
ORIGINAL ARTICLE
Relevance of prokaryotic subspecies in the age of genomics
S. N. Venter1, M. Palmer1,2 and E. T. Steenkamp1

1) Department of Biochemistry, Genetics and Microbiology and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South

Africa and 2) School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
Abstract
The availability of multiple gene sequences, and in particular full genome sequence data, for microbial strains has changed how taxonomists

delineate subspecies belonging to the Archaea and Bacteria. Well-defined phylogenetic lineages that share higher genome similarity values

compared to the widely used species thresholds are often described as subspecies, despite clear evidence of genetic isolation between

them. These well-defined lineages, reflecting notable genetic isolation of the core genome represent more recently evolved, unique and

sui generis evolutionary units. Because they bear all of the hallmarks of species, most contemporary subspecies likely represent species in

their own right. Although there is considerable value in defining intraspecies variation (e.g., pathovar, serovar and symbiovar), the

discriminating properties of such units are mostly encoded on accessory subgenomic compartments. We therefore argue that the

taxonomic category of subspecies has become irrelevant and propose that its use should be discontinued. This will minimize

inconsistencies related to the subjective nature of species-subspecies distinctions. Formal recognition of biologically relevant variation

within species based on the accessory genome information will have practical significance in fields such as clinical, industrial and

agricultural microbiology.
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Introduction
The use of subspecies as taxonomic category is not limited to
prokaryotes. In ornithology, for example, it is often applied to

geographically or morphologically distinct populations [1,2]. But
as with prokaryotes, the nature of species is widely debated and

sometimes controversial [2,3]. To resolve the issue in herpe-
tological taxonomy, De Queiroz [3] defined subspecies as

incompletely separated lineages where some inter-lineage gene
exchange still exists, which is an extension of his general lineage
concept of species as portions of “separately evolving meta-

population lineages” [4]. According to De Queiroz’s definition,
This is an open access arti
subspecies are units that are not completely isolated in terms of
reproduction and overall genetics, a notion that is fully
compatible with the semipermeable nature of species bound-

aries in eukaryotes [5,6]. De Queiroz therefore stressed that in
evolutionary terms, subspecies should not be viewed as

something less than a species as they have all the hallmarks of
species units.

Due to the wide prevalence of horizontal gene transfer
(HGT), prokaryotic species boundaries are often many orders

of magnitude more permeable than those of most eukaryotes
[7–10]. In fact, a large proportion of the genes encoded by a
prokaryotic species may be dispensable, the number and

identity of which can vary substantially among strains and
populations of a species [11]. The flexible, HGT-prone fraction

of species’ genomes are referred to as the accessory genome or
subgenomic compartment, while the stable fraction is denoted

as the core genome [12,13]. It is this latter, well-conserved,
subgenomic compartment that carries and encodes the prop-

erties used by taxonomists to delineate species [14–16].
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However, no attempts have been made to reconcile prevailing

interpretations of the subspecies category with currently
accepted species definitions, especially in light of recent de-

velopments in taxonomic practice and the theory underpinning
it.

In this article, we consider the nature and value of subspecies
as taxonomic category for prokaryotes by making use of
contemporary genome-based evidence. To do this, we first

describe how species and subspecies are currently defined, and
then discuss how genomics data have impacted our view of

these taxonomic units. We then present an argument for dis-
continuing the use of subspecies as a defined taxonomic unit,

after which we discuss the value of recognizing varieties to
denote intraspecies variation as a viable and functional alter-

native. We conclude by highlighting how the description of
varieties would align with current taxonomic practice and how
it would complement and enrich existing taxonomic frame-

works, thereby enhancing their value to end-users, while at the
same time reflecting their nature more realistically.
What are species and subspecies?
BOX 1.
Subspecies in the Klebsiella pneumoniae complex

The Klebsiella pneumoniae complex is a common cause of
nosocomial infections and antimicrobial resistant strains are

considered to be a critical health threat [66]. The complex
includes a range of populations associated with particular hosts

and environmental niches [67]. Through the years, authors have
treated its taxonomy differently and the complex thus provides

an excellent example of how the delineation of varieties and
subspecies changed over time. Based on early work from the
19th century, three subspecies of K. pneumoniae sensu stricto

were formally described in the first edition of Bergey’s Manual
of Systematic Bacteriology [68]. The main methods of differ-

entiation among these taxa were a set of phenotypic charac-
teristics and their clinical manifestations. Subsequent

phylogenetic and phylogenomic studies failed to provide suffi-
cient evidence for distinguishing among K. pneumoniae subsp.

pneumoniae, K. pneumoniae subsp. ozaenae and K. pneumoniae
subsp. rhinoscleromatis [69] and the use of these subspecies has
mainly fallen into disuse. By contrast, subspecies of two other

species in the complex have been delineated using robust
phylogenetic inferences (i.e., K. quasipneumoniae and

K. variicola). Despite the limited phenotypic differences among
the respective subspecies, they can easily be differentiated

based on genetic isolation and limited gene flow of genes
associated with the core genome (stable sequence differences)

[66,70] and the accessory genomes [71].
The naming of species and subspecies is governed by the In-
ternational Code of Nomenclature of Prokaryotes (ICNP).

Names of these taxa are recognized as validly published when
they meet all the requirements of ICNP Rules 30 to 32 [17].

Based on the original version of the Bacteriological Code [18],
phenotypic variants within species could be described as

either varieties or subspecies. Subspecies were recommended
if the variation was sufficiently distinct and stable. This

nomenclature has since changed as Rule 5c of the ICNP clearly
states that a variety should be treated as a synonym of sub-
species. However, species and subspecies may be delineated

using a diverse set of approaches as the ICNP does not
oversee the process nor restricts “the freedom of taxonomic

thought or action” [17].
Most microbiologists regard an archaeal or bacterial species

as a genotypically and phenotypically coherent cluster of iso-
lates with a binomial name that enables unambiguous commu-

nication and sharing of information related to the taxon.
Accordingly, all of the widely used criteria or species definitions
employed for recognizing species revolves around the idea that

members of a species are monophyletic and cluster together
based on phenotypic and genomic similarities [19]. Of these,

the level of phenotypic coherence is often most difficult to
determine, but usually includes shared physiological and

ecological properties. Phylogenetic coherence is typically
determined using sequence information for multiple genes, and

most contemporary analyses of genomic coherence are based
© 2022 University of Pretoria. Published by Elsevier Ltd, NMNI, 48, 101024
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on the proportion and similarity of shared genes [20,21]. In

practice, however, taxonomic decisions are based primarily on
genomic coherence where a quantitative threshold or cut-off

value of 95% Average Nucleotide Identity (ANI) is used to
define species [22]. The latter largely corresponds to 70%

DNA/DNA hybridization (DDH), estimated experimentally or
using digital DDH (dDDH) [23,24].

Subspecies are identified by a trinomial name, with Lactoba-

cillus salivarius being one of the earliest species for which vari-
eties or subspecies were formally used to differentiate

metabolically distinct strains [25]. Since then numerous traits
have been used to recognize subspecies (see Box 1) ranging

from clinical, pathological and physiological properties through
to phylogenetic monophyly [26]. The latter was introduced in

1987 by an ad hoc committee of the then International Com-
mittee on Systematic Bacteriology [24], which subsequently led
to the development of numerous multi-locus sequence typing

and analysis (MLST and MLSA) schemes for delineating sub-
species [27–31]. As a result, phenotype combined with

monophyly has become the most important characteristic used
for the delineation of subspecies [32]. In July 2022, there were
nses/by-nc-nd/4.0/).
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871 validly named subspecies, of which 454 were considered as
“correctly named” based on the most recent taxonomic

opinion [33]. An excellent example illustrating the diversity of
types of groups being recognized as subspecies is provided by

the Klebsiella pneumoniae complex (Box 1).
Genomics have impacted our understanding
of the basic taxonomic unit
The increased availability of whole genome sequences has
contributed enormously to the systematics of prokaryotes. It

allowed for the development of tools and procedures to
streamline species recognition, which is evidenced by the range

of overall genome related indexes (OGRI) that have been
developed and implemented by taxonomists [15,21,34]. Also,

the availability of genome data for species and even populations
of species have facilitated an improved understanding of the

nature of species in Archaea and Bacteria [7,8,21,35–37]. In
other words, wide access to whole genome data for these taxa
not only mediated improvements in taxonomic practice, but

also stimulated research into the theory underlying prokaryotic
species evolution.

From a practical point of view, genomics studies revealed
that the distinction between species and subspecies as taxo-

nomic units is not straightforward. For example, extensive
genome comparisons showed that species boundaries likely fall

in the range of 93-96 % ANI [20], which corresponds well with
the previous “gold standard” of 70% DDH [38]. However, this
This is an open access artic
ANI range represents a “fuzzy zone” because classification of
strains into separate species depends largely on the interpre-

tation of the taxonomist [20]. For example, certain taxonomists
use 95% ANI as species threshold [22,39,40], while others

designate strains with > 93% ANI as members of distinct
genomovars, i.e., genome-based groups sufficiently distinct to

be recognized as separate species, but lacking phenotypic dif-
ferences for unambiguously differentiating them [20]. The latter
could thus also be regarded as subspecies, which are compa-

rable to species, but at lower taxonomic rank due to their
strains sharing high genome-based similarity [41]. This would

also be in line with proposals that dDDH values between 70%
and 80% are used as a quantitative approach for the delineation

of subspecies [41]. Indeed, strains belonging to a well-defined
phylogenetic lineage, but with ANI/DDH/dDDH values

exceeding the suggested species thresholds, are now often
described as subspecies [42–44]. In some cases, species have

even been lowered in rank to subspecies following the imple-
mentation of OGRI measurements [45,46].

A theoretical basis for distinguishing between species and

subspecies of prokaryotes has also remained elusive. Current
models hold that prokaryotic diversity represent speciation

spectra [9] on which gene flow barriers, together with drift and
natural selection, lead to the formation and maintenance of

discrete and cohesive units [47]. As such, each of these
evolutionary units is unique and sui generis (“of its own kind”) in

nature [7,8]. In other words, they are produced by distinct
evolutionary processes and may differ markedly in terms of
intra-unit sequence similarity, population size and evolutionary
© 2022 University of Pretoria. Published by Elsevier Ltd, NMNI, 48, 101024
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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age, as well as ecological and phenotypic characteristics [7–9].

Whether these units are recognized and described as species or
as subspecies depends entirely on the taxonomist’s view,

because other than convention (e.g., associated with particular
taxa or methodologies) a theoretical framework for such de-

cisions are lacking.
The definitions of most contemporary subspecies, espe-

cially where genome-based evidence was used, almost exactly

match those used for defining species [19]. They represent
monophyletic units that are phenotypically and genomically

coherent, and potentially only differ from bona fide species in
having more recent evolutionary origins, smaller population

sizes, and in spanning less phenotypic and genotypic diversity.
However, we know that all of these properties are intrinsically

variable among the units we recognize as species due to the
unique evolutionary trajectories that gave rise to them [8].
How then can one objectively justify why strains belonging to

well-defined phylogenetic clusters, with OGRI values higher
than the usual species thresholds, should or should not be

described as species or subspecies? Hence, we argue that
subspecies as a taxonomic category has become irrelevant and

of limited value to users of the taxonomic frameworks we
establish.
Core 
genome 

of species

Pangenome of 
species

Accessory genome of a 
phenotypically disƟnct 

subpopulaƟon

Accessory 
genome of 

niche-adapted 
populaƟon

A

FIG. 1. The existence of species is governed by properties of core genomes,

features. A: The genomes of prokaryotic species are typically made-up of co

pangenome of the species [12,13]. While being genetically cohesive with othe

strains/populations may have substantially diverged accessory genomes, which

by the areas enclosed with red and blue dotted lines). Consequently, species

genome (B), while dispensable traits are determined by the accessory genom

© 2022 University of Pretoria. Published by Elsevier Ltd, NMNI, 48, 101024
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Recognizing varieties within species has
practical value
Various aspects of the ecology of prokaryotes depend on

functions encoded by their accessory genome. The gene con-
tent of this subgenomic compartment largely reflects the

response of strains to niche exploration, diversification and
their adaptation to ecological changes [48]. This is because

accessory genomes are the product of differential gene loss and
conservation, together with gene gains from other genomes in
the immediate environment via HGT. Although homologous

recombination and neutral acquisitions of genes occur, adap-
tation to various selection pressures is seen as an important

driver that shapes the accessory genome of a strain [49]. The
accessory genome therefor provides a crucial link to observable

intraspecies variation and seldomly exhibits the broad level of
genetic isolation associated with species (Fig. 1).

Practically, there is immense importance in recognizing
biologically relevant variation within species based on specific

operational attributes or phenotypes linked to accessory ge-
nomes. For this reason, the pangenomes of human, animals, and
plants are a subject of active research [50,51]. Among human
Species definiƟon/descripƟon depends on 
three traits governed by the core genome:
1. Phenotypic cohesion 

(based on measurable/observable traits) 
2. Monophyly 

(disƟnguishability as a disƟnct phylogeneƟc 
clade) 

3. Genomic cohesion
(based on nucleoƟde similarity measured 
using in silico or experimental procedures)

AdapƟve or dispensable traits depend on the 
accessory genome and may:  
• allow for niche specializaƟon in certain 

subpopulaƟons
• underpin the divergent phenotypic 

characters displayed by certain 
subpopulaƟons

• enrich and enhance taxonomic descripƟons 
by serving as the basis for biovarieƟes (e.g., 
biovar, pathovar, serovar and symbiovar) 

B

C

while varieties within species are mostly dictated by accessory genome

re and accessory subgenomic compartments, which together form the

r members of the species based on core genome sequences, individual

can cause them to be phenotypically or ecologically distinct (represented

definitions/descriptions are determined by traits governed by the core

e (C).

nses/by-nc-nd/4.0/).
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and animal pathogens, the focus has been on studying and un-

derstanding varieties and variations associated with host spec-
ificity, antigenic properties, as well as disease symptoms or

clinical presentation, leading to the description of pathovar/
pathotype and serovar/serotype, for example (Table 1). Similar

accessory genome-derived units are also used within rhizobial
species denoting symbiovars associated with particular legume
hosts (Table 1). Defining subpopulations or varieties within

species using these designations are only important if they
convey useful and important biological information for specific

user groups such as clinicians or environmental microbiologists
with an interest in specific traits linked to the accessory

genome. Varieties may therefore have far greater utility and
practical relevance compared to many of the currently recog-

nized subspecies, especially those that do not display any bio-
logical differences of relevance. Use of such varieties is already
well embedded in the scientific literature, where the approach

implemented depends on practical needs.
The recognition process for varieties associated with a

unique set of accessory genes is flexible (Fig. 2). Also, the same
strain may be grouped with a different set of strains depending

on the variety of interest and the practical needs of different
research fields. For example, the same pathovar could be linked

to strains belonging to different serovars [52] or vice versa [53].
It does not require, as in the case of subspecies, that all strains

in a species belong to one of the groups defining a variety (e.g.
pathogenic vs. commensal E. coli). It also supports the use of
typing schemes critical for epidemiological studies of pathogenic

bacteria [54,55]. Another practical benefit is that variety-based
TABLE 1. Illustrative examples of species/genera that contain varieti

governed by information encoded on the accessory genome

Variety recognized Informative trait S

Pathovar Pathological distinguishability by causing the
development of distinctive symptoms on one
or more plant or animal host

E

Symbiovar Nodulation and establishment of the nitrogen-
fixing symbiosis with the same legume host,
often independently of species affiliation

B

Serovar Serological distinguishability due to the
presence of similar cell surface antigens (in
certain cases, independent of species
affiliations)

L

Morphovar Morphological characters in culture M
Biovar Various:

- Single physiological/biochemical character B

- Sets of physiological/biochemical properties C

- Host association C

aGenome-based evidence showed that determinants for the respective traits are encoded by d
(indicated with *), genome and phylogenetic data together indicated that the traits’ genetic de
accessory genes.

This is an open access artic
groupings are transferable across species when their genetic

determinants are subject to interspecies HGT [56,57].
What are the implications of abandoning
subspecies as taxonomic category and
promoting the use of varieties?
Discontinuing the use of subspecies as category, combined with

formal recognition of diagnosable varieties within species, will
enhance prokaryote taxonomy among its users (e.g., clinicians
and plant pathologists). The reason for this is two-fold: (i) it will

reduce taxonomic confusion and instability related to the sub-
jective nature of species-subspecies distinctions; and (ii) the

introduction of named varieties within species would have
direct practical value. With regards to abandoning the sub-

species category, it is well-known that confusion is caused
among the users of taxonomy when important groups of or-

ganisms are not robustly delineated and/or when their naming
conventions are illogical [58,59]. Such issues could also lead to

the non-use or disregard of the taxa described by prokaryote
taxonomists. Assigning a group of interest to a category (i.e.,
subspecies) that is essentially indistinguishable from another

(i.e., species) would be a good example of such a practice. In
terms of the pragmatism related to assigning varieties within

species, designations such as pathovar, biovar or symbiovar
would complement species descriptions, making their taxon-

omy more user-friendly and information-rich. These varieties
may include any of those listed in Appendix 10 of the ICNP
es for denoting distinct clusters in which the diverged traits are

pecies or generaa References

scherichia coli, Pseudomonas syringae*, Xanthomonas hortorum* [72–74]

radyrhizobium, Mesorhizobium, Paraburkholderia, Rhizobium [56,75–77]

eptospira, Listeria monocytogenes, Salmonella enterica [57,78,79]

ycobacterium tuberculosis complex* [80]

acillus cereus sensu lato, Lactococcus lactis [59,81]

ampylobacter sputorum, Corynebacterium diphtheriae [82,83]

orynebacterium pseudotuberculosis [84]

ispensable/accessory genes. In cases where the molecular basis of traits is yet unknown
terminants are not encoded by the core genome, and subject to HGT, as is typical for

© 2022 University of Pretoria. Published by Elsevier Ltd, NMNI, 48, 101024
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FIG. 2. The core and accessory genomes of prokaryotes inform the demarcation of taxonomic units at different levels. Genus and species units are

delineated using properties inherent to the core genome, while varieties are recognized based on traits linked to the accessory genome. Because of the

prevalence of HGT, three examples are indicated for cases where variety designations are transferrable across species (serovars of Leptospira and

symbiovars of Mesorhizobium) [56,57], and where strains form part of multiple variety forms/types (Salmonella serovars and biovars) [78].
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[17], or any other types or forms distinguishing groups within

species. Designating varieties in this way further allows clear
communication that their distinguishing properties are likely

encoded on the species’ accessory genomes (which is not the
case for “subspecies” whose existence are dictated by core

genome information).
Taxonomic implications associated with abandoning the

subspecies for prokaryotic species would not be insurmount-

able and would provide a better reflection of current knowl-
edge of genome organisation. Many of the subspecies described

using DNA-based information, especially whole genome se-
quences, would need to be elevated to species-level as they

represent phenotypically and genomically coherent mono-
phyletic units, albeit with more recent evolutionary origins than

their contemporaries (Fig. 2). Using this proposal for reviewing
the Klebsiella pneumoniae complex (Box 1) for example, will

result in the abandonment of K. pneumoniae subspecies. It
would only be possible to distinguish the current subspecies as
biovars based on phenotypic differences. Their specific clinical

manifestations are not conclusive to justify pathovar designa-
tions [60]. At the same time the K. quasipneumoniae and

K. variicola subspecies would be recognised as distinct species in
their own right.
© 2022 University of Pretoria. Published by Elsevier Ltd, NMNI, 48, 101024
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
Abandoning the subspecies category also aligns well with the

Genome Taxonomy Database (GTDB; https://gtdb.ecogenomic.
org) where the demarcation of subspecies has been dis-

continued [61]. The GTDB’s exclusion of subspecies could
potentially have far-reaching significance because its classifica-

tion system is utilized as the taxonomic framework for the
current edition of Bergey’s Manual of Systematics of Archaea
and Bacteria [62]. Our approach of distinguishing between core

and accessory genomes when demarcating taxa and varieties
also resonates with the newly proposed SeqCode [63,64]

where high quality metagenome assembled genomes (MAGs)
will be acknowledged as suitable permanent types for the

description of prokaryotic species. However, to ensure con-
sistency with the ICNP and to accommodate community

feedback during the SeqCode’s development, this new taxo-
nomic initiative also allows for the description of subspecies.

Abandonment of the subspecies category would thus require
amendments to both Codes.

Genomics provided us with new insights into the evolution

and structure of microbial populations, their genomes and the
species they belong to. It has also given us the ability to propose

a more uniform classification system that will address the needs
of end-users, especially those interested in specific traits such as
nses/by-nc-nd/4.0/).
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pathogenicity and host specificity which are often shared

through HGT. The recognition of intraspecies varieties thus has
direct practical value to clinicians, pathologists and industrial

microbiologists. From an ecological point of view, delineation of
groups within species allows for the contextualization of

intraspecies variation relative to the microbial communities
within which they appear [65]. Our proposed use of core
genome data to define species and the use of accessory derived

traits to define intraspecies variation will bring stability to the
naming of biologically relevant units and taxa, one of the main

principles of the ICNP [17], while at the same time also
enhancing taxonomy’s value to its end-users.
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