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Abstract

Objectives: Big data analytics can potentially benefit the assessment and management of 

complex neurological conditions by extracting information that is difficult to identify manually. 

In this study, we evaluated the performance of commonly used supervised machine learning 

algorithms in the classification of patients with traumatic brain injury (TBI) history from those 

with stroke history and/or normal EEG.

Methods: Support vector machine (SVM) and K-nearest neighbors (KNN) models were 

generated with a diverse feature set from Temple EEG Corpus for both two-class classification 

of patients with TBI history from normal subjects and three-class classification of TBI, stroke and 

normal subjects.

Results: For two-class classification, an accuracy of 0.94 was achieved in 10-fold cross 

validation (CV), and 0.76 in independent validation (IV). For three-class classification, 0.85 

and 0.71 accuracy were reached in CV and IV respectively. Overall, linear discriminant analysis 

(LDA) feature selection and SVM models consistently performed well in both CV and IV and for 
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both two-class and three-class classification. Compared to normal control, both TBI and stroke 

patients showed an overall reduction in coherence and relative PSD in delta frequency, and an 

increase in higher frequency (alpha, mu, beta and gamma) power. But stroke patients showed a 

greater degree of change and had additional global decrease in theta power.

Conclusions: Our study suggests that EEG data-driven machine learning can be a useful tool for 

TBI classification.

Significance: Our study provides preliminary evidence that EEG ML algorithm can potentially 

provide specificity to separate different neurological conditions.
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I. Introduction

Traumatic brain injury (TBI) presents a significant challenge to civilian and military 

medicine. According to the Centers for Disease Control and Prevention (CDC), an estimated 

2.5 million people sustain a TBI annually, contributing to a third of all injury-related deaths 

in the United States. Given the high societal and economic costs of untreated TBI, it 

is recognized as a significant military and public health concern. Currently, neurological 

Glasgow Coma Scale (GCS) is a clinical index universally used to classify TBI as mild, 

moderate or severe. CT scan is used to detect structural brain lesions. Though useful 

in the clinical management of TBI, these methods do not provide enough sensitivity to 

detect mild TBI and monitor the progression of TBI at different severities. Therefore, 

efforts are ongoing to seek for alternative clinical assessment tools for TBI, including body-

fluid analysis, advanced imaging modalities (i.e., diffuse tensor imaging [DTI], positron 

emission tomography [PET]) and neurophysiological signals (i.e., eye movement and 

electroencephalography [EEG]).

Among all the modalities, EEG has advantages of being non-invasive, easy-to-use, portable 

and cost effective. However, when applied to TBI research, EEG yields mixed results in the 

literature. Views on the clinical significance of EEG in TBI assessment are historically 

controversial [1]–[4]. Studies have shown significant differences in EEG-based power 

spectra data between mild TBI and normal groups [5], [6], while other studies report no 

such distinction [7]. Researchers have also evaluated post-TBI changes in connectivity [8], 

[9] and entropy [10], [11]. Abnormal electrophysiological signals were observed to occur 

without structural and biochemical changes following neural disruptive interventions, or 

even in the lack of apparent neurocognitive abnormality [10], [12], suggesting that EEG 

has the potential to be a sensitive indicator of neuropathology. However, how specific these 

changes are to TBI is questionable.

With the advancement of computational analytical technologies, the clinical utility of 

EEG signals may be propelled significantly. Health-related research has benefited from 

data-mining machine learning (ML) techniques built on the increasingly available wealth 

of information provided by large scale repositories [13]. Due to the inherent complexity of 

Vivaldi et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TBI, including the absence of consensus on biomarkers, underlying relationships between 

data, and patient-to-patient variability, big data analytics have the potential to make 

determinations about population characteristics that would otherwise be too difficult or 

impossible to manually identify [14], [15]. While clinicians receive extensive training 

to interpret EEG signals, advances in ML and deep learning may enable data-driven 

computational systems to emulate and even improve this process. Particularly, multiple 

kinds of temporal and spectral analyses can be performed on EEG recordings across 

multiple channels, generating feature sets that are well suited for ML applications. In 

addition, due to its long history of use in neurological conditions, multiple EEG databases 

are already formed and are publicly available. This provides a platform to evaluate the 

feasibility of the implementation of ML to the investigation of TBI assessment. Multivariate 

EEG data has previously been shown to be effective in classifying acute TBI patients with 

positive CT scans [16]. However, more study is necessary for broader application among 

groups with different stage and severity of TBI as well as different demographics.

Here, we evaluated the performance of multiple commonly used ML algorithms in the 

classification of patients with TBI history from normal subjects with a diverse feature 

set composed of demographic information, power spectral density, channel-to-channel 

coherence, phase-amplitude coupling, and spectral entropy, from Temple EEG Corpus. In 

addition, we further assessed the accuracy of algorithms in the classification of TBI, stroke, 

and normal patients to determine the specificity.

II. Methods

A. EEG Data

Raw EEG data was obtained from the Temple University Hospital EEG Corpus repository 

(v1.1.0), the world’s largest clinical EEG database [17]. Subjects were identified through 

patient records associated with each EEG file (.EDF format). Records were parsed using 

Python scripts as described in paper [18] with key words listed in Sup Fig. 1 (available 

at - https://github.com/dbp-osel/qEEG-consistency), further curated by a custom MATLAB 

(MathWorks, Version 2019b, Natick, MA, USA) script, then verified by manually inspecting 

the content of each automatically selected record to assure their compliance with inclusion 

and exclusion criteria listed below.

1) Inclusion Criteria:

TBI group:  1) ages 1–85 and 2) medical record includes a diagnosis of TBI or concussion.

Stroke group:  1) ages 1–85 and 2) medical record of a stroke diagnosis.

Normal group:  1) ages 1–85 and 2) clinicians’ notes indicated that the EEG was within 

normal ranges for the subject’s demographic group.

2) Exclusion Criteria:

TBI group:  Documented history of epilepsy, seizure, tremors, or other neurological 

conditions other than TBI within the clinicians’ note record.
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Stroke group:  Documented history of epilepsy, seizure, tremors, or other neurological 

conditions other than stroke within the clinicians’ note record.

Normal group:  Documented history of epilepsy, seizure, tremors, or other neurological 

conditions within the clinicians’ note record.

All patient data in the database were de-identified. Therefore, this study did not 

constitute human subjects research, and was exempted from Food and Drug Administration 

institutional review board review. A total of 13550 subjects were analyzed and processed 

according to the description in Sup. Fig. 1. The final dataset for training machine learning 

models included 292 subjects with 79 normal labels, 98 TBI labels, and 115 stroke labels. 

A total of 26 normal labeled, 44 TBI labeled, and 50 stroke labeled subjects’ data were 

randomly reserved for use as an independent validation (IV) set. There was no overlap 

between any of the cohorts.

It needs to be acknowledged that in the Temple database, information on the occurrence 

time of TBI/stroke was often unavailable, nor were the severity and cause of the injury 

consistently reported. Therefore, the composition of the patient was heterogenous in both 

diseases’ groups.

B. EEG Data Preprocessing

Fig. 1 depicts the data processing, feature generation, feature selection, model training and 

validation flowchart.

EEG signals from different subjects were first normalized so that individual records conform 

with one another in terms of channels used, length of time of the recording, consistent 

epoching, and sampling frequency (fs). Specifically, for each subject, 3 minutes of awake, 

resting-state, stimuli-free EEG recordings were included (excluding the first minute of the 

recording). EEG data were further pre-processed using MATLAB and eeglab (v.2020.0) 

[19]. Signals (fs = 250 Hz) from 19 common channels in ten-twenty standard arrangement 

(FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, FZ, CZ, PZ) were 

filtered using pop_eegfiltnew() with cutoff frequency passband 1–100 Hz. Conventionally, 

channels with poor signal quality are dropped from EEG analysis. However, no channels 

were rejected due to the need to keep the feature vector for each subject consistent, thereby 

making the assumption that the collective feature space across all subjects would be robust 

to outliers. Filtered signals were re-referenced via pop_reref() to remove background noise 

by subtracting the average amplitude across all channels at each discrete time point from 

each channel’s signal individually. The resulting filtered and re-referenced signals were 

referred to as raw data.

Artifact rejection was performed in order to evaluate the performance of TBI classifiers 

using both raw and cleaned data. Independent component analysis (ICA) is a proven 

computational technique for EEG artifact detection [20] and was applied using the FastICA 

(v.2.5) package for MATLAB [21]. Input EEG channel data are separated into each 

independent component (IC) that are linearly mixed in the original signal. This occurs 

through singular value decomposition of the EEG data. ICLabel (v.1.2.6), a plugin for 
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eeglab, was then used to classify each channel’s ICs by their probabilistic source. ICLabel 

is a classification tool that was trained on thousands of known, labeled signals including 

EEG, EMG, EOG, etc. Each IC was labeled as brain, muscle, eye, heart, line noise, channel 

noise, or other according to the highest probabilistic source. ICs with non-brain function 

sources such as eye movements were excluded from signal reconstruction. Artifact rejected 

data were referred to as cleaned data.

C. Feature Generation

Raw and cleaned signals were processed using spectral analysis techniques in order 

to generate a descriptive vector of quantitative features describing each subject’s EEG 

recording. The spectral features calculated were: phase-amplitude coupling (PAC) [22], 

absolute and relative power spectral density (PSD) within frequency bands, spectral entropy 

(SE), and inter-channel cross coherence (Coh) resulting in 1330 EEG features for both raw 

and cleaned data. For the purpose of feature generation, the frequency bands used were 

defined as 1 – 4 Hz (delta), 4 – 8 Hz (theta), 8 – 12 Hz (alpha), 12 – 16 Hz (mu), 16 – 20 Hz 

(beta), and 25 – 40 Hz (gamma).

Absolute PSD was calculated in each frequency band using the bandpower() MATLAB 

function. Relative PSD was calculated by dividing absolute PSD in each frequency band 

by PSD between 1 and 100 Hz. Similarly, coherence was calculated using MATLAB’s 

mscohere() with 30 second non-overlapping epoch windows. Spectral entropy (H) was 

calculated with custom written MATLAB code using the equation:

H = − ∑
m = 1

N S(m)
∑iS(i) log2

S(m)
∑iS(i)

Where S(m) is the power spectrum of the input (channel-wise) signal and N is the total 

number of data points. Phase-amplitude coupling was calculated following the method 

presented in [22] which determines the modulation index (MI) between phase bins and 

amplitudes via Kullback-Leibler distance (DKL):

MI =
DKL(P , U)

log(N)

Where P is the amplitude distribution among N = 18 phase bins (−180° to 180°), and U is 

the uniform distribution. Pairings of amplitude and phase were tested between bands alpha 

and gamma, theta and gamma, and theta and alpha.

D. Feature Selection

Dimensionality reduction was performed via five methods: conventional statistics, Principal 

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Forward Sequential 

Feature Selection (FSFS), and Backwards Sequential Feature Selection (BSFS). Apart from 

the statistics method, all features were standardized to account for large variations in data 

ranges.

Vivaldi et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) Statistics: One sample Kolmogorov-Smirnov test (K-S test) was used to determine 

normal distribution of the data at the 5% significance level. None of the features were 

normally distributed, therefore, Wilcoxon rank sum testing was implemented to analyze 

differences. When used with three classes, One-way ANOVA and post-hoc Tukey test was 

used instead of the Wilcoxon rank sum test. False discovery rate was set at 0.05 and 

significant p-values were calculated for multiple comparison correction [23 ]. First, all m 
p-values were ranked p1, . . . , pm with p1 being the smallest. Then we denote p1, . . . , pk 

significant for the largest k that satisfies:

pk ≤ 0.05k
m

Only Features With P-Value With Rank 1, . . . , k Were Used to Train Classifiers.

2) LDA: Although LDA itself can be used as a classifier model, here it is used to identify 

which subset of the original features best separate the classes. LDA was optimized by 

selecting the best delta and gamma values over a 50-step grid search. Features with δ 
coefficient values below the cutoff threshold were eliminated from the data later passed on 

to the models for training. In this study, the threshold was set to the mean of the δ values 

plus one standard deviation.

3) FSFS: For this analysis the criterion value was set to the minimum mean 

misclassification error over 10-fold cross-validation (CV) of linear discriminant models after 

50 Monte Carlo repetitions.

4) BSFS: For this analysis the criterion value was set to the minimum mean 

misclassification error over 10-fold cross-validation of linear discriminant models after 

50 Monte Carlo repetitions. This technique selected features backwards starting with the 

previously selected LDA features instead of the original 1330 feature set.

5) PCA: PCA was selected as a dimensionality reduction technique due to its advantage 

of not eliminating potentially useful information by dropping features. PCA was applied to 

both the raw and cleaned feature sets specified to account for ≥ 95% of the total variation 

within the space.

E. Model Training

Feature vectors identified by statistics, PCA, LDA, FSFS, and BSFS were fed into Support 

Vector Machine (SVM) models using six different kernels and K-Nearest Neighbors (KNN) 

classifiers using six definitions for training. SVM used three polynomial kernels (linear, 

quadratic, and cubic) and three Gaussian kernels. Gaussian kernel scale was determined 

as 4∗sqrt(N), where N = number of features, sqrt(N), and sqrt(N)/4 for models named 

coarse, medium, and fine, respectively. Three KNN models were trained based on Euclidean 

distance for K = 1, 10, and 100, also denoted coarse, medium, and fine, respectively. Two 

more KNN models were trained with K = 10 using cosine and cubic distances. The last 

model trained was KNN with K = 10 where neighbors were weighted by the squared inverse 

of their Euclidean distance. For both raw and clean data using five selection methods and 
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12 total models, 120 total models were trained and tested. An additional 120 models were 

trained and tested as above, intentionally excluding demographic features. These model 

variations were trained on two-class data (normal vs TBI) and three-class data (normal vs 

TBI vs stroke), for a total of 480 models.

F. Model Validation

Performance of classifiers were validated with 10-fold cross-validation (CV), label 

randomization, and IV data set (Table I). Model accuracy, F1 score, sensitivity, and 

specificity were recorded to assess the performance of each model to classify TBI and 

normal data. For three-class classifiers to classify TBI, normal, and stroke, macro and 

weighted variants of precision/sensitivity/F1 scores were calculated.

In order to assess a baseline metric of performance, group labels (TBI, normal and stroke) 

were randomly assigned to the feature vectors and each randomized set was trained and 

tested following the same methods used for true labeled data. Both true and randomly 

labeled data were trained using 10-Fold CV partitions 1000 times in order to generate 

distributions of cumulative prediction accuracies over each fold. In addition, classifiers 

generated with the full training data set were further evaluated by predicting classifications 

of an independent test data set with 120 true labeled subjects, which were withheld from the 

training data set (See Table I for demographic information of each data set).

To further determine validation, a model was considered a “success” if its validation score 

was at least above that of the Zero Rule (ZeroR) benchmark. The ZeroR benchmark is 

calculated as the accuracy of a model that predicts the largest class no matter the input. For 

the normal vs TBI models, the ZeroR benchmarks were at 55.37% for the CV tests and 

62.86% for the IV tests. For the three-class models, ZeroR was at 39.7% and 41.67% for the 

CV and IV, respectively.

G. Statistical Analysis

Statistical analysis was performed to provide baseline measure of the differences between 

the TBI, stroke and normal classes on the individual features, and to compare performance 

of models. One sample Kolmogorov-Smirnov test (K-S test) was used to determine normal 

distribution of the data at the 5% significance level. If data was not normal distributed, 

Wilcoxon rank sum testing, or two sample K-S test, or signed rank test, were implemented 

to analyze differences. When data was normally distributed, Student t-test was used. 

Where it is applicable, positive false discovery rate was calculated for multiple comparison 

correction. For categorical sex data, Chi square test was used. When comparing the five 

feature selection methods, One Way ANOVA and post-hoc Tukey test was used. All 

statistical data are expressed as mean ± std.

III. Results

A. Performance of Individual Two-Class Algorithms

All 1330 EEG features and 3 demographic features (sex, age, and medication) of normal 

and TBI cohorts were put through statistical analysis, LDA, FSFS, BSFS, and PCA for 
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feature selection. Sex is set as categorical data. Medication is set as the number of unique 

medications prescribed to each subject. Drug interaction was not investigated in this study.

1) Models Trained With Features Selected By Statistics: In statistical analysis, 

rank sum and false discovery rate analyses identified 98 features out of the 1333 in the raw 

set (~7.35%) and 82 in the clean set (~6.15%) that were significantly different between TBI 

and normal subjects, including sex. When comparing the performance of models trained 

with truly labeled data and randomly labeled data with 10-fold CV, all models trained 

with truly labeled performed significantly better than randomly labeled data with the only 

exception of SVM fine Gaussian at 10−10 significance level (SL) (Sup. Fig. 2) (two sample 

K-S test, p<10−10, 1000 iterations). Models trained with truly labeled data had an average 

accuracy of 0.68 ± 0.05 with median at 0.68. In addition to 10-fold CV, we evaluated the 

performance of models with an independent data set which were withheld from training. In 

general, the performance of models to predict the classification of independent data set was 

better than 10-fold CV (Sup. Fig. 2). The average accuracy of the 24 models was 0.70 ± 0.05 

with median at 0.71.

2) Models Trained With Features Selected By LDA: With a threshold of the mean 

of the δ values plus one standard deviation, LDA selected 208 features from raw data 

features, and 224 from clean features, including two demographic features, sex and age. 

1000 iterations of 10-fold CV showed that 22 out of 24 models trained with truly labeled 

data performed significantly better than those trained with randomly labeled data (Fig. 2) 

(n = 1000, p < 10−10, two sample K-S test). Like models trained with statistically selected 

features, SVM algorithm with fine Gaussian kernel could not distinguish TBI and normal 

subjects at all. When classifying the independent data set, the 24 models showed an average 

accuracy of 0.76 ± 0.09 with median at 0.75 (Fig. 2), which is slightly better than the 

accuracy calculated with 10-fold CV, 0.70 ± 0.04 with median at 0.70.

3) Models Trained With Features Selected By FSFS: With the criterion described 

in Methods, FSFS selected sex and an additional 8 EEG features from raw data, and 12 from 

clean data. All 24 models trained with truly labeled data performed significantly better than 

those trained with randomly labeled data when evaluated with 1000 iterations of 10-fold 

CV at 10−10 SL with a mean accuracy of 0.71 ± 0.06 with median at 0.73 (Sup. Fig. 3) 

(two sample K-S test). When these models were evaluated by the independent data set, they 

showed an average accuracy of 0.67 ± 0.05 with median at 0.67 (Sup. Fig. 3).

4) Models Trained With Features Selected By BSFS: Working backwards from the 

features selected by LDA, BSFS selected sex, age, and an additional 179 EEG features from 

raw data and 216 from clean data. Similar to the LDA models, all models trained with truly 

labeled data, with the exception of the SVM algorithm with fine Gaussian kernel, performed 

significantly better than those trained with randomly labeled data when evaluated with 1000 

iterations of 10-fold CV at 10−10 SL. The mean accuracy of the truly labeled data set was 

almost as high as LDA at 0.75 ± 0.09 with median at 0.75 (Sup. Fig. 4) (two sample K-S 

test) which is not too surprising as these features were derived from the LDA feature set. 
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However, when these models were evaluated by the independent data set, they performed 

especially poor with an average accuracy of 0.56 ± 0.06 with median 0.56 (Sup. Fig. 4).

5) Models Trained With Principal Component (PC) Features: When putting 

through all 1332 non-categorical features into PCA, 132 principal components (PCs) were 

necessary to reach 95% threshold using raw or clean data. Models were trained with the 

selected PC features and the categorical sex information. The majority models trained with 

true labeled data performed significantly better than randomly labeled data with p < 10−10 

but the coarse and fine variants of SVM and KNN, as well as clean KNN cubic distance 

model (Sup. Fig. 5) (two sample K-S test). Additionally, 6 of the 24 models failed to have 

better accuracy than the Zero Rule (ZeroR) benchmark of 0.55 (black dotted line). When 

evaluated with 10-fold CV, the mean accuracy of these 24 models was 0.58 ± 0.05 with 

median at 0.57. The performance of the 24 models to classify the independent data set also 

performed unsatisfactorily, with a mean of 0.48 ± 0.10, a median at 0.43, and none of the 

models performing better than the ZeroR benchmark of 0.63 (green dotted line).

We compared the performance of models with different feature selection methods (Fig. 3a 

and b) and found that models trained with PC features performed the poorest in both 10-fold 

CV and IV. Models trained with features selected by LDA performed consistently well in 

both CV and IV. Interestingly, models trained with features selected by statistics performed 

significantly worse than those from LDA in CV, however, they performed as well as those 

from LDA when used to classify the independent dataset. Models trained with features 

selected by FSFS preformed similarly to that of the statistics group in CV but slightly worse 

in IV. Models trained with BSFS, however, performed just as well as LDA models in CV but 

almost as poor as PCA models in IV.

B. Effect of Demographic Information on the Performance of Models

To understand how demographic information affects the performance of models, we re-

trained the models with sex, age, and medication information removed from input features, 

leaving just 1330 features before selection. Similarly, model performance was evaluated 

with 1000 iterations of 10-fold CV and an independent dataset. In 10-fold CV, models with 

demographic inputs performed consistently better than those without (Fig. 3c). Though 

variability is present in IV, the majority of models with demographic inputs perform 

significantly better than their counterparts (Fig. 3d). Including only those models that have 

accuracy higher than the ZeroR benchmark, we see that the IV accuracy for demographic 

group remains significantly higher (Sup. Fig. 6). Considering the significant difference in 

sex between normal and TBI groups in both training and IV data sets (Table I), this finding 

is not surprising.

C. Effect of EEG Artifact Removal on the Performance of Models

In conventional quantitative EEG (qEEG) analysis, artifact removal is an inevitable step, but 

it is computationally and time demanding. Moreover, there is no perfect artifact removal 

method. Therefore, we are interested in understanding whether ML models built upon 

raw EEG can provide comparable performance with those on artifact-removed clean data. 

When comparing the performance of models trained with clean and raw EEG features, we 
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found that the raw models performed slightly better (Fig. 3e). Interestingly, when predicting 

independent data, it appears there is no such difference in performance between most models 

trained with raw EEG compared to those trained with clean data (Fig. 3f). This remains true, 

when looking at just those models that performed better than the ZeroR benchmark (Sup. 

Fig. 6).

D. Models With Best Performance in Classifying TBI

Though it appears that most ML models can distinguish TBI from normal subjects to some 

extent, demonstrated as significantly better performance than their counter models trained 

with randomly labeled data, their performance varies remarkably. Therefore, we identified 

models with accuracy higher than 0.9 in 10-fold CV and higher than 0.73 IV (Sup. Table 

I). In 10-fold CV, 12 models showed an accuracy higher than 0.9, all of which were SVM 

models based on LDA or BSFS feature selection with linear or polynomial kernels. In IV, 

18 models had higher than 0.73 accuracy, but none of these were in the 12 best performers 

in 10-fold CV. These models were built upon features selected either by LDA, FSFS or 

statistics, including SVM and KNN models.

E. Performance of Three-Class Models

To determine if the models above were actually distinguishing differences between normal 

and TBI EEGs instead of just normal and abnormal EEGs, we included EEGs from a third 

cohort of stroke patients. Features were reselected using the same previous features selection 

techniques including clean, raw, demographic-free and demographic variants. These newly 

selected features were then used to train error-correcting output codes (ECOC) models with 

a one vs one coding design and the same SVM and KNN variants used in the two-class 

case as learners. Overall, 240 models were each trained. Accuracy was calculated on 1000 

iterations of 10-fold CV for both truly and randomly labeled data (Sup. Fig. 7–11) as well as 

an IV.

There was a large variation in the CV accuracies of these models with some just over 0.85 

(Sup. Table II). All models had a median accuracy above 0.5 except for those trained with 

features selected by PCA (Fig. 4a). For the IV: LDA, FSFS, and conventional statistics 

methods performed the best with PCA still being the least accurate (Fig. 4b).

Our results suggest that the features selected by LDA, FSFS, or BSFS are sufficient 

to produce adequate accuracy classification models between one normal group and two 

different disease cohorts. Ideally, with more data, this number would increase. Nevertheless, 

we believe this shows that our feature selection and resulting models, is detecting more 

than just differences between normal and abnormal EEGs. Put another way, if one were to 

assume the models were only detecting a difference between normal and abnormal EEGs 

then these models would only have an accuracy as high as

P (H)P (H) + P (T )P (T ) + P (S)P (S)
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with H, T, S representing the ground truth of a subject’s cohort, H, T , S, representing the 

model’s classification of a subject’s cohort, and P(·) being the probability of selecting it, 

assuming they are chosen at random.

That is, for the case that the model always selects subjects in the Normal cohort correctly, 

we’d have a CV accuracy as high as

79
294 (1) + 98

294
98
294 + 117

294
117
294 ≈ 0.54

and an IV accuracy as high as

26
124 (1) + 48

124
48
124 + 50

124
50
124 ≈ 0.52

In total, 127/240 of our models have CV accuracy greater than 0.54 and 97/240 have IV 

accuracy greater than 0.52.

For the effect of demographic information and artifact removal on the performance 

of models for three-class classification, consistent with two-class models, including 

demographic information can increase the accuracy of models (Fig. 4c). However, opposite 

to the two-class models, removing EEG artifact significantly increased the accuracy of the 

three-class models (Fig. 4d).

Taken together, our results suggest 1) LDA is the best feature selection methods among 

those tested for our EEG dataset (Fig. 5a and 5b), 2) SVM models perform better overall, 3) 

raw EEG can provide comparable performance compared with artifact-removed clean EEG 

in two-class classification, but significantly inferior to clean EEG in three-class classification 

and 4) inclusion of demographic information can slightly increase model performance 

for both two- and three-class models, but its role is less remarkable compared to feature 

selection methods and classification algorithms.

F. Differences in qEEG Features Between Normal, TBI and Stroke Patients

As models built upon features selected by LDA, FSFS, or statistics performed best in both 

two- and three-class classification, we investigated the composition of these qEEG features 

and compared them between normal, TBI, and Stroke subjects. Fig. 6 and Sup. Fig. 12 

show results obtained from clean and raw EEG respectively. When looking at the fraction of 

features selected in each qEEG category, most features selected by LDA, FSFS and statistics 

were PSD and coherence for both two- and three-class classification and both clean and raw 

EEG (Fig. 6a and 6b, Sup. Fig. 12a and 12b).

To compare between normal, TBI and stroke subjects, we calculated the z score to the 

standard deviation of normal subjects. Fig. 6c and Sup. Fig. 12c show the median z score 

(with normal baseline) for each type of feature for all three cohorts. It appears that relative 

PSD, as well as coherence, had biggest difference in median z scores between the three 

groups. In addition, in clean EEG data, TBI and stroke patients had significantly reduced 

entropy compared to normal control.
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To further understand the change in coherence, we studied the coherence between all 

channel pairs between normal and TBI subjects in each frequency band. Though 20–40% of 

all channel pairs had significant changes across each frequency band compared to normal 

subjects, the change in coherence was more channel pair dependent rather than frequency 

band dependent (data not shown), which means the same channel pair often shows the 

same trend of change across all frequency bands. Therefore, we analyzed the broadband 

(1–40 Hz) coherence change in TBI for each pair of channels from normal subjects, which 

is plotted in Fig. 6d and Sup, Fig. 12d. We observed an overall reduction in broadband 

coherence when only channel pairs with |z| scores higher than 0.5 were analyzed (Fig. 6d 

inset and Sup. Fig. 12d inset). Reduction in inter-hemisphere coherence was observed across 

the frontal lobe and between temporal and occipital regions. Reduction in intra-hemisphere 

coherence was detected between ipsilateral frontal and temporal regions, as well as between 

frontal and occipital regions. Increase in intra-hemisphere coherence was found between 

ipsilateral parietal and occipital lobes.

To look at coherence changes in stroke patients from that of TBI patients, we found that 

56–72% of all channel pairs had significant changes across all frequency bands (data not 

shown), and then compared each channel pair as above but with median z-scored data using 

TBI as a baseline (Fig. 6f and Sup. Fig. 12f). In general, there was a global decrease in most 

channels with the notable exception of increases between the occipital and ipsilateral central 

regions (Fig. 6f inset and Sup. Fig. 12f inset).

In addition to coherence, we plotted the topographic maps of relative power change in each 

frequency band in TBI subjects and stroke subjects, aiming to understand the spatial pattern 

(Fig. 6e and 6f and Sup. Fig. 12e and 12f). TBI patients showed remarkable increase in 

relative delta power at parietal and frontal regions, and reduction in alpha and mu power 

at bilateral fronto-temporal regions compared to normal subjects (Fig. 6e and Sup. Fig. 

12e). Stroke patients, when compared to TBI patients, showed decreases in alpha, mu, beta, 

and gamma frequencies, as well as increases in theta power at fronto-temporal region and 

decreases in delta power around the bilateral central regions (Fig. 6f and Sup. Fig. 12f).

These analyses reveal complex changes in qEEG features between TBI, stroke and normal 

subjects, particularly in coherence and relative PSD. In both TBI and stroke patients, 

coherence showed a global reduction, and relative PSD demonstrated a global increase 

in low frequency delta frequency band and decrease in high frequency bands. In addition, 

fronto-temporal and parietal regions appear to have the most remarkable changes in both 

coherence and relative PSD. In stroke subjects, we saw noticeably lower relative PSD at 

higher frequencies and higher theta power.

IV. Conclusion

This study demonstrates that ML models built upon qEEG features and demographic 

information extracted from existing public databases could distinguish between TBI and 

normal patients with up to 0.94 accuracy and 0.94 sensitivity in CV and 0.76 accuracy and 

0.80 sensitivity in IV. With the addition of a cohort of stroke patients, these models were 

able to outperform a theoretical model that could only detect changes between normal and 
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abnormal EEGs. In fact, further investigation into the best three-class models showed it 

distinguished stroke with the highest precision. Feature selection method appears to play the 

most important role in the performance of models. Our study shows LDA feature selection 

method outperformed all other methods, reflected by the observation that best performing 

models in CV and IV for both two- and three-class classification were predominantly 

based on features selected by LDA (Fig. 5). In diagnosing an independent subject group, 

SVM with polynomial kernels and coarse KNN performed better than others; while in 

10-fold CV, SVM linear or polynomial kernels performed better. In general, including 

demographic information in the input feature can significantly increase the performance of 

models, but to a limited degree. Interestingly, models from raw EEG data had a comparable 

performance with those from clean EEG when just comparing between normal and TBI 

cohorts. However, when comparing between all three cohorts, clean EEGs performed much 

better. In line with prior qEEG study on TBI patients, coherence and relative spectral 

density were two major parameters changed from normal to TBI. Coherence change varied 

among channel pairs with reduction more predominant. Relative PSD demonstrated a global 

increase in low frequency delta power and decrease in higher frequency (alpha, mu, beta, 

and gamma) power. These results suggest EEG ML can potentially be used in the detection 

or monitoring of TBI in clinic.

V. Discussion

A. Use of Temple University Hospital EEG Corpus for TBI and Stroke Research

Temple EEG Corpus is a major, publicly available clinical EEG database [24]. With 

the advancement of data analysis tools, this database provides an excellent platform for 

investigators to explore the potential of EEG signals in neurological applications beyond 

seizure and sleep disorders. In this study, we extracted patients with a record of TBI, 

those with record of stroke, and those whose EEG was considered normal by clinicians. 

Demographic distribution (age and sex) of TBI group extracted from the database (Table 

I) aligns well with that reported previously [25], suggesting that the Temple database 

represents the general TBI population.

In the Stroke group, the specific type of stroke that had occurred was not always well 

documented, leaving that group heterogenous in that nature. Though this is a limitation, we 

hope a large enough sample can either average or dilute any erroneous results.

Ideally, a more homogenous patient population can potentially increase the accuracy in 

biomarker research. If the database can include the time of onset, the number, severity, 

and cause of injury, as well as any other available medical record, i.e., neurocognitive 

test, imaging results, etc., it would be more helpful for the investigation of EEG signals 

for prognosis and monitoring of the injury, and for the identification of correlations 

between EEG signals and cognitive function or structural changes. However, the caveats 

of heterogeneity of TBI patients in the Temple database would not disvalue its importance 

in the exploration of EEG biomarkers, particularly for incorporating novel analysis methods, 

i.e., machine/deep learning. EEG signals that can be subjected to multiple quantitative 

temporal and spectral analyses across multiple channels generate feature sets that are well 

suited for ML applications. The large number of qEEG features makes a large sample 
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size necessary to develop a reliable classifier, which is difficult to achieve through a 

single clinical study. Databases like the Temple EEG Corpus become particularly useful 

in storing and sharing data for integration and re-analysis. In addition to TBI and stroke, 

we believe such a database can be further used to re-examine the potential of EEG for 

distinguishing and characterizing different neurological disorders, as the specificity of EEG 

for different types of neurological disorders is still questionable, which has long prevented 

its widespread adoption in clinical practice. Our study provides a preliminary evidence on 

that by demonstrating that ML algorithm can yield high accuracy to separate TBI and stroke 

patients.

Repository data, while highly desirable for big data and machine learning applications 

due to its sheer size, is difficult to manage in cases where documentation and metadata 

formatting is inconsistent. Management tools often require customization on the part of 

the user, which cause difficulties in open source sharing of both data and algorithms. 

Medical big data research especially, which aims to uncover relationships and distinctions 

between various populations, will greatly benefit from the continued efforts to normalize 

data collection and reporting procedures. In this study, differences in record formatting, gaps 

in information recorded, and unclear diagnostic outcomes were among the limiting factors in 

textual analysis, which in turn limits the potential information pool for processing.

B. EEG Machine Learning and TBI

With the development of advanced analytical techniques and improvement in computational 

capability, machine/deep learning has been under intense investigation for implementation 

in multiple neurological fields, including mind decoding in brain-computer interface [26], 

identification of sleep-wake stages [27], prediction of seizures [28], and prognosis of 

stroke [29]. Thatcher pioneered utilizing machine learning in the TBI field by applying 

discriminant analysis of multivariant qEEG features to classify TBI patients and differentiate 

severe TBI patients from the mild [30], [31]. With 20 EEG features, he achieved an accuracy 

of >90% in cross-validation and IV. Thornton further tested using 31 high-frequency EEG 

features to distinguish mild TBI subjects and got an accuracy of about 87% [32]. Recent 

discriminative index developed from a large sample size and more homogeneous subject 

population was reported to have a >95% sensitivity to predict positive CT finding in acute 

TBI [16], and may perform better in monitoring functional recovery from a TBI compared 

to other clinical outcomes [33]. Furthermore, a multimodal study found that algorithms 

incorporating EEG signals into symptom questionnaires can increase the accuracy by 10% 

[34].

Due to the inherent flexibility and wide array of potential algorithmic combinations, as well 

as the constant advances being made in the field, it is reasonable to make the assumption 

that newer, more complex models would improve classification results. Here, we evaluated 

several common ML techniques with a range of parameters in order to determine potential 

utility in TBI classification tasks. In our study, we achieved an accuracy up to 94% in 

CV and 76% in IV. Six of the top 12 performing models in 10-fold CV (with the other 

6 using BSFS based on LDA features) and 6 out of 18 best performing models in IV 

used LDA as the feature selection method. Since LDA can function independently as a 
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binary classifier and has been most often used in prior EEG TBI reports, it is well suited 

for separating the classes examined here. When used as a multiclass classifier, a one vs 

one coding strategy was used, where only two classes were looked at each iteration. The 

BSFS selection method was unique in that it started with the features selected from LDA, 

but removed any additional features it could, leaving us with a smaller feature set but 

comparable performance in 10-fold CV. However, the models trained with features from 

BSFS preformed significantly worse in IV. This is mostly likely due to overfitting on the 

original training data caused by optimization on an already optimized dataset.

The LDA and BSFS methods selected 178–224 EEG features, PCA selected just over 130 

features, conventional statistics selected 80–98 features, and FSFS selected 12 or fewer 

features. This is surprising since the other best performing models in the IV used features 

selected from the smallest number of features selected by FSFS or those showing significant 

difference statistical differences. Overall, the features selected by LDA and conventional 

statistics shared up to 28 raw features, while only 2–4 raw FSFS features were found in 

both. Though the number of features from LDA and statistics appeared to be high relative 

to the number of subjects, we implemented multiple folds of validation to reduce the impact 

of overfitting, including 10-fold CV, randomizing the labeling, and IV. In addition, SVM 

was used for its good performance in handling high-dimensional data. Indeed, 21 out of the 

30 best performing models were SVM models, with only nine trained with KNN kernels 

in two-class classification. And all best performers in three-class classification are SVM 

models. In future work, other methods such as LASSO and convolutional neural network 

(CNN) may be implemented to further improve the dimensional reduction and possibly the 

classification results. CNN has been shown to have superior performance in neurological 

applications compared to conventional algorithms and may provide higher sensitivity and 

specificity [35]–[38].

Although we had moderate success with CV accuracy, it is troubling that there was 18 point 

drop in IV accuracy. In general, a drop in performance between CV and IV is indicative 

of overfitting during training. A common way this is addressed is by increasing the sample 

size for training sets, which was not feasible here based on the inclusion/exclusion criteria 

and the data available in Temple EEG Corpus. A larger sample size for model training, with 

consistent data labels, could address this limitation. Alternatively, this study used randomly 

labeled data to generate a baseline performance margin for each model. IV classification 

consistently outperformed classification of subjects randomly assigned to a cohort, showing 

that, while overfit to the training set used for CV, the overall models were still able to 

generalize to unseen data. Future work will focus on improving IV accuracy, either through 

larger training sets or more advanced algorithms (deep learning, ensemble methods, etc.).

As suspected, most models performed better than conventional statistics. The exception 

to this was the surprisingly poor results of the PCA results (Fig. 5). Since PCA relies 

on a linear transformation, it is possible that the features are better suited for nonlinear 

transformations. However, this is contradictory to the success found with the linear LDA 

SVM model, so further investigation is needed. The other high performing models (Sup. 

Table I and II) consist of mostly polynomial SVMs. This is perhaps due to their versatility to 

this set of heterogenous set of data that could not be captured in the KNN models.
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It also needs to be noted that almost all models published for TBI classification utilized 

supervised learning. However, one of the challenges in the detection and monitoring of 

TBI is the lack of an early and sensitive outcome measure. This restrains the performance 

of classifiers within our current knowledge breadth. McCrea et al. [33] reported that an 

EEG-based algorithm could potentially be more sensitive than conventional neurocognitive 

assessment in monitoring the recovery from TBI. Our own study in mice also suggests EEG 

changes can be observed without an apparent neuroinflammatory reaction [12]. Therefore, in 

the future, an unsupervised approach can be explored to mitigate this limitation.

Our study also explored the effect of demographic information and artifact removal on 

the performance of models. Due to the significant difference in the rate of TBI between 

males and females, including demographic information can slightly increase the accuracy of 

models developed with the same algorithm. However, its effect on the model performance 

is less than input features, algorithms, and kernels. Interestingly, models developed from 

features calculated from raw EEG data demonstrated comparable performance with those 

trained with clean EEG features in two-class classification. However, artifact-removal 

significantly increased the performance of three-class models. We speculated that some 

information embedded within artifact, i.e., eye movement, could be different between TBI 

and normal subjects, explaining this discrepancy. A further investigation into the IClabels 

removed in our work indeed show a significant difference in the number of eye movement 

artifacts between normal and TBI groups (Sup. Fig. 13). Moreover, a significant difference 

in the number of muscle and eye movement artifacts was revealed between TBI and stroke 

patients. In addition, it appears that artifact removal noticeably changed the coherence 

difference between stroke and TBI subjects. This may partially explain why artifact removal 

did not affect the two-class model performance but increased the performance of three-class 

models.

C. QEEG Differences Between Normal, TBI and Stroke

Though identifying qEEG biomarkers was not the primary goal of this study, understanding 

changes can help us compare results from the database with prior reports, and determine 

the features that can significantly contribute to a well-performing model. LDA, statistics, 

and FSFS selected a remarkable fraction of features from coherence and relative PSD for 

both two- and three-class classification (Fig. 6a). Stroke and TBI differ in the cause of 

brain injury (internal vs. external), whereas share some pathological processes including 

the primary cranial cell death and blood-brain-barrier disruption followed by secondary 

neuroimmune responses triggered by cytokines. Due to the similarities in pathophysiology 

and associated functional deficits between these two conditions, specificity of EEG in 

distinguishing these two conditions is always questionable. Indeed, our study suggests 

similar trend of qEEG changes in coherence and relative PSD between the two groups 

with changes in stroke patients more prominent. However, ML models reasonably separated 

these two groups, suggesting advanced analytics can potentially be more sensitive to identify 

differences compared to conventional statistics.

In literature report, the trend of change in coherence related to TBI and stroke varies, 

however, the most reported was the reduction in global or inter-hemisphere coherence [6], 
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[8]. Other reports suggest the change can be pathway-specific [30], [39]. Our study seems 

to support both. The grouped analysis (Fig. 6d inset) shows a symmetric pattern between 

two hemispheres in TBI patients. Though this does not mean the same patient would 

have symmetric changes, it suggests the same pathway in both hemispheres are equally 

susceptible to the same change. When comparing stroke to TBI, stroke patients showed a 

further reduction in global coherence, reflecting a more severe interruption of inter-neuronal 

communication, which is consistent with prior report [40].

Unlike diverse findings in coherence change after TBI and stroke, reports in PSD alteration 

were more consistent with an increase in lower frequency bands (delta and theta) and a 

reduction in higher frequency bands (alpha, beta and gamma) [41], [10], [6], [42]. Our study 

revealed the same trend of change in relative PSD as shown in Fig. 6e and 6g, however, 

stroke had additional increase in theta power.

In addition to coherence and PSD, LDA extracted several entropy features in raw EEG, 

and a large number of entropy features were found significantly different from groups in 

clean data. Different metrics for entropy have been employed to identify EEG biomarkers 

of TBI and stroke. A decrease at the acute phase of injury followed by a recovery was 

mostly reported in both animal and human studies for TBI [12], [43], [44]. Though TBI 

subjects in the Temple database were diverse, which may include chronic injury with 

entropy recovered and those with local injury [45], an overall reduction was remarkable in 

clean EEG. For stroke patient, an increase in sample entropy was reported previously [40], 

this is controversial to what we found in clean EEG data that a significant reduction was 

revealed in stroke group. Further studies on entropy changes in stroke and TBI patients 

are needed to determine its post-stroke and post-TBI alterations. The reason that clean data 

demonstrated entropy change but not raw EEG may be because the cleaning process utilizes 

features associated with entropy. Since signal noise increases overall variance, removing 

artifacts through cleaning methods reduces noise and therefore should alter extracted 

entropy features. Without artifact signals (i.e., eye-movement) buffering entropy values, 

changes in these features can be more easily attributed to the classes.

While further work is necessary to develop clinically applicable spectral feature biomarkers 

and accompanying diagnostic models for TBI, research indicates that EEG data provides 

a measure of separability between normal and TBI subjects, and with potential to separate 

TBI from other neurological conditions, i.e., stroke. Other non-invasive, portable modalities 

may be combined with EEG to enhance the available information within the feature set for 

these types of analyses. Future work will investigate the biological basis of the relationship 

between selected features and TBI pathology, as well as algorithmic improvements to 

modeling neurological disorders, for classification purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart describing data processing and model training. (ICA: independent component 

analysis, PSD: power spectral density, SE: spectral entropy, PAC: phase-amplitude coupling, 

LDA: linear discriminant analysis, PCA: principal component analysis, FSFS: forward 

sequential feature selection, BSFS: backwards sequential feature selection).
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Fig. 2. 
Performance of models trained with features selected by linear discriminant analysis (LDA). 

The figure shows distribution of accuracies for 1000 iterations of training using randomly 

labeled data (orange), true labeled data (blue), and independent dataset (green line) for 

models based on features selected by LDA. Black and green dotted lines show ZeroR 

benchmarks for cross-validation (CV) and independent validation (IV) respectively. All 

models trained with true labeled data performed significantly better than randomly labeled 

data at 10−10 confidence interval in 10-fold CV, except for SVM fine Gaussian models (two 

sample K-S test). (SVM: support vector machine, KNN: K-nearest neighbors).
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Fig. 3. 
Comparison of performance of models for classifying patients with TBI history from normal 

subjects. (a) and (b) show boxplots of accuracy of models trained with features selected 

by different methods. Accuracy was evaluated with 10-fold CV and independent dataset 

respectively. Models trained with PCA selected features performed worst in both 10-fold CV 

and independent validation, while those trained with features selected by LDA performed 

best. Models trained with features selected by Statistics performed inferior to those with 

LDA in CV, however, their performance was comparable with LDA models when used to 

classify independent dataset. (c) and (d) compare the accuracy of models trained with input 

features including demographic information and those without demographic information 

(Demo: demographic). The majority models with demographic inputs appear to perform 

better than their counterparts. (e) and (f) compare the performance of models trained with 

features generated from artifact removed clean EEG data versus those from raw EEG. 

Though variability is present, most models trained with raw data performed slightly better 

than the corresponding clean data in CV. And performance of models from raw data was 

comparable with those from clean data for predicting independent dataset. Each line in (c) 

to (f) represents each algorithm. Dark lines in (c) and (e) indicate significant difference 

in two sample K-S test at 10−10 significance level. (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 

0.001, One way ANOVA and post-hoc Tukey test in (a) and (b), Signed-rank test in (c) 

to (f).) (CV: cross-validation, Stats: statistics, LDA: linear discriminant analysis, FSFS: 

forward sequential feature selection, PCA: principal component analysis, BSFS: backwards 

sequential feature selection.).
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Fig. 4. 
Comparison of performance of models for 3-class classification. (a) and (b) show boxplots 

of accuracy of models trained with features selected by different methods for classifying 

patients with TBI and stroke history and normal subjects. Accuracy was evaluated with 10-

fold CV and independent dataset respectively. Models trained with BSFS and LDA selected 

features performed best in 10-fold CV. In IV, models trained with features selected by LDA, 

statistics, and FSFS showed comparable performance. (c) and (d) compare the accuracy of 

models trained with input features including demographic information and those without 

demographic information (Demo: demographic). The majority models with demographic 

inputs appear to perform better than their counterparts. (e) and (f) compare the performance 

of models trained with features generated from artifact removed clean EEG data versus those 

from raw EEG. The majority models built upon clean data performed significantly better 

than raw data. (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, One way ANOVA and post-hoc 

Tukey test in (a) and (b).) (CV: cross-validation, Stats: statistics, LDA: linear discriminant 

analysis, FSFS: forward sequential feature selection, PCA: principal component analysis, 

BSFS: backwards sequential feature selection).
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Fig. 5. 
Relationship between IV and CV accuracies for two-class (a) and three-class (b) 

classification. The respective ZeroR benchmarks for CV and IV are shown as black lines. 

(CV: cross-validation, IV: independent validation, LDA: linear discriminant analysis, FSFS: 

forward sequential feature selection, PCA: principal component analysis, Stats: statistics, 

BSFS: backwards sequential feature selection.).
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Fig. 6. 
Changes in clean EEG features. (a) shows the fraction of features selected by statistics, 

LDA, and FSFS out of total number of features in each type of features (i.e., 171 coherence 

and 19 relative PSD features in each frequency band) without consideration of channels for 

2-class classification. (b) shows the fraction of selected features for 3-class classification. 

(c) shows the median z score for each type of features in normal, TBI and stroke subjects 

respectively. (d) shows the broadband coherence change from normal to TBI. Main panel 

shows the median z score of coherence coefficients of all channel pairs. Inset demonstrates 

the channel pairs with median z score higher than 0.5 or lower than −0.5. (e) shows the 

topographic map of relative PSD based on z scores. (f) indicates the z score of stroke 

broadband coherence to TBI. Inset shows the channel pairs with median z score higher 

than 0.5 or lower than −0.5. (g) shows the topographic map of relative PSD z score of 
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stroke subjects to TBI. (LDA: linear discriminant analysis, FSFS: forward sequential feature 

selection, Stats: statistics, PAC: phase-amplitude coupling, PSD: power spectral density).
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TABLE I

Demographic Information of Normal, TBI and Stroke Subjects. P-Values Calculated With Chi-Square (Sex) or 

One Way ANOVA and Post-Hoc Tukey Test (Age and Medication). No Statistics Were Done on Age Range.

Training Dataset

Normal (n=79) TBI (n=98) Stroke (n=115) p value (normal 
vs. TBI)

p value (normal 
vs. stroke)

p value (TBI vs. 
stroke)

Sex (M/F/unknown) 29/47/3 74/20/4 62/47/6 p<0.000l p<0.000l p<0.000l

Age (n=unknown) 47.6±18.7 (n=2) 42.7±16.7 (n=l) 59.7±9.7 (n=l) p=0.08 p<0.000l p<0.000l

Age range 2.9–85 12–80 33–74

Medication 1.4±1.9 1.4±2.1 1.5±2 p=0.96 p=0.89 p=0.98

Independent Validation Dataset

Normal (n=26) TBI (n=44) Stroke (n=50) p value (normal 
vs. TBI)

p value (normal 
vs. stroke)

p value (TBI vs. 
stroke)

Sex (M/F/unknown) 8/18/0 34/8/2 26/23/1 p<0.001 p<0.001 p<0.001

Age (n=unknown) 53.1±18.4 41.8+16.1 59.3+12.1 p<0.01 p=0.21 p<0.000l

Age range 19–81 18–79 5–73

Medication 0.6±0.9 1.5±2 1.1±2 p=0.08 p=0.52 p=0.41
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