were five folds, each fold with a similar number of positive cases. The final 

model was created using 80% of the samples for training.

E. Model Explanation

Given that the output of the random forest models does not produce easy interpretation 

of the variables that differentially contribute to predictions, we used Shapley Additive 

Explanations (SHAP) to aid model interpretation. SHAP is a method from coalitional game 

theory, calculating Shapley values to explain a feature’s contribution [21, 22]. Shapley 

values do not provide the direct odds of a result, but rather the relative magnitude and 

direction—either positive or negative—of feature contribution. The combination of all the 

interpretations in the training dataset creates useful interpretation graphs (i.e., the SHAP 

summary plot) showing the importance of a feature and the direction of the importance 

(whether positive, negative, or non-linear). We also used dependency plots generated by 

plotting all the SHAP values on the y-axis and all the features values on the x-axis [23]; 

this plot provides the evolution of the Shapley values based on a feature value in the model, 

giving useful interpretation patterns

F. Dashboard

To visualize information from the classifiers for each case, a custom dashboard was created 

with the model’s predictions on the patient’s limitations displayed. Once the classifiers 

and scalers were selected, they were applied to the existing dataset. The patient’s number, 

description, predictions, and actual label were merged into a table. The dashboard was 

created with the models, adapters, previous results, and interpretation. The front end was 

hosted in Amazon Web Service (AWS) and the back end in Azure.
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III. RESULTS

A. Data Analysis Summary

From the original 225 CPET cases, 219 cases remained after data processing and the 

removal of patients with no HR data. From the filtered list, the most common label for 

primary limitation to exercise was normal (43%), followed by cardiac (24%), other (21%), 

and pulmonary (12%) (Table I) (Supplemental Table I). The normal group had greater values 

in several key indicators, most notably for percentage predicted VO2 peak where the mean 

for limited individuals was less than 65% versus over 100% for normal. Other observations 

from this group are the low percentage of females across categories and the similar VO2 

peak (mean and percentage of predicted) between limitation groups.

B. Cardiac Limitation Model

The Boruta algorithm-selected features were normalized and the model generated based on 

the AutoML recommendations. For the model’s interpretation, a SHAP summary plot was 

created where the general model behavior on each feature was described (Figure. 3, top). 

The complete summary plot for each limitation model can be found in the Supplemental 

Figure 1. The detailed dependency of the most important feature in the final model is shown 

in the dependency plot (Figure 3, bottom). Given that the model has 24 features, details of 

the five most important dependencies are shown in Supplemental Figure 2; the final model 

had some minor adjustments (see Supplemental Table II for details of each model). The 

performance from the K-fold validation and the best model are shown in Table II.

C. Pulmonary Limitation Model

Using the Boruta’s selected features, the final model was chosen from the AutoML 

specifications and manually tuned to achieve the best generalization possible. As expected, 

given the small number of cases, its performance metrics were less than the cardiac model. 

However, its best performing model had good results with a positive predictive value 0.4 

(Table III). Compared to the cardiac model, O2 pulse became more relevant for the model as 

it was included in three of the eleven predictive variables (Figure 4, Supplemental Figure 1, 

and Supplemental Figure 3).

D. Other Limitations Models

Following the same procedure, the Boruta’s selected features were scaled based on the 

recommendations. For this limitation, a normalizer was used to scale the data and a random 

forest with 75 estimators was used for the final model. Its performance metrics, mean and 

best are in Table IV Also, the configuration, specifications and other details can be seen 

in the Supplementary Table II. Compared to the other limitation models, this model has 

23 variables but only eight with high relevance (Figure 5, Supplemental Figure 1, and 

Supplemental Figure 4).

E. Dashboard

The dashboard contains three main components. First, the radar plot shows the likelihood 

of a patient’s primary limitations based on the current dataset (Figure 6). The second 
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component shows the model’s performance at different stages of the CPET session. The last 

component contains a form where clinicians can upload their own data to achieve results. 

A model of the full three-component dashboard is shown at http://cpet-radar-plot-duke.s3-

website-us-east-1.amazonaws.com/

To ensure interpretability, the radar plot has three buttons that show two types of 

complementary SHAP summary plots (Figure 6, Top). A customized SHAP summary plot 

highlights the features that the model considers in its final decision (See Figure 6, bottom). 

A force plot then shows the most important features for a particular session (Figure 6, 

Bottom).

IV. DISCUSSION

A. Clinical Implications

CPET is a valuable, yet underutilized tool for clinician assessment of exercise limitation 

[23–25]. CPET use is generally confined to the few expert clinicians (i.e., specialized 

cardiologists, pulmonologists, and exercise physiologists) with the dedicated training and 

experience needed for interpretation of the considerable data obtained from each test; 

thus, new ways of analyzing and visualizing CPET data are needed [9, 24, 26]. As a 

major step forward in CPET data analysis, our platform combines machine learning with a 

novel interpretive and visualization dashboard to differentiate multiple possible etiologies of 

exercise limitation (i.e., cardiac, pulmonary, or peripheral/skeletal muscle localizations). For 

inexperienced users and general clinicians, this machine learning-generated classification 

system and visualization of the primary exercise limitation (e.g., primary cardiac limitation) 

guides next steps in diagnosis and clinician-patient communication. For the expert exercise 

physiologist, the model explanations with SHAP and dependency plots enrich current 

pathways of CPET interpretation by highlighting specific features relevant to individual 

patients, aiding in communication about the results with the clinician ordering the test. With 

further refinement and the addition of more prospective use cases, this machine learning 

platform can inform clinical care in challenging cases (e.g., the patient with multiple 

medical co-morbidities with worsening exertional dyspnea or the elite athlete with a new 

decline in performance). Still, even in its current form, our reported models provide many 

useful clinical insights to aid CPET data interpretation.

Regarding the cardiac limitation model, the random forest model algorithm identified several 

patterns predicted by clinical experts. For example, the final cardiac limitation model 

considers the difference between the maximum expected VO2 and the actual VO2 peak (i.e., 

actual/expected peak VO2) as the variable with highest predictive power, which is similar 

to previous clinical findings [8]. Importantly, actual/expected peak VO2 detected via CPET 

can help identify patients with heart failure and exercise limitations [8, 27]. Further, in the 

cardiac limitation model, the slope of the HR response to peak exercise and the related O2 

pulse variables are important predictive features. The comparison between predicted and 

actual O2 pulse is useful for detecting cardiac impairment [9]. Finally, the first half of the 

VE/VCO2 was considered by the selection algorithm; a high VE/VCO2 slope has a strong 

relationship with impaired cardiac outputs and exercise limitation [10, 28, 29]. Interestingly, 
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the lowest VE/VCO2 value (which is used to predict outcomes in the patients with heart 

failure using CPET [10]) was not considered by the selection algorithm.

The pulmonary limitation model also selected and sorted features by importance as expected 

based on current literature regarding CPET; several of these features were similar to the 

cardiac limitation model. As an example, the difference between the actual and expected 

VO2 peak was considered in both cardiac and pulmonary limitation models. VO2 peak 

assessment is of also of importance in the detection of patients with obstructive lung 

diseases [27]. Further, as in the cardiac limitation model, VE/VCO2 slope was considered 

in the pulmonary limitation model; an abnormal VE/VCO2 slope can also be used to 

detect pulmonary limitations [9, 24], which matches the model’s final selection and feature 

importance. Finally, the O2 pulse was considered in both cardiac and pulmonary limitation 

models; flattening of the O2 pulse is also associated with reduced body mass and pulmonary 

hyperinflation [30].

A few key features differentiated cardiac and pulmonary limitation models with potentially 

important clinical implications. Only the cardiac limitation model considered VO2 at VT and 

the slope of HR and RER at the end of the test in its prediction. On the other hand, only 

the pulmonary limitation model considered RR at peak exercise and the slope of VE/VO2. 

Thus, identification of these key by physiological variables may aid in simplified CPET 

data interpretation by the clinician. For example, a clinician could readily identify a patient 

as more likely having a cardiac limitation to exercise via CPET measure of a low VO2 at 

ventilatory threshold, high HR slope, and normal RR and slope of VE/VO2 at peak exercise.

Compared to the cardiac and pulmonary limitation models, the other limitations model 

offered similar—yet more inconsistent—clinical insights. The variable in the other 

limitations model with the highest predictive value was the minimum VE/VCO2. This 

finding of the importance of VE/VCO2 is not unexpected given that nearly half of the 

cases used in the other limitations model were from patients with pulmonary hypertension; 

abnormalities of VE/VCO2 are common in pulmonary hypertension patients and help 

distinguish the disease from other causes [26]. One unexpected finding in the other 

limitations model was that VT derived variables were not selected considering that many 

of the CPET cases used in the model were patients with primary musculoskeletal system 

abnormalities. For limitations caused by alterations in skeletal muscle metabolism, VT 

becomes an important factor as a patient will reach VT early during the test [9]. One 

possible reason VT was not selected in the model is because of the heterogeneity in clinical 

cases used, which may have biased the results (See Supplementary Table I).

B. Models

All the models follow the same feature engineering and feature selection process. The 

features (e.g., expected peak VO2 vs actual peak VO2) were proposed by CPET experts. 

Then, on each model creation we performed a Boruta feature evaluation. The variables 

considered important were then added to train the final model on each limitation.

Random forest was chosen for the final model for several reasons. First, it was the method 

with the best results in the AutoML experiments. Deep learning was also considered as 
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a choice, however it requires more samples than random forest without improving the 

performance metrics [31]. Another useful attribute of random forest is its robustness and 

computing power it can deal with missing data and needs less computational power to be 

used in production[31].

The model with the best performance was the cardiac model. The superiority this model was 

expected because it included many cases from each of the three data sources. On the other 

hand, the pulmonary model had the lowest performance because it had the lowest number of 

cases, with the majority coming from the Wasserman textbook.

There are several useful indicators of model performance, including AUC, accuracy, and 

positive predictive value. For the AUC interpretation, the Fawcett criterion defines tests as 

follows: 0.5 to 0.6 is a bad test, 0.6 to 0.75 is a regular test, 0.75 to 0.9 is a good test, 0.9 

to 0.97 is a very good test, and over 0.97 to 1 is an excellent test [32]. In terms of AUC, the 

best cardiac model is in the excellent range, the best pulmonary and other models are in the 

good range e (See Figure 7).

C. Technology

We used R for the feature selection and Python for feature engineering, AutoML, and model 

selection. In the feature engineering and creation phase, the library Pandas was used on a 

Python Jupyter notebook given its versatility. For feature selection, different libraries were 

explored in Python and R. For this project we used R with the library Boruta. Compared to 

the Python equivalent, R’s random Boruta was more effective. AutoML can be used with 

different tools: AWS Sage Maker autopilot, Vertex AI from Google Cloud Platform (GCP), 

or Azure Machine Learning Studio. AWS needs at least 500 data samples, and GCP needs 

at least 1000 data samples. We therefore selected Azure Machine Learning Studio, which 

has no data size restriction; it also provides a detailed report of the generated models with 

performance metrics and interpretability.

For the interpretation, the Python SHAP package was used to display the summary and 

dependency plots. The dashboard evolved from a prototype in R shiny to a website coded in 

Angular with Material design. This change allowed a cleaner display of the models’ results 

with the explanation of the scores generated. The dashboard back end was coded in Python 

using Flask for communication between the service and the front end.

The use of AutoML for the model selection is unique and provided alternatives that are 

possible with a manual model (e.g., searching for new alternatives and configuration of the 

data normalization). An advantage of AutoML is that it saves time and energy needed for 

these tasks [33]. Compared to previous other studies on CPET, the use of SHAP also helps 

clinicians understand how the algorithm models the features behavior and may be a way to 

increase adoption of the ML tools.

D. Dashboard

The purpose of the dashboard was to display the information from the machine learning 

algorithm in a user-friendly way to help clinical decision making. As a means to achieve 

this goal, the dashboard display provides both simplified outputs from the model and an 
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explanation for its decision. To display the models’ scores, previous CPET data visualization 

alternatives were used as a baseline [9]. We experimented with display alternatives such 

as heat maps, reorganization of the plot, and animations, but they were not as simple and 

user-friendly as the 3D plot alternative. For example, compressing 3D visualizations into 

two-dimensional images once displayed on a screen or printed can lead to challenges with 

interpretation; the human eye tries to correct the distortion from 2D back to 3D depending 

on the angle of the information display [34]. To avoid distortions in display, we used a radar 

plot as a surrogate 3D plot.

The next step was to provide a graph or a combination of many that will add interpretability 

to the decision of the ML model. A major challenge in the dashboard was deciding the 

amount of information to display the plots and how. Although dependency plots provide the 

most details on how a feature increases or reduces the odds of having a limitation, displaying 

all or even five of them were not viable to our experts (BJA and WEK), thus, the dependency 

plots were not considered in the dashboard. Instead, the SHAP summary plot of the 10 most 

relevant features combined with highlights of the patient’s values (Figure 6, bottom) proved 

to be clearer. To complement it, a SHAP force plot was used, this shows the most important 

features in the decision, providing a complementary filter to the clinician for the indicators 

to look for.

V. LIMITATIONS

The primary limitations of this project are related to the number and type of CPET cases 

used for analyses. First, only 19 of the 225 CPET cases had primary pulmonary limitations 

to exercise. As evident by the greater accuracy and predictive power of models with a greater 

number of cases (i.e., cardiac and other limitations models versus the pulmonary model), the 

addition of more prospective CPET cases will improve model performance. Further, CPET 

cases were obtained from a variety of databases, including cases for research and clinical 

purposes from multiple institutions, in addition to 110 cases transcribed from the “Principles 

of Exercise Testing and Interpretation” textbook by Wasserman et al.[1]. While cases from 

the Wasserman textbook provided an additional source of case variety encompassing a 

large spectrum of disease states, these cases also skewed toward more severe manifestations 

of disease. Given that a majority of primary pulmonary limitation cases came from the 

Wasserman textbook, the results of this study need to be interpreted with caution as some of 

the machine learning features differentiating pulmonary versus cardiac and other limitations 

may be detecting disease severity as opposed to intrinsic differences in those conditions. 

Regardless, average peak heart rates and fitness levels from the CPET cases did not 

significantly differ between groups (see Table I). The addition of prospective data in future 

work should eliminate potential bias in the current analyses. Finally, the “other” category 

for defining exercise limitation with CPET was from a heterogeneous group of multiple 

dissimilar disease states (e.g., pulmonary hypertension, peripheral vascular disease, and 

muscle metabolic disease). This categorization of exercise limitation was purposely chosen 

given the small number of CPET cases available, with the primary purpose to differentiate 

these cases from the most clinically relevant cardiac or pulmonary etiologies.
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Compared to previous research using SVM to aid CPET data interpretation, we included a 

lower number of cases in the dataset [15]; however, their target study outcome was more 

specific and their datasets more uniform. Further, we used broader definitions to label cases 

as chronic heart failure and the obstructive pulmonary disease definitions, which may make 

our data more susceptible to errors.

Regarding the model, using three types of limitations may be broad, especially for the 

other origin type. Many cardiac and pulmonary causes of exercise limitation have common 

interpretability patterns that match the experts’ knowledge. However, cases used in the 

other limitations model include patients with a variety of disease-states. This likely explains 

why the model chose different variables compared to those recommended by the experts 

(i.e., VT). Other cases can also be classified as a mix of pulmonary and cardiac which 

difficult the effectiveness of the classifier and the detection of expected patterns. Given these 

diverse disease-states and inclusion of few cases, detection and interpretation of the other 

limitations was more challenging compared to primary cardiac and pulmonary limitations. 

Finally, inclusion of cases performed using different CPET protocols (i.e., treadmill and 

cycle ergometer) restricts the number of variables used in our modeling to those universally 

detected across protocols. For example, estimation of work rate via CPET may improve the 

performance of the cardiac model [26]; however, work rate can only be reliably assessed 

using cycle ergometer protocols.

VI. CONCLUSION

CPET assesses critical components of human health (i.e., exercise capacity and limitations 

to exercise) that are not commonly considered in clinical practice due to challenges 

with data interpretation. In this project, we used a machine learning process that creates 

the features, filters them, and creates models to successfully differentiate patients with 

cardiac, pulmonary, or other organ-system limitations to exercise. Our platform provides 

both simplified CPET analysis output to aid general clinician-patient communication 

and more detailed feature analysis to inform and help the expert exercise physiologist 

understand individual responses to exercise. More robust and accessible exercise testing 

data interpretation platforms will aid clinical decision making across a wide spectrum of 

cardiopulmonary disorders to enhance the care of patients with chronic diseases.

VII. FUTURE DIRECTIONS

In all the cases, the models’ prediction of the primary organ-system limiting exercise 

incorporated CPET variables similar to expert classification. With the addition of 

prospective case samples, the patterns detected can be corroborated and uncovered for all the 

limitations. Furthermore, with additional and more diverse data samples we anticipate that 

the subtypes of exercise limitations can be detected.

Further additional work includes the use of neural networks to explore if there is a better 

model and interpretation for identifying limitations to exercise with CPET. An advantage 

of neural networks is that they analyze non-linearities appearing in time series data usually 

lost during features engineering. With interpretation algorithms such as Gradient-Weighted 
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Class Activation Mapping, neural networks can show the visual patterns on the signals 

comparable to a physician’s interpretation. The main disadvantage of neural networks is the 

large number of training samples needed to be effective.

Another approach for improving model performance is to capture and use earlier CPET data 

to process into features before the middle of the session. Early data capture would allow 

for exercise limitation assessment in patients who are unable to complete a maximal CPET 

session (e.g., pediatric and very elderly patients). By having an accurate diagnostic without 

the need for maximal or peak CPET data, a patient may not need to complete the entire 

CPET session to assess their exercise limitations.

Currently our CPET dashboard display is for research purposes. It was developed as a 

proof-of-concept to show the model’s performance using real clinical cases. Changes to the 

dashboard will be needed to incorporate into clinical settings (e.g., inputs could be added 

manually or through software that completes feature engineering automatically). Future 

dashboard changes will be based on feedback from the users (e.g., clinicians and exercise 

physiology specialists) regarding the benefits and usability of the models and interpretation 

graphs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NOMENCLATURE

Key terms are defined as follows:

• VO2 (Oxygen consumption): rate of oxygen consumption expressed in 

absolute terms (mL/min), (L/min) or relative (mL/kg/min).

• VO2 peak (Peak oxygen consumption): greatest rate of oxygen consumption 

during maximal progressive exercise; a measure of cardiorespiratory fitness.

• VCO2 (Carbon dioxide production): rate of carbon dioxide exhaled (mL/min).

• HR (Heart Rate): number of beats per minute (bpm); a variable progressing 

from less than 100 bpm while resting and increasing during progressive 

exercise to a peak.

• VE (Minute ventilation): volume of air exhaled per minute (L/min).

• RER (Respiratory exchange ratio): molar ratio of CO2 produced per O2 

consumed; a variable progressing from less than 0.80 to greater than 1.10 

during progressive exercise.

• RR (Respiratory Rate): number of breaths per minute.

• O2 pulse (Oxygen pulse): volume of oxygen uptake per heartbeat (VO2/HR; 

mL/beat); an alternative measure for stroke volume.

• VE/VCO2 (Slope of minute ventilation versus carbon dioxide production): 

measurement of ventilatory efficiency or dead space ventilation.

• VT (Ventilatory threshold): point in time when ventilation disproportionally 

increases compared to oxygen consumption (VO2 @ VT (mL/min) or 

HR at VT (beats/min)); reflects increased energy demands from anaerobic 

metabolism.
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Figure 1. 
Example of Wasserman nine-panel plot (used with permission from Wolters Kluwer Health) 

[1].
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Figure 2. 
Top: slopes of VO2 vs VCO2 plot analysis to detect VT. Bottom: the same variables but 

with VCO2 squared, the yellow dot indicates the moment of VT. The yellow dot draws two 

lines that fit the best with all the dots, while the red dot only fits well with the values behind 

it.
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Figure 3. 
Top: SHAP summary plot for the five most important features in the cardiac limitation 

model. Positive SHAP values refer to increased odds of having a cardiac limitation, while 

negative SHAP values refer to decreased odds. The dot color corresponds to the feature’s 

actual value. For example, for the difference from predicted VO2 (Actual/Expected Peak 

VO2), lower values refer to higher odds of a cardiac limitation. Bottom: the dependency 

plot for the most important feature in the model showing more details with an inverse 

relationship between Actual/Expected Peak VO2 and the SHAP values.
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Figure 4. 
Top: the SHAP summary plot for the five most important features in the pulmonary 

limitation model. Bottom: the dependency plot for the most important feature in the model.
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Figure 5. 
Top: SHAP summary plot for the top five most important features in the other primary 

limitation model. Bottom: the dependency plot for the most important feature in the model.
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Figure 6. 
CPET dashboard display. Top: radar plot depicting the model’s predictions. Bottom: 

explanations for each model shown in a pop-up SHAP force plot (middle) and modified 

SHAP summary plot function that indicates the patient’s values (red dots for increasing the 

odds and blue dots for reducing the odds).
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Figure 7. 
AUC for all the best performing models on the test dataset
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TABLE I

PATIENT INFORMATION

Primary limitation to exercise

Variable Cardiac Pulmonary Other Normal

Number of cases (%) 51
(24%)

26
(12%)

45
(21%)

95
(43%)

Age: mean (SD) 59.57
(15.48)

51.58
(14.15)

56.33
(15.31)

52.16
(14.66)

Gender: female (%) 14
(7%)

3
(1%)

14
(6%)

44
(20%)

VO2 peak: mean, L/min (SD) 1.42
(0.45)

1.37
(0.61)

1.25
(0.64)

2.45
(0.97)

VO2 peak: % predicted (SD) 63
(15)

60
(25)

57
(15)

107
(28)

Percent VO2 peak at VT: (SD) 35
(12)

32
(16)

34
(11)

57
(21)

HR peak: mean (SD) 136
(28)

145
(20)

132
(28)

168
(21)

O2 pulse at peak: mean, mL/beat (SD) 11.15
(3.7)

9.71
(3.65)

10.33
(3.8)

16.79
(12.23)

VE peak: mean, L/min (SD) 60.13
(15.78)

67.8
(28.77)

53.67
(30.63)

91.74
(34.55)

RER peak: mean (SD) 1.37
(0.25)

1.27
(0.22)

1.18
(0.22)

1.30
(0.21)

VE/VCO2 min: mean (SD) 30.42
(5.26)

35.77
(9.84)

34.81
(7.08)

26.39
(4.27)
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TABLE II

PERMORMANCE METRICS FOR THE CARDIAC LIMITATION MODEL

Mean Std Best

AUC 0.898 0.062 0.961

Sensitivity 0.762 0.083 0.909

Specificity 0.897 0.031 0.941

Positive Predictive Value 0.696 0.083 0.833

Accuracy 0.866 0.041 0.933
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TABLE III

PEFORMANCE METRICS FOR PULMONARYLIMITATION MODEL

Mean Std Best

AUC 0.834 0.066 0.926

Sensitivity 0.5 0.2 0.8

Specificity 0.838 0.024 0.868

Positive Predictive Value 0.285 0.079 0.4

Accuracy 0.798 0.027 0.837
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TABLE IV

PERFORMANCE METRICS FOR THE OTHER LIMITATIONS MODEL

Mean Std Best

AUC 0.843 0.110 0.935

Sensitivity 0.600 0.206 0.889

Specificity 0.868 0.082 0.971

Positive Predictive Value 0.575 0.180 0.833

Accuracy 0.812 0.072 0.884
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