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Abstract

Systemic autoimmune rheumatic diseases (SARDs) exhibit extensive heterogeneity in clinical 

presentation, disease course, and treatment response. Therefore, precision medicine – whereby 

treatment is tailored according to the underlying pathogenic mechanisms of an individual patient 

at a specific time – represents the ‘holy grail’ in SARD clinical care. Current strategies include 

treat-to-target therapies and autoantibody testing for patient stratification; however, these are 

far from optimal. Recent innovations in high-throughput “omic” technologies are now enabling 

comprehensive profiling at multiple levels, helping to identify subgroups of patients who may 

taper off potentially toxic medications or better respond to current molecular targeted therapies. 

Such advances may help to optimize outcomes and identify new pathways for treatment, but 

there are many challenges along the path towards clinical translation. In this review, we discuss 

recent efforts to dissect cellular and molecular heterogeneity across multiple SARDs and future 

directions for implementing stratification approaches for SARD treatment in the clinic.

Introduction

Systemic autoimmune rheumatic diseases (SARDs) are characterized by dysregulated 

immunity and inflammatory responses, resulting in damage and destruction to joints, 

connective tissues, skin, blood elements, and other target organs. Patients with SARDs are 

often initially treated with generalized immunosuppressive treatment regimens associated 

with considerable toxicity and side effects1. If their condition does not adequately respond 

to these treatments, targeted immunotherapies or biologic disease-modifying antirheumatic 

drugs (bDMARDs) are often used. No validated predictive biomarkers of treatment response 

exist, and clinical decisions are made based on symptoms, treatment guidelines, provider 

experience, and medication access. As a result, treatment responses to bDMARDs vary 

considerably and are often suboptimal2. In addition, no FDA-approved bDMARDs exist 

for some SARDs, such as primary Sjögren’s syndrome (pSS), partly due to disease 
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heterogeneity complicating clinical trials and care. Therefore, stratification of patients based 

on the underlying disease mechanisms may be necessary to identify novel therapeutic 

targets, design effective clinical trials, and select the optimal therapeutic interventions.

Unlike traditional clinical care, precision medicine tailors targeted therapies to the molecular 

characteristics of individual patients. Molecularly-informed treatment approaches are 

already used to select effective treatments for cancer patients according to tumor-specific 

genomic markers3. For example, solid tumor patients with neurotrophic tyrosine receptor 

kinase (NTRK) gene fusions can be treated with tropomyosin receptor kinase inhibitors 

– such as entrectinib and larotrectinib – independent of cancer type4. Through advances 

within the rheumatology field, genetic analyses have enabled a deeper understanding of the 

mechanisms of monogenic autoinflammatory diseases (characterized by dysregulated innate 

immunity), allowing for molecular diagnosis and the use of targeted therapies, such as IL-1 

receptor antagonists for inflammasome-mediated autoinflammatory diseases5.

The use of precision medicine for SARDs has been more challenging, as SARDs are 

polygenic and involve a complex interplay between genetic and environmental factors. 

However, some aspects of precision medicine are currently used in rheumatology to 

guide treatment and monitor disease activity. As a long-standing example, in gout 

patients, medication doses are titrated until patients achieve a serum urate level less 

than 6mg/dl to limit toxicities while optimizing treatment6. In SARDs, including pSS, 

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), 

and anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), testing for 

autoantibodies (those directed against self-proteins, signifying autoimmunity) is often used 

as one component to aid diagnosis or for patient stratification. For example, the presence of 

antibodies against citrullinated peptides is associated with extra-articular manifestations of 

RA and helps guide treatment decisions7, while positivity for antibodies against nuclear 

proteins or anti-double-stranded DNA is used to determine eligibility for belimumab 

treatment in SLE8,9. Laboratory testing of autoantibodies and other serological markers, 

such as complement, complement split products, and panels of soluble mediators, is also 

used to measure SLE disease activity and flare10. Furthermore, molecular stratification in 

rheumatology clinical trials has already shown some benefits. In a recently published phase 

II trial of iberdomide (whose targets include the transcription factor Aiolos) in moderate-to-

severe SLE, prespecified stratification analyses demonstrated a higher response in patients 

with elevated Aiolos or type I IFN gene signatures at baseline11. Despite many advances, the 

implementation of precision medicine in SARDs is still in its infancy.

Recently, technological advances in molecular characterization and computational biology 

approaches (Box 1) have allowed for the identification of patient subgroups within each 

SARD (Supplementary Table 1), suggesting that diverse molecular pathways contribute 

to disease pathogenesis. Therefore, as in cancer and autoinflammatory diseases, tailoring 

treatments to the underlying molecular pathways of each disease using precision medicine is 

a promising approach to treating SARDs. In this review, we discuss recent studies dissecting 

the molecular heterogeneity of SARDs; we also consider the promise and the challenges of 

translating these findings into improved outcomes and precision clinical care.
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Patient stratification in rheumatologic disease

Rheumatoid arthritis (RA)

RA is a chronic joint disease with synovial inflammation resulting in joint damage and 

disability. Several studies have identified peripheral blood biomarkers for RA12. However, 

molecular signatures in the synovial tissue may not be reflected in the peripheral blood13; 

therefore, recent studies have focused on deciphering heterogeneity within the synovium. 

A pivotal study in 2014 used synovial gene expression to identify four RA patient clusters 

with lymphoid, myeloid, low inflammatory, or fibroid gene signatures14 and since then, 

similar patient clusters have been observed using RNA sequencing15. Recent studies have 

expanded on these findings in treatment-naive patients with RA, identifying three patient 

clusters: “lympho-myeloid,” with abundant B cells and monocytes/macrophages, “diffuse-

myeloid”, with predominantly monocytes/macrophages and low numbers of B cells, and 

“pauci-immune”, with elevated fibroblasts and low levels of inflammation16,17. Notably, 

observational studies suggest that these synovial phenotypes may predict response to 

treatment, as a myeloid signature is associated with response to TNFα inhibition14, while 

the pauci-immune signature is associated with inadequate response to TNFα inhibition18.

Approximately half of RA patients have low levels or a lack of CD20+ B cells in the 

synovium14, consistent with the heterogeneous response to the anti-CD20 monoclonal 

antibody rituximab in RA patients19. In the first biopsy-driven multi-center clinical trial 

in RA (R4RA), patients classified as CD20 B cell-poor by RNA sequencing of synovial 

biopsies exhibited a better treatment response to the IL-6 receptor inhibitor tocilizumab 

compared to rituximab20. Tocilizumab and rituximab were similarly efficacious in B cell-

high patients20. Although further validation is necessary, these data suggest that synovial 

immune signatures may be able to predict clinical responses and, in the near future, guide 

treatment decisions in RA.

Recent single-cell analyses have focused on defining novel disease-associated cell subsets 

within the inflamed synovium of RA patients to identify new molecular pathways, 

biomarkers, and therapeutic targets, as previously reviewed21,22. For example, single-cell 

RNA-sequencing analyses identified an expanded population of Thy1+ fibroblasts in the 

sublining of RA synovium regulated by Notch signaling23–26. The synovial sublining 

fibroblasts express chemokines and cytokines, such as IL-6, and induce inflammation 

with minimal effects on bone and cartilage destruction25,27. Furthermore, expansion of a 

novel cell type that shares molecular features with synovial sublining fibroblasts, termed 

pre-inflammatory mesenchymal (PRIME) cells, is observed in the blood one week prior to 

RA flare, following activation of B cells28. Peripheral PRIME cells decrease during disease 

flare, suggesting that PRIME cells migrate to the synovium, where they differentiate into 

sublining fibroblasts and contribute to disease pathogenesis28.

Unique populations of peripheral CD4+ T cells have also been demonstrated in RA synovial 

tissue. In seropositive RA, a large proportion of synovial CD4+ T cells express PD-1, IL-21, 

and CXCL13, consistent with a follicular helper T cell (Tfh) phenotype and suggesting a 

role in B cell responses and antibody production29. However, unlike Tfh cells, the PD-1+ 

cells in RA synovial tissue, termed peripheral helper T cells (Tph), are primarily CXCR5-
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negative and express chemokine receptors (CCR5 and CCR2) that induce migration to 

inflamed tissues29. Therefore, Tph cells may promote ectopic lymphoid structure formation 

and autoantibody production within the synovium. Taken together, these studies have 

identified novel pathogenic subsets within the inflamed tissue of RA. Expanding research 

on these unique cell subsets and determining whether they are differentially expressed in 

synovial patient clusters may help define predictive biomarkers and tailor therapies for RA 

patients.

Psoriatic arthritis (PsA)

Psoriatic arthritis (PsA) is a common component of the psoriasis spectrum disorders, 

occurring in up to 30% of psoriasis patients. PsA can affect the axial skeleton, peripheral 

joints, and entheses30. Recent advances have established the role of Th1 and Th17 cells 

and their associated cytokines – such as TNFα, IL-12, IL-23, and IL-17 – in PsA 

pathogenesis31. This in turn has resulted in the approval of several targeted therapeutics for 

PsA, including TNF inhibitors and bDMARDs targeting IL-12 and IL-23 (ustekinumab), 

IL-23 (guselkumab, risankizumab) and IL-17 (ixekizumab, secukinumab)32. However, 

treatment decisions are challenging given the broad array of approved therapeutics and 

the scarcity of predictive molecular biomarkers. In addition, treatment responses can differ 

between the skin and joints. For example, while approximately 50% of PsA patients achieve 

75% improvement in psoriasis following treatment with IL-23 or IL-17 inhibitors, the same 

percentage only achieve a 20% improvement in joint disease33,34. This may reflect distinct 

gene expression patterns in the skin and synovium, as both IL-17 and IL-23 gene signatures 

are elevated in the skin compared to the synovium35,36. Synovial expression of IL-23 is 

also dependent on synovial inflammation and histological features, which may contribute 

to the heterogeneous response in joint disease following treatment with inhibitors of the 

IL-17–IL-23 axis36. Therefore, defining predictive biomarkers of treatment response that 

reflect heterogeneity in both the skin and joint of PsA patients is imperative to help optimize 

treatment decisions.

Genetic, transcriptomic, proteomic, and epigenomic approaches have identified potential 

molecular biomarkers to guide therapy in PsA, as extensively reviewed elsewhere32,37. 

In addition, T cell phenotypes have emerged as a potential tool to predict response to 

approved bDMARDs. Based on flow cytometry analysis of peripheral blood, Miyagawa 

et al. demonstrated that PsA could be stratified into four distinct subtypes based T cell 

phenotyping, namely activated Th1 cell-predominant, activated Th17 cell-predominant, Th1/

Th17-high, and Th1/Th17-low38. In a proof-of-concept study, the same group stratified 

bDMARD treatment based on these T cell phenotypes, with ustekinumab administered 

to the activated Th1 cell-predominant patients, secukinumab to the activated Th17 cell-

predominant patients, secukinumab or TNFα inhibitor to the Th1/Th17-high patients, and 

TNFα inhibitor to the Th1/Th17-low patients38. After 6 months of treatment, a higher 

proportion of patients who received bDMARDs according to T cell phenotype achieved 

low disease activity in the skin and joints compared to patients who received bDMARDs 

based on the 2015 European Alliance of Associations for Rheumatology (EULAR) 

recommendations38. Although these findings need to be validated in larger, randomized 
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studies, stratifying patients with PsA based on helper T cell profiles may have potential for 

precision medicine.

Systemic lupus erythematosus (SLE)

SLE is a complex, multi-organ autoimmune disease marked by pathogenic autoantibodies 

and chronic inflammation. Early studies demonstrated that approximately half of SLE 

patients have stable, elevated levels of type I IFN causing dysregulated expression of 

IFN genes, which correlates with disease activity, specific clinical manifestations, and the 

presence of autoantibodies, which all points to type I IFN as a potential therapeutic target39. 

Indeed, anifrolumab, a monoclonal antibody against type I IFN receptor subunit 1, reduces 

disease activity and recently received FDA approval for treatment of adults with moderate 

to severe SLE following the phase II MUSE trial and phase III TULIP-1 and −2 trials40–42. 

However, only about 50% of patients responded to anifrolumab in the TULIP-2 trial40. In 

addition, although a phase IIb clinical trial demonstrated greater efficacy of anifrolumab 

in patients with high IFN gene signatures41, the phase III trial showed a similar treatment 

response in patients with high and low IFN gene signatures40. These nuanced data highlight 

the need for additional stratification approaches to identify predictive molecular signatures 

of drug response, as well as additional novel therapeutic targets in SLE.

Several studies have molecularly stratified SLE patients into more homogenous groups 

based solely on transcriptomics43–49, epigenomics50–52, serological profiles53–56, or cellular 

phenotyping57 approaches. In a longitudinal study, Banchereau et al. profiled the blood 

transcriptome of pediatric SLE patients, revealing seven patient subgroups based on 

different immune signatures – including type I IFN, neutrophils and myeloid cells, and 

plasmablasts – that correlated with disease activity 45. Using the same pediatric data45 and 

an additional adult SLE patient cohort, Toro-Dominguez et al. selected genes that correlated 

with disease activity to cluster patients, identifying three disease clusters characterized by 

a lymphocyte or neutrophil signature46. Furthermore, the associated drug-induced gene 

expression signatures differed between the lymphocyte- and neutrophil-driven clusters, 

suggesting that the clusters respond differently to treatments58. In another study of adult 

SLE patients, blood transcriptome profiles identified different subgroups of SLE based on 

disease activity with different molecular pathways, including immune activation, oxidative 

phosphorylation, and cell metabolism47. Notably, neutrophil signatures were associated with 

active nephritis in all three studies45–47.

Multiplex analysis of 10 serum cytokines and chemokines also revealed distinct groups 

of SLE patients56. Patients with active SLE were characterized mainly by elevated SLE-

associated cytokines, such as IFNα and BlyS, or CXCL10 and CXCL13, while patients 

with inactive SLE predominantly expressed low levels of these cytokines56. In addition, 

DNA methylation patterns are variable in SLE patients and correlate with disease activity50, 

and changes in DNA methylation of naïve CD4+ T cells are associated with clinical 

manifestations of SLE51,52. Immune cell phenotyping of juvenile-onset SLE patients also 

revealed subsets of patients with distinct immune cell profiles, with significant differences in 

CD8 T cell phenotypes associated with disease activity57.
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A recent cross-sectional analysis integrated gene expression modules, autoantibody 

specificities, soluble mediator levels, and clinical data with unsupervised machine learning 

to identify seven SLE patient clusters with distinct molecular pathways59. Clinical features 

were similar across the clusters, suggesting that different mechanisms may contribute 

to similar clinical manifestations59. Three of the clusters had elevated IFN signatures, 

consistent with previous studies45. In a separate study, single-cell RNA sequencing of 

peripheral blood mononuclear cells from pediatric SLE patients identified eight cell 

subgroups that contributed to this IFN signature, including subpopulations of CD4+ and 

CD8+ T cells, conventional and plasmacytoid dendritic cells, monocytes, NK cells, and 

plasma cells60. Hierarchical clustering of these cell subgroups identified six patient clusters 

and demonstrated that expansion of these cell groups correlated with increased disease 

activity60.

In addition, patients with lupus nephritis (LN; a complication of SLE) exhibit an elevated 

IFN signature in most active leukocytes as well as keratinocytes and tubular cells from 

skin and renal biopsies, and an elevated IFN signature in tubular cells is associated with 

non-response to treatment61,62. Of note, a recent study from the Accelerating Medicines 

Partnership RA/SLE Network demonstrated that the majority of patients with high urinary 

expression of IFNγ-inducible chemokines have the most aggressive form of LN (known as 

proliferative LN)63. However, a subset of patients with proliferative disease clustered with 

those with non-proliferative disease, suggesting that stratifying LN patients by chemokine 

expression may better define classes of LN with similar molecular pathways compared with 

the current histology-based classification system63. In addition, the same group found that 

reduced urinary IL-16 levels are associated with response to treatment in LN patients64. 

Together, these studies provide a rationale for molecular stratification approaches for 

defining classes and treatment responses in LN.

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)

AAV is characterized by inflammation within, and eventual destruction of, small and 

medium-sized blood vessels. ANCAs are detected in most AAV patients, most commonly 

targeting myeloperoxidase (MPO) and proteinase-3 (PR3). AAV is traditionally divided into 

three disease groups – granulomatosis with polyangiitis (GPA), microscopic polyangiitis 

(MPA), and eosinophilic granulomatosis with polyangiitis (EGPA) – based on clinical and 

histological features65. Specifically, GPA causes a medium and small vessel vasculitis that 

can be severe, with pulmonary, renal, and other vascular involvement. Up to 90% of severe 

GPA patients exhibit cytoplasmic ANCA staining associated with anti-PR3 antibodies66. 

In contrast, MPA is characterized by necrotizing vasculitis of small and medium blood 

vessels without granulomatous inflammation, often with less severe renal involvement, and 

perinuclear ANCA staining, associated with anti-MPO antibodies66.

To detect additional biomarkers for the treatment of AAV, McKinney et al. genetically 

profiled purified leukocytes isolated from GPA and MPA AAV patients67. CD8 T cell gene 

expression profiles divided AAV patients into two subgroups that predicted prognosis67. 

The poor prognosis group exhibited a genetic signature enriched for genes involved in the 

IL-7R pathway, TCR signaling, and genes expressed by memory T cells67. Furthermore, a 
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CD8 T cell exhaustion gene expression signature is associated with a better prognosis in 

AAV patients68. Together, these studies suggest that CD8+ memory T cells may contribute 

to disease severity in a subset of AAV and that targeting this pathway may be an effective 

treatment. In addition, patients with PR3-ANCA positive and MPO-ANCA positive AAV 

spanned both transcriptional clusters67,68, indicating further molecular heterogeneity within 

patients with the same ANCA specificity.

In 2012, a genome-wide association study (GWAS) of patients with GPA and MPA found 

that ANCA specificity distinguished two distinct disease subsets, independent of clinical 

classification70. Specifically, single nucleotide polymorphisms in the human leukocyte 

antigen (HLA)-DPB1 region and genes encoding PR3 (PRTN3) and α1-antitrypsin 

(SERPINA1) were associated with presence of ANCAs specific for PR3 (PR3-ANCA 

positive AAV), while SNPs in the HLA-DQ region were associated with presence of 

ANCAs specific for MPO (MPO-ANCA positive AAV)70. ANCA specificity may also 

reveal subsets of EGPA patients with different disease mechanisms and responses to 

treatments69. Therefore, PR3- and MPO-ANCA positive AAV may represent distinct disease 

entities with different disease mechanisms and responses to treatment. However, although 

post hoc analyses of clinical trials found that patients with PR3-ANCA positive AAV 

were more likely to respond to rituximab compared to cyclophosphamide71,72 and were 

at increased risk of relapse following treatment with mycophenolate mofetil compared 

to cyclophosphamide73, neither study showed evidence that treatment effects differed by 

ANCA subtype71,73. Therefore, prospective studies are needed to determine the value of 

ANCAs as predictive biomarkers of treatment response.

Systemic sclerosis (SSc)

SSc is a connective tissue disease resulting in progressive fibrosis and vascular 

abnormalities. The hallmark symptom of SSc is skin fibrosis; however, fibrosis can occur in 

multiple organs, such as the lung, heart, and kidney, which determines clinical outcome74. 

Historically, SSc is clinically classified based on the extent of skin fibrosis — as limited 

cutaneous SSc (lcSSc) if fibrosis is limited to the fingers, distal extremities and face, or as 

diffuse cutaneous SSc (dcSSc) if fibrosis extends to the trunk and proximal extremities75,76. 

Furthermore, the classical SSc-specific autoantibodies are differentially associated with 

major clinical subsets, organ manifestations, and overall prognosis, helping in the diagnosis 

and classification of SSc patients. Specifically, anti-centromere autoantibodies are associated 

with lcSSc and usually better prognosis, while anti-topoisomerase autoantibodies are 

associated with dcSSc, interstitial lung disease, organ fibrosis, and worse prognosis77. Anti-

RNA polymerase III autoantibodies are also associated with dcSSc, as well as renal crisis 

and earlier mortality78. However, the disease course and major organ manifestations are 

variable within each subset76,79,80, indicating that classification of SSc based on cutaneous 

involvement alone does not fully capture the heterogeneity of the disease.

Compared to healthy controls, dcSSc patients express distinct inflammatory and fibrotic 

gene expression signatures in both lesional and non-lesional skin biopsies81,82. Extending 

on these findings, Milano et al. found that SSc patients could be divided into four subsets 

based on gene expression signatures83. One subset, characterized by expression of cell 
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proliferation genes and labelled “diffuse-proliferation” or “fibroproliferative” was solely 

comprised of dcSSc patients — while another group was termed “limited” as it consisted 

of only lcSSc patients83. However, dcSSc and lcSSc patients were not found exclusively in 

these two groups; they were also found within molecular subgroups displayingincreased 

expression of genes associated with innate and adaptive immune responses (termed 

“inflammatory” subgroup) or with similar gene expression patterns to healthy controls 

(termed “normal-like”)83. These subsets have been confirmed in additional cohorts and 

affected organs84–90. Together, these studies suggest that distinct molecular signaling 

pathways can lead to SSc, which is not reflected by clinical classification.

Further analysis into the molecular pathways underlying these subsets demonstrated that 

the fibroproliferative subset was strongly associated with platelet-derived growth factor 

and cell proliferation gene signatures86,89, while the inflammatory subset was enriched for 

IFN response, B cell receptor signaling, monocyte chemotaxis, M2 macrophage activation, 

adaptive immune response, and NFκB-activating innate immune response pathways86,89. 

Interestingly, consensus analysis found that extracellular matrix remodeling and TCRβ gene 

expression modules were conserved within both the inflammatory and the fibroproliferative 

subsets89. These findings may indicate that the two subsets have different mechanisms that 

converge on the same outcome or that the subsets are dynamic and interconnected. However, 

no statistically significant differences exist in disease duration between the inflammatory 

and fibroproliferative subsets83, and longitudinal analyses have demonstrated that these 

subsets are stable for at least 12 months84.

Several studies have suggested the utility of these four molecular signatures in the targeted 

treatment of SSc. Patients in the inflammatory subgroup are more likely to respond to 

mycophenolate mofetil and abatacept85,91,92, and exhibited worsening skin and lung fibrosis 

following dasatinib93. In addition, a small study of two patients in the fibroproliferative 

subgroup demonstrated an imatinib mesylate-responsive signature94. To allow stratification 

of SSc patients in the clinic, Franks et al. developed a machine-learning classifier based 

on the four previously-defined molecular signatures that could identify molecular subsets 

for individual patients with an accuracy of 85.4%95. However, more studies are needed 

to determine whether this classifier can accurately identify patients likely to respond to a 

specific therapy.

Primary Sjögren’s Syndrome (pSS)

pSS is characterized by lymphocytic infiltration of the exocrine glands, primarily the 

lacrimal and salivary glands, resulting in severe and persistent dryness of the mouth and 

eyes. Approximately half of pSS patients also experience extraglandular manifestations, 

such as arthritis, lung disease, and lymphoma96. Elevated type I and type II IFN signatures 

have been demonstrated in the blood and salivary glands of subsets of pSS patients97–102, 

which is associated with increased prevalence and titers of anti-Ro/SSA and anti-La/SSB 

autoantibodies and higher disease activity100,103. Bodewes et al. identified three subgroups 

of pSS patients based on three modules of systemic (measured in whole blood) IFN genes 

previously identified in SLE: no IFN activation, only type I IFN activation, and both type 

I and type II IFN activation104. Similarly, the salivary gland patterns of IFN expression are 
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heterogeneous between pSS patients, with patients stratifying as type I IFN-predominant, 

type II IFN-predominant, or mixed type I and type II IFN105.

To gain a more comprehensive understanding of pSS heterogeneity, recent studies have 

focused on broader panels of whole blood gene expression signatures, other soluble 

mediator levels, and autoantibodies to profile pSS patients. Clustering of previously 

identified transcriptional modules revealed three pSS patient clusters that differed in 

the expression of IFN and inflammation modular network signatures106. However, these 

clusters did not differ in demographics or clinical characteristics, including the prevalence 

of autoantibodies106. Using a similar approach, Soret et al. identified 4 groups of pSS 

patients with differing type I and type II IFN responses107. Multi-omic characterization of 

these clusters demonstrated different patterns of immune dysregulation, including B cell 

activation or neutrophil infiltration. Therefore, although patient clusters have not been used 

in clinical trials of pSS, patient subsetting may be of benefit as more therapeutic agents are 

investigated.

Challenges for implementing precision medicine in SARDs

Several challenges to the implementation of current and evolving findings in clinical care 

are shared across the SARDs. An unmet need in rheumatology is for more precise measures 

of treatment response in clinical trials and practice. Currently, due to the heterogeneity and 

multisystem manifestations of SARDs, disease improvement is measured using composite 

indices of multiple clinical parameters. Determining the best treatment outcome measure 

is crucial to the success of a clinical trial, as evident by the phase III TULIP-1 and −2 

clinical trials of anifrolumab in SLE. The first trial, TULIP-1, failed to meet its primary 

endpoint as measured by the SLE Responder Index but met some secondary endpoints, 

including the BILAG-Based Composite Lupus Assessment (BICLA)42. Thus, in a second 

clinical trial, TULIP-2, the primary endpoint was changed to BICLA response, resulting 

in a significantly higher percentage of patients with a response compared to placebo40. 

However, all of the currently utilized measures of treatment response have several pitfalls, 

including limitations in the features they include, the inability to measure partial response, 

and inaccuracies in defining mild and moderate flares108. In addition, many of these systems 

are complex, require physician training, and may not be feasible in real-world clinical 

settings. Therefore, including molecular signatures that reflect the underlying mechanisms 

of disease activity may help improve clinical assessment tools for SARDs, resulting in more 

accurate measurements of treatment response and more meaningful endpoints for patients.

The majority of transcriptomic stratification studies in SARDs have used heterogeneous 

populations of cells from whole blood or peripheral blood mononuclear cells; however, 

gene expression differences may be due to the proportion of individual cell types sampled. 

Therefore, single-cell analyses may reveal additional and more accurate pathotypes and 

molecular signatures of disease, especially for lower abundance cell subsets. In addition, 

peripheral blood analyses may not reflect local inflammation and molecular heterogeneity 

within the tissues, as suggested in RA13. One approach has been to purify single populations 

of immune cells prior to transcriptome analysis44,67,68, demonstrating gene expression 

differences not observed in peripheral blood mononuclear cell analysis44. Another study 
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showed SLE heterogeneity at the single-cell level using single-cell RNA sequencing60, 

which identified novel cell populations that may be targeted therapeutically. Most recently, 

two studies combined single-cell RNA sequencing with genotype data to demonstrate cell 

type-specific gene expression in autoimmune diseases, including SLE109,110. Importantly, 

stratification of SLE patients based on the expression of genes differentially expressed in 

at least one cell type between SLE patients and controls revealed two patient clusters that 

differed in myeloid cell activation and expression of the IFN-induced protein IFITM3, as 

well as the presence of disease flare and anti-Smith antibodies (which are characteristic 

of SLE)110. Currently, there are practical limitations to the use of cell- and tissue-specific 

analyses in the clinic; however, these analyses will provide further important information 

on cell- and tissue-specific mechanisms within patient clusters, potentially identifying new 

biomarkers and therapeutic targets.

Overall, the disease course of SARDs is complex with a wide range of disease stages, 

including preclinical, active disease, disease flare, suppression, and remission, with 

potentially different underlying molecular mechanisms and signatures (Fig. 1). Most 

studies only analyze patients with active disease and severe symptoms. However, some 

studies have demonstrated relative stability of patient clusters for up to two years46,84,111, 

while others have found that standard-of-care treatments are associated with changes in 

transcriptomic profiles45,112,113. Therefore, more longitudinal studies incorporating multiple 

disease stages are required to understand how the molecular signatures change with disease 

progression, medication use or treatment sequencing, organ damage, and external triggers, 

such as infections or vaccination. Furthermore, these studies may also provide insights into 

preventing disease onset and flare.

The prevalence, clinical and serological manifestations, and outcomes of SARDs vary 

among racial groups114 and sex115, suggesting that the underlying disease mechanisms may 

also differ between these patients. Recent studies have found that SLE gene expression 

signatures differ significantly in self-identified African American, Native American, Asian, 

and European American patients113,116. However, race-based subgroups may still contain 

further genetic heterogeneity and differences in clinical outcomes according to race could 

likely reflect other factors beyond biologic ones. Therefore, caution is warranted when 

associating race and underlying biologic mechanisms. In addition, many stratification 

approaches focus exclusively on female and European ancestry cohorts, or use combined 

cohorts without considering race or sex effects. Therefore, studies need to be conducting on 

diverse cohorts so that study populations adequately represent clinic patients and are more 

widely generalizable.

Future Directions

Despite recent advances, much work remains to realize the potential of precision medicine 

in the rheumatology clinic. Although recent studies have demonstrated the feasibility of 

identifying relatively homogenous molecular subsets within SARDs and the clinical benefit 

of stratifying patients prior to treatment20 (Fig. 2, Supplementary Table 1), no standard 

method to stratify patients currently exists. Therefore, studies within and across diseases 

must be integrated to identify common underlying molecular signatures that can most 
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effectively subtype patients. Furthermore, additional heterogeneity within the identified 

molecular clusters may need to be resolved. Dissecting this heterogeneity will require 

deeper layers of individual molecular profiling, incorporating genetic risk, cell-specific 

transcriptional signatures, epigenomics, mass spectrometry, tissue and in vitro molecular 

signatures, and environmental factors (Box 1). These evolving technologies are especially 

important for SARDs such as pSS, in which there are no approved bDMARDs, and AAV, in 

which extensive “omic” approaches have not yet been applied.

Multiomics approaches in biofluids such as blood, urine, synovial fluid, and saliva, or in the 

target tissue requires implementing artificial intelligence and machine learning to uncover 

signals or biomarkers that stratify patients by predicted treatment response, potential for 

adverse events, or disease course. These molecular biomarkers or variables would need to 

be developed into specific algorithms to stratify patients and then validated in additional 

studies and cohorts. Longitudinal studies would also need to be performed to evaluate the 

impact of therapeutics on individual molecular signatures or patient clusters. In addition, to 

be practical for use in the clinic, any algorithm should be refined to be fast, inexpensive, 

reliable, and accessible from a relevant and practical tissue source. Further investigation into 

the application of novel individualized patient treatment response screening assays using 

peripheral blood or ex-vivo tissue explants117 or pluripotent stem cell organoid cultures118, 

are also warranted.

Some features are shared across different SARDs, including affected tissues, presence of 

autoantibodies, susceptibility genes (such as the HLA region), molecular signatures, and 

type I IFN signatures119 (Fig. 2). In addition, therapies targeting similar pathways are 

effective for multiple SARDs, suggesting that these diseases share pathogenic mechanisms. 

In a recent study from the PRECISE systemic autoimmune disease consortium, stratification 

of patients with seven autoimmune diseases (including SLE, RA, SSc, and pSS) revealed 

four patient clusters with inflammatory, lymphoid, IFN, or healthy-like molecular signatures, 

based on transcriptome and methylome data111. Importantly, all disease groups were 

represented in each cluster, suggesting that stratification was independent of clinical 

diagnosis111. Similar findings have been observed using immune cell phenotypes120,121 

and soluble mediator profiles122,123. Together, these data demonstrate that SARDs share 

common molecular pathways; therefore, classifying these patients based on molecular 

signatures instead of clinical diagnosis may benefit treatment selection in the future. 

Further studies analyzing pathways across active SARD patients and meta- and cross-disease 

analyses spanning shared datasets are required to confirm and refine these shared molecular 

signatures.

Conclusion

While precision medicine is still in its infancy in rheumatic disease, advancements in 

molecular profiling technologies and stratification techniques gives hope for new therapeutic 

options and personalized treatments in SARDs. The discovery of cellular and molecular 

subgroups across SARDs provide meaningful explanations for the vast heterogeneity in 

rheumatic disease. Further clinical response trials and longitudinal outcomes studies using 

these identified subgroups may help determine the best stratification algorithms to optimize 
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treatments. In addition, larger, longitudinal studies incorporating multiple SARDs for deep 

molecular profiling are necessary to determine signature stability, overlap among the 

diseases, and more precise patient stratification for translation to clinical care. Finally, sound 

computational approaches that compare patient subgroup and drug-effect gene expression 

profiles could guide the repurposing of existing drugs124. In closing, we see promise in 

recent molecular stratification strategies to guide drug discovery and increase treatment 

effectiveness in rheumatology.
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Box 1.

Current and emerging approaches for molecular characterization of 
systemic autoimmune rheumatic disease patients

Current

• Autoantibodies

• Clinical Imaging

• Clinical lab testing: Complement levels and split products

• Soluble mediators: Cytokines, chemokines, and soluble receptors

• Transcriptomics: Molecular signatures

• Genetics: Disease associated variants

• Immunophenotyping: Flow cytometry

• Tissue histology

Emerging

• Genetics: Genetic load, polygenic risk scores, extended HLA haplotypes

• Transcriptomics: Cell-specific expression/signatures (scRNA-seq)

• Immunophenotyping: Single-cell proteomics (CyTOF), Proteogenomics 

(CITE-seq), Repertoire immunomics

• Perturbomics (Multi-omic evaluation after stimulation or other perturbation 

conditions)

• Spatial tissue analytics: Multiplex tissue imaging (CODEX, serial IHC)

• Imaging mass cytometry (Hyperion, IonPath)

• Epigenomics (sorted cell and single-cell): DNA methylation, histone 

modification, chromatin conformation (ATAC-seq), protein-DNA interactions 

(CUT&RUN)

• Mass spectroscopy (biofluid) and imaging mass spectrometry (tissue): 

Proteomics, metabolomics, lipidomics, and glycomics

• Environmental factors: Microbiomics, Exposomics
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Fig. 1. Molecular mechanisms and signatures may differ according to disease stages.
The disease course of systemic autoimmune rheumatic diseases is complex with various 

disease stages. In patients with a genetic predisposition, autoimmunity may be initiated 

following environmental triggers, such as viral infection, the microbiome, low vitamin D, 

and smoking. Patients experience a preclinical phase following autoimmunity initiation with 

soluble mediator and autoantibody (autoab) production but no clinical symptoms. As the 

disease progresses, patients experience periods of active disease, in which clinical features 

are present, and the patients are diagnosed. This stage is characterized by increases in the 

levels of autoantibodies and soluble mediators, as well as alterations in the soluble mediator 

profiles and epitope spreading. Active disease can be followed by periods of remission and 

disease flare, as well as disease suppression following treatment. Changes in levels or the 

profiles of soluble mediators and antibodies may occur in each of these disease phases, 

highlighting the need for longitudinal studies incorporating multiple disease stages.
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Fig. 2. Potential tailored treatment regimens based on recently identified molecular subgroups.
Systemic autoimmune rheumatic diseases (SARDs) share common features, including 

the dominant affected organs, presence of autoantibodies (autoabs), association with 

human leukocyte antigen (HLA) regions, and FDA-approved biologic disease-modifying 

antirheumatic drugs (bDMARDs). For some SARDs, molecular subgroups suggest the 

potential for precision use of these bDMARDs. (A) Patients with rheumatoid arthritis 

(RA) can be stratified according to B cell, myeloid cell, and fibroblast molecular synovial 

signatures. Patients with a myeloid cell signature respond well to TNF inhibition12, while 

those with low B cells respond better to the IL-6 receptor inhibitor tocilizumab than to 

B cell depletion with rituximab18 (which may be more effective in patients with a B cell 

signature). (B) Patients with psoriatic arthritis (PsA) can be stratified based on T cell 

phenotypes. A proof-of-concept study32 tailored treatments based on these T cell phenotypes 

– whereby patients with a Th1 cell predominant phenotype received the IL-12p40 inhibitor 

ustekinumab, those with a Th17 cell-predominant phenotype received the IL-17 inhibitor 

secukinumab, and those with a mixed phenotype received TNF inhibitors – and showed 

better outcomes compared to the current treatment recommendations. (C) Subsets of patients 

with systemic lupus erythematosus (SLE) with B cell/plasmablast, neutrophil, and IFN 

signatures have been identified. Both plasmablasts and neutrophils can contribute to the 

IFN signature via immune complex (IC) formation or uncleared neutrophil extracellular 

traps (NETs), respectively, suggesting that these patients may respond to the IFN receptor 

antagonist anifrolumab. Furthermore, patients with a plasmablast signature may respond 

to the BLyS inhibitor belimumab. (D) Patients with anti-neutrophil cytoplasmic antibody 

(ANCA)-associated vasculitis (AAV) differ in their ANCA specificity, which may be 

associated with differing responses to rituximab61,62. Patients with AAV who have poor 
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prognoses exhibit CD8 effector memory T cell gene expression profiles; however, the role of 

these cells in AAV is unknown. (E) Patients with systemic sclerosis (SSc) can be grouped 

according to the expression of cell proliferation, platelet-derived growth factor (PDGF), 

and fibrotic gene signatures or inflammatory gene signatures — suggesting the use of 

nintedanib (which inhibits the growth factor receptors FGFR, PDGFR, and VEGFR), or 

tocilizumab, respectively. (F) Although no FDA-approved bDMARDs exist for primary 

Sjögren’s syndrome (pSS), patients can be stratified based on the predominance of type I or 

type II IFN, suggesting that th
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