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Abstract

Singular value decomposition (SVD) of multiple sequence alignments (MSAs)

is an important and rigorous method to identify subgroups of sequences within

the MSA, and to extract consensus and covariance sequence features that

define the alignment and distinguish the subgroups. This information can be

correlated to structure, function, stability, and taxonomy. However, the mathe-

matics of SVD is unfamiliar to many in the field of protein science. Here, we

attempt to present an intuitive yet comprehensive description of SVD analysis

of MSAs. We begin by describing the underlying mathematics of SVD in a way

that is both rigorous and accessible. Next, we use SVD to analyze sequences

generated with a simplified model in which the extent of sequence conserva-

tion and covariance between different positions is controlled, to show how

conservation and covariance produce features in the decomposed coordinate

system. We then use SVD to analyze alignments of two protein families, the

homeodomain and the Ras superfamilies. Both families show clear evidence of

sequence clustering when projected into singular value space. We use k-means

clustering to group MSA sequences into specific clusters, show how the resi-

dues that distinguish these clusters can be identified, and show how these clus-

ters can be related to taxonomy and function. We end by providing a

description a set of Python scripts that can be used for SVD analysis of MSAs,

displaying results, and identifying and analyzing sequence clusters. These

scripts are freely available on GitHub.
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1 | INTRODUCTION

The multiple sequence alignment (MSA) is an essential
tool for representing the sequence features that define a
protein family, highlighting both similarities and differ-
ences among family members. These features contain

information on structure, function, stability, and taxon-
omy. There are several approaches to extract such infor-
mation from sequence alignments, including
construction of phylogenetic trees, determination of con-
sensus sequences, and analysis of covariance among resi-
dues at different positions using techniques such as direct
coupling analysis1–3 and sector analysis.4,5

Another technique to extract information on consen-
sus, covariance, and taxonomy from MSAs is singular
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value decomposition (SVD). SVD and its close relative,
principal component analysis (PCA), are mathematically
rigorous dimensionality reduction techniques that are
often presented in linear algebra courses (see
Appendix S1 for a comparison of SVD and PCA). These
techniques have become popular tools in the machine-
learning toolbox, and have been used in diverse areas
such as climate research6 and population genetics.7–10

In a pioneering study a quarter century ago, Caseri
et al. used SVD to analyze protein sequence align-
ments.11 In the intervening period, SVD has been
used to guide studies of specificity and stability in
protein sequences in a handful of studies,5,12 and has
been used to group aligned proteins based on substi-
tution matrix scoring.13 However, the mathematical
basis of dimensionality reduction techniques such as
SVD and PCA remain unfamiliar to many protein sci-
entists. As a result, the application of this powerful
technique to protein sequence analysis has been
underutilized.

Singular value decomposition of an MSA transforms
the sequences into a new coordinate system. This coordi-
nate system, which involves eigenvectors associated with
the MSA matrix, provides a much simpler representation
than the original sequence alignment. Although all of the
information from the MSA is preserved by SVD, it is con-
centrated along a relatively small number of coordinate
axes. Importantly, the coordinates of sequences in SVD
space are uncorrelated from one another, unlike the orig-
inal MSA. This new space can be used to depict
sequences, providing a quantitative view of sequence
space. Inspection of the sequences within this space often
reveals clusters that may reflect sequence phylogeny
and/or functional specialization. In addition, SVD can be
used to identify the individual residues that define phy-
logeny and specialization.

In this review, we describe the mathematics of SVD
as it applies to MSAs. Our goal is to be simple enough
to be intuitive, but rigorous enough to be implemented
by readers. After introducing the equations of SVD, we
analyze toy models to show how sequence conservation
and residue covariance project into singular coordinate
space. Next, we apply full SVD analysis to alignments
of homeodomain and Ras family GTPases, and show
how clustering in SVD space can be used to identify
sequence subfamilies within the MSA. We then present
a method for identifying the residues that define differ-
ent subfamilies. Next, we examine how sequence clus-
ters in SVD space relate to taxonomy, and show how
functional information can be mapped to sequence
clusters. We end with a brief description of a suite of
Python scripts for these analyses that is available on
GitHub.

2 | THE MATHEMATICS OF
SINGULAR VALUE
DECOMPOSITION AND
EIGENDECOMPOSITION

SVD is a mathematical technique that is applied to matri-
ces of numerical values. Although a MSA has the form of
a matrix (with m rows and ℓ columns, where m is the
number of sequences in the alignment and ℓ is the num-
ber of residues in each aligned sequence plus the number
of gaps to the alignment; Figure 1a), its elements are letters
corresponding to the 20 amino acids and a gap character.
To apply SVD to an MSA, these 21 letters must be con-
verted to numerical values that are distinct but carry equal
weight, to avoid making some residues more important
than others.

To assign residues numerical values of equal impor-
tance, each of the ℓ MSA positions is expanded to 20 sepa-
rate variables corresponding to each of the 20 residues.
Each variable takes a value of one if the residue occurs in a
particular sequence, and zero otherwise (Figure 1). This
binary or “one-hot” encoding scheme increases the number
of residue variables from ℓ to 20ℓ. In principle, gaps could
be included as a 21st variable, although doing so introduces
no new information, since the presence of a gap is implied
when each of the 20 non-gap residue variables has a value
of 0. Figure 1b shows this binary representation using m by
20 block matrices for each position (Pi at position i).

2.1 | Singular value decomposition of the
F-matrix

SVD factors the F matrix into a product of three matrices
according to the formula

F¼U ΣVT , ð1Þ

U is an m by m matrix of normalized* column vectors
u
*ðiÞ

, which we will refer to as “sequence eigenvectors”†
(Figure 2). VT is a 20ℓ by 20ℓ matrix of normalized row
vectors v

*ðiÞ
(the columns of matrix V), referred to as “res-

idue eigenvectors.” vectors v
*ðiÞ

(the columns of matrix
V ), referred to as “residue eigenvectors.” One important
feature of the decomposition is that U and VT are orthog-
onal matrices; thus, u

*ðiÞ
and v

*ðiÞ
are orthogonal. Σ is an

m by 20ℓ rectangular diagonal matrix with numbers σi,
referred to as “singular values,” along the main diagonal,

*Here, normalized means that the column vectors of U and V are of
unit length.
†The relationship to eigenvectors is described in the next section.

2 of 16 BAXTER-KOENIGS ET AL.



and zeros elsewhere (Figure 2). Note that there will be at
most min m, 20ℓð Þ singular values.‡

It is customary to scale the vectors u
*ðiÞ

and v
*ðiÞ

so that
they are of unit length, and to scale the σi values so that
Equation (1) is preserved. It is also customary to arrange
the entries in Σ in decreasing order along the diagonal,
and to rearrange the columns of U and rows of VT

accordingly. The largest σi value is referred to as the first
singular value, the next largest as the second singular
value, and so on. The associated singular vectors are simi-
larly named.

2.2 | Finding the singular value
decomposition through
eigendecomposition

Section 2.1 gives the form of SVD, but does not describe how
this decomposition is found. One way to find U, V , and Σ is
to multiply F and its transpose to form the product
C¼FFT and D¼FTF and then find the eigenvectors and
eigenvalues of these two products. As is demonstrated in
Appendix S1, these eigenvectors are equal to the columns of
U and V (and thus the rows of VT), and the eigenvalues
are equal to the squares of the singular values in Σ.

In addition to providing a route to calculating the
SVD of matrix F, the C and D matrices provide

complementary views of the sequences and residues of
the MSA. The elements of the C matrix count the number
of identities between pairs of sequences, and the ele-
ments of the D matrix count the number of pairs of resi-
dues of a particular type at two positions. The C and D
matrices are also the starting point for PCA.

3 | VISUALIZING SEQUENCES
AND RESIDUES IN SINGULAR
VALUE DECOMPOSITION SPACE

An advantage of concentrating the information in an MSA
into a handful of SVD coordinates is that sequences and
residues can be directly visualized in a low-dimensional
space. This contrasts with the starting MSA and F matrices,
which are distributed over too many dimensions to be visu-
alized. In this section, we will describe how to project MSA
sequences into SVD space, how to project homologous
sequences not in the MSA into SVD space, and how to pro-
ject specific residues into SVD space.

3.1 | Visualizing sequences from the
multiple sequence alignment in singular
value decomposition space

For a given sequence i from the MSA, the numerical
value associated with the kth singular coordinate is pro-
portional to the corresponding element in the sequence

(a) (b)

FIGURE 1 Matrix representation of a multiple sequence alignment. (a) A multiple sequence alignment (top) of m sequences of length

ℓ= 56 residues. The alignment can be thought of as a matrix of m rows and ℓ columns, where each matrix element is one of the 20 amino

acids (α) along with the gap residue. (b) A binary representation F of the MSA matrix, where each position is represented by an m by 20

block matrix P. Each column of the block matrix corresponds to one of the 20 amino acids at a given position. Each row in the block matrix

corresponds to a position in a particular sequence in the MSA, and contains a one in the column corresponding to the amino acid at that

position and zeros in all other columns. If a sequence i contains a gap at a particular position, row i of the corresponding block matrix

contains 20 zeros. F can be viewed as (i) a collection of m binary sequence row vectors s
*

i, each of length 20ℓ or (ii) a collection of 20ℓ

binary residue column vectors r
*
i, each of length m:

‡If the rank r of F is less than min m, 20ℓð Þ, there will only be r <
min m, 20ð Þ nonzero singular values.
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eigenvector, that is, u kð Þ. In other words, the u
*ðkÞ

vectors
give the coordinates of each MSA sequence in the kth sin-
gular dimension. Thus, plotting the elements of the first
few sequence eigenvectors provides a quantitative view of
sequence space.

The algebra that demonstrates this approach is given
in Appendix S2. The key result from this derivation the
following identity:

s
*

i � v*ðkÞ ¼ σku
kð Þ
i ð2Þ

Since the sequence vectors si
*

are binary vectors with
ones marking each residue, the dot product on the left
side of Equation (2) sums the elements of the residue
eigenvector v

*ðkÞ
corresponding to the residues in

sequence i. Since v
*ðkÞ

is normalized, this dot product can
be viewed as the projection of the sequence vector si

*

onto the residue eigenvector v
*ðkÞ

. Equation (2) says that
rather than taking this dot product for each sequence,
the projection can be directly read off as the i th element
of the kth sequence eigenvector ui

*ðkÞ
scaled by the corre-

sponding singular value σk. Thus, the sequences in the
MSA can be plotted in the first d dimensions of SVD
space simply by plotting the elements of σ1u

*ð1Þ

through σdu
*ðdÞ

.

3.2 | Visualizing sequences not in the
multiple sequence alignment in singular
value decomposition space

Sequences not in the MSA can also be projected into SVD
space, but they must first be aligned with the MSA. Once
aligned, the new sequence can be converted to binary
form and dotted with the residue eigenvectors of interest
in the same way that MSA sequences are projected:

t
* � v*ðkÞ ¼ σkτ

kð Þ ð3Þ

where t
*

is an aligned binary-encoded sequence and τ kð Þ

is the value of sequence t
*

along the kth coordinate. Such
projections are useful for identifying which cluster a new
extant sequence belongs to, or for examining designed
sequences such as consensus or ancestral sequences.

3.3 | Visualizing residues from the
multiple sequence alignment into singular
value decomposition space

Residue coordinates in SVD space are derived from the
elements of residue eigenvectors v

*ðkÞ
. Justification

(a) (b)

(c) (d)

FIGURE 2 Features of the matrices

in singular value decomposition. (a,b)

Sequence and residue eigenvector

matrices U and V, along with the ith

singular vector for each matrix. (c, d)

Singular value matrices. In (c), the

number of rows (sequences) is small

compared to the binary encoding of the

sequence length (20 times residues plus

gap positions in the MSA). In (d), the

number of rows (sequences) is large

compared to the binary sequence length.
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parallels the derivation in the previous section that con-
nected ui

*ðkÞ
to MSA sequences (Appendix S2). Briefly,

transposing Equation (1) and right-multiplying by
U gives

FTU ¼VΣT ð4Þ

Expansion of the matrix products in Equation (4)
(Figure S3B) leads to a set of 20ℓ equations of the form

ri
* � u*ðkÞ ¼ σkv

kð Þ
i ð5Þ

analogous to Equation (2). Due to the binary encoding of
the ri

*
residue vectors, the dot product on the left side of

Equation (5) sums the subset of elements from u
*ðkÞ

for
which the corresponding sequences contain the residue
represented by v kð Þ

i . Equation (5) says that this dot prod-
uct can be read off as the ith element of the kth residue
eigenvector, v kð Þ

i . Plotting the 20ℓ elements v kð Þ
i in the

first d dimensions of SVD space gives a residue-based pic-
ture of sequence space that complements that obtained
from plotting sequence coordinates σku

kð Þ
i .§

4 | SIMPLIFIED EXAMPLES OF
SEQUENCE BIAS AND SEQUENCE
COVARIANCE

In this section, we apply SVD to simple sequence models
that contain different amounts of sequence conservation
and covariance to explore how conservation and covari-
ance influence sequence and residue coordinates in SVD
space. In these models, we include just three positions
(analogous to a three-residue protein). At each position,
there are just two types of residues: A and B at position
1, C and D at position 2, and E and F at position 3.

4.1 | How sequence features determine
residue coordinates in singular value
decomposition space

In the first set of models (models I.ef and I.bf, Figure 3),
residues at different positions are independent of one
another. That is, the probabilities of having a pair of resi-
dues at two positions is the product of the marginal prob-
abilities of the two residues. In model I.ef (Figure 3, top),

all six residues have equal frequencies, corresponding to
residue probabilities of 0.5, pair probabilities of 0.25, and
three-residue sequence probabilities of 0.125. This leads
to a relatively flat residue count matrix D, reflecting uni-
form pair counts for residues at different positions. How-
ever, there are high (but equal) counts along the main
diagonal, and zeros adjacent to the diagonal which reflect
anticorrelation between residues at the same position.

Given that model I.ef has the largest entropy,¶ the
SVD would be expected to be rather featureless. Indeed,
residue positions v kð Þ

i along the first singular coordinate
are all the same for each of the six residues (Figure 3, top
right). However, there is considerable variation in coordi-
nates 2, 3, and 4, where pairs of residues have opposite
values. These variations result from anticorrelated resi-
due pairs at the same position (e.g., residues E and F at
position 3, which have opposite v 2ð Þ

i , Figure 3, top right).
In contrast to the equal-frequency model, the biased

frequency model (I.bf) shows considerable variation of
residue v 1ð Þ

i values along the first singular coordinate
(Figure 3, upper middle). These values correlate with the
frequency of each residue: A has the highest frequency
and has the largest v 1ð Þ value, whereas B has the lowest
frequency and the smallest v 1ð Þ value. Indeed, a plot of
v 1ð Þ
i values for model I.bf shows a roughly linear correla-
tion between v 1ð Þ

i and residue frequency (Figure 4a).
As with the equal frequency model, there is also vari-

ation in residue v kð Þ
i values along higher singular coordi-

nates (k≥ 2; Figure 3, bottom right). Again, this variation
results from pairs of residues at the same position having
opposite v kð Þ

i values, reflecting anticorrelation. Another
general feature of residue SVD plots (i.e., v kð Þ

i versus
v j≠ kð Þ
i ) is that there is no correlation between values; this
also holds for sequence plots (i.e., u kð Þ

i vs. u j≠ kð Þ
i ). A lin-

ear fit to the points in any of the three right-most plots in
Figure 3 would return a correlation coefficient of zero
since the SVD produces orthogonal v

*ðkÞ
(and u

*ðkÞ
) vec-

tors, that is, v
*ðkÞ � v*ðjÞ ¼ 0 (and u

*ðkÞ � u*ðjÞ ¼ 0) for k≠ j.**
To examine the effects of covariance between residues

at different position, we modified model I.ef (with equal
residue frequencies at each position) to include covari-
ance between residues at positions 1 and 2 (model II,
Figure 3). Specifically, the frequency of sequences with
both A at position 1 and C at position 2 was increased,
relative to what would be expected from marginal proba-
bilities (and likewise with B and D). Because residues all

§Though it might seem like residue v 1ð Þ
i values should be pre-multiplied

by σk values in residue SVD plots, analogous to the sequence plots of
σku

kð Þ
i , doing so would obscure the connection between v kð Þ

i and u kð Þ
i ,

which are related through a single power of σk (Equations 2 and 5).

¶That is, there are no correlations between residues at different
positions, and residues at the same positions have the same frequencies.
**Since the Pearson correlation coefficient for a pair of variables is the
ratio of the covariance to the square root of the product of the variances
of the two variables, the zero value of the dot products of different
sequence eigenvectors (which gives the covariance) results in a
correlation coefficient of zero.
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have equal probabilties in this model, there is no disper-
sion of v 1ð Þ

i values (Figure 3), again reflecting the fact that
the first singular coordinate is a measure of conservation.
However, unlike the uncorrelated equal frequency model
(I.ef), there is mutual displacement of positively corre-
lated residues in the second singular coordinate: v 2ð Þ

i

values for residues A and C are displaced in the positive
direction, whereas values for residues B and D are dis-
placed in the negative direction, opposite to A and
C. Thus, the coupling between residues at different posi-
tions in model II is revealed in singular coordinate two.
This is unlike model I, where variation in the second sin-
gular coordinate reflects anticorrelation of residues at the
same position. The anticorrelation of residues at the same
position is instead pushed to the third and fourth singular
coordinates. Residues at position 3 (E and F) are oppo-
sitely shifted in the third singular coordinate, and resi-
dues at positions 1 (A and B) and 2 (C and D) are
oppositely shifted in the fourth singular coordinate.

Perhaps counterintuitively, although displacement of
v 2ð Þ
i values result from pairwise covariance, the extent of
displacement does not depend on the strength of the
covariance (not shown; this is also true for v j>2ð Þ

i values).
Instead, the increased coupling in model II increases the
corresponding singular value σ2 (Figure 4b). This
increase in σ2 (with increased coupling is compensated
by a decrease in σ4).

To further investigate how sequence covariance influ-
ences the position of residue v kð Þ

i values in SVD space, we
built a third model where residues at all three positions
are positively coupled (model III, Figure 3). This three-
way correlation may be considered to be mimic the
higher-order covariances generated in MSAs containing
multiple phylogenetically distinct subfamilies. In model
III, the vi 2ð Þ values for all three positively coupled resi-
dues (e.g., A, C, and E) are displaced in the same direc-
tion, opposite the other three residues (e.g., B, D, and F).
It is noteworthy that this three-residue coupling is cap-
tured in a single SVD coordinate. Again, anticorrelation
between residues at the same position is revealed in sin-
gular coordinates 3 and 4 (Figure 3, bottom right).

Summarizing the findings from the toy models,
uncorrelated residue biases result in displacements in
singular coordinate one. Positive covariance between
residues at different positions results in the mutual dis-
placements of positively covarying residues (e.g., A and
C in model II) in the second singular coordinate, and
opposite displacements from the negatively covarying
residues (e.g., A and D in model II). Opposite displace-
ments are also seen for anticorrelated residues at the
same position.

4.2 | How residue coordinates determine
sequence coordinates in singular value
decomposition space

As described above, the coordinates σku
kð Þ
i of each MSA

sequence in SVD space can be obtained from the corre-
sponding elements of the sequence eigenvectors u

*ðkÞ
.

Here, we will use our toy model to illustrate how these
sequence coordinates are obtained from residue coordi-
nates v kð Þ

i . This connection is made through Equation (2),
which can be written as a summation:

σku
kð Þ
i ¼ si

* � v*ðkÞ ¼
X

j �*si

v kð Þ
j ð6Þ

Because of the binary nature of si
*
, the dot product

between si
*
and v kð Þ

j selects only the v kð Þ
j values that corre-

spond to the ℓ residues in sequence i. Thus, Equation (6)
provides a simple recipe to get the coordinate of i in the
kth singular dimension: take the v kð Þ

i values corresponding
to residues in the sequence and sum them. This is dem-
onstrated for a six-residue sequence model in SVD coor-
dinates 1 and 2 (Figure 5) using a vector sum. For the
three-residue sequence ACE, the coordinates of each of
the three residues A, C, and E can be represented as
arrows starting at the origin and end at the corresponding
residue coordinate pair (v 1ð Þ

i , v 2ð Þ
i ) (dashed arrows). When

these vectors are arranged head to tail (giving the vector

FIGURE 3 The effects of bias and coupling on SVD coordinates of residues and sequences. A simple three-position sequence with two

residues at each position (A, B at position 1, C, D at position 2, and E, F at position 3) is used to generate MSAs with varying degrees of

sequence bias and coupling. In model I.ef (top), the six residues have equal overall frequencies (of 0.5). In model I.bf (upper middle), the six

residues occur with different frequencies, as given by the marginal probabilities (e.g., pA) in the table on the lower left. In both versions of

model I, residue frequencies are independent of each other, such that residue pair probabilities are given by the product of the marginal

probabilities. In model II (lower middle), there is pairwise covariance between positions 1 and 2, but position 3 is independent of the other

two. In model III (bottom), there is three-way covariance between positions 1, 2, and 3. For each model, joint and marginal probabilities and

probabilities for the eight different sequences are given in the upper left, residue pair count matrices (D¼FTF) are shown in the lower left,

residue v kð Þ
i values along singular coordinates 1–4 are shown in the upper right, and sequence σku

kð Þ
i values along singular coordinates 1–4

are shown in the lower right.
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sum, solid arrows), the result ends at the coordinate for
sequence ACF.

This summation can be used to rationalize the distribu-
tion of sequences from the toy models above. For example,
in the SVD plane depicting the first and second singular
coordinates for model 1.bf (sequence bias without cou-
pling), sequences are separated into two clusters along the
second coordinate by the identity at position 3 (E vs. F),
because this is the coordinate that separates v 2ð Þ

E and v 2ð Þ
F .

Within these two clusters, sequences are arranged along
the first coordinate by the marginal probabilities of resi-
dues at positions 1 and 2: sequences with A are furthest

to the right, whereas those with B are furthest to the left.
For model II (pairwise coupling), sequences are clustered
along the second coordinate depending on whether they
have the correlated AC residue pair (which both have
positive v 2ð Þ

i values) or the correlated BD residue pair
(with negative v 2ð Þ

i values). Although there are also
sequences between these clusters, they contain an antic-
orrelated pair at positions 1 and 2 (AD or BC), and thus
occur infrequently in the MSA. Thus, when the entire
MSA is plotted in SVD space, the density of sequences
will be enriched at the AC and BD clusters and depleted
at the AD and BC locus.

(a) (b) (c)

FIGURE 4 The effects of sequence bias and correlation on residue coordinates and singular values. (a) For model I.bf, where residues at

the same position have different probabilities (Figure 3), the residue v 1ð Þ
i values along the first singular coordinate are correlated with the

residue probability. (b) for model II, where there is a pairwise correlation between residues A and C at positions 1 and 2, the singular value

σ2 is correlated with covariance between residues A and C (likewise for residues B and D, not shown). (c) For model II, as the strength of the

pairwise covariance increases, σ2 increases at the expense of σ4, indicating that when correlation increases, fewer components are needed in

the SVD.

(a) (b) (c)

FIGURE 5 The coordinates each sequence in SVD space is the sum of the coordinates of its residues. Singular value decomposition of a

three-position, six-residue model described above was used to generate sequence coordinates σku
kð Þ
i and residue coordinates v kð Þ

j . In this

model, there is sequence bias at each position (pA = 0.8, pB = 0.2, pC = 0.7, pD = 0.3, pE = 0.6, pF = 0.4) as well as pairwise correlation

between positions 1 and 2 (pAC = 0.65, pAD = 0.15, pBC = 0.05, pBD = 0.15). Each of the six residues are plotted in the first and second

singular dimensions (v 1ð Þ
i , v 2ð Þ

i ; circles and dashed arrows) along with one sequence (σ1u
1ð Þ
i , σ2u

2ð Þ
i ; plus sign) per panel. SVD, singular value

decomposition
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5 | SINGULAR VALUE
DECOMPOSITION OF
HOMEODOMAIN AND RAS FAMILY
SEQUENCES

In this and the remaining sections, we will present
SVD of MSAs from two protein families. The first of
these is the homeodomain (HD) family. Homeodo-
mains are small (�57 residue) DNA-binding domains
found in eukaryotes.14–16 We present results for HD in
part because much work has been done to characterize
the specificity and stability of HDs,17–21 and HDs have
been the subject of consensus-based protein design
using MSA information.22–24 The second family is the
Ras superfamily, which includes the well-characterized
Ras, Rab, Rho, Ran, and Arf subfamilies25 in eukary-
otes, along with less-well characterized homologues in
bacteria.26 Ras domains are small (�160 residue)
GTPases involved in signaling pathways for cell growth
and apoptosis. In addition to illustrating how SVD can
be used to identify and group subfamilies of sequences,
we include the Ras family to compare with the pioneer-
ing analysis of Casseri et al.11 which presented an SVD
of Ras, albeit with many fewer sequences than are
available today.

Since MSAs are the starting point for SVD analysis,
the details of selecting and aligning sequences are impor-
tant. Here, we follow a protocol previously used for con-
sensus design.27 Briefly, we collect a large number of
sequence homologues, either in a pre-aligned form (from
Pfam, e.g.,28) or by searching sequence databases.
Sequences with >90% identity are removed, and
sequences that are shorter or longer than the median
sequence length by 30% are removed. This length-filtered
set is re-aligned, and positions where gap residues occur
in more than 50% of the sequences are eliminated.

Using the procedures described above, we have gener-
ated MSAs for HD (PF00046) and Ras (PF00071). Initial
HD and Ras alignments containing 85,650 and 45,751
sequences were downloaded from Pfam (version 34.0)
and curated as described above to give 4,995 and 10,265
sequences in the final alignments, respectively. One-hot
encoding and SVD was performed on these two align-
ments using in-house Python scripts (described below).

For each family, the first 20 singular values are
shown in Figure 6. In both cases, the first singular
value is significantly larger than the others
( σ1jσ2ð Þ≈ 3:3 and3:1 for HD and Ras, respectively),
reflecting the high signal associated with single-residue
conservation. Subsequent singular values decrease more
gradually (Figure 6). Although singular values remain
relatively high past σ20, much of this results from the triv-
ial anticorrelation of different residues at the same

position, as is demonstrated by randomly shuffling each
column in either the MSA or F-matrix (Figure 6, red and
blue bars, respectively).

To visualize the sequence space of HD and Ras in the
SVD coordinate system, we generated 2D plots of adja-
cent σku

kð Þ
i , σkþ1u

kþ1ð Þ
i pairs from k¼ 1 to k¼ 4, and 3D

plots of σ1u
1ð Þ
i , σ2u

2ð Þ
i , and σ3u

3ð Þ
i triples (Figure 7). One

striking feature of these sequence scatter plots is that all
sequences are displaced in the same direction along the
first singular coordinate, whereas for k≥ 2 the σku

kð Þ
i

values are centered on zero. Displacement of σ1u
1ð Þ
i

values results from the relationship between conservation
and the first singular coordinate; since shared sequence
similarity is a requirement for inclusion in the MSA, all
sequences are displaced in the same direction. The corre-
lation between conservation and σ1u

1ð Þ
i values can be

seen by plotting σ1u
1ð Þ
i versus the number of identities

each MSA sequence has with the overall consensus
sequence (Figure S4); both HD and Ras show a roughly
linear correlation, with Pearson correlation coefficients of
0.942 and 0.973. The relationship between conservation
and the first singular coordinate is further highlighted by
projecting the consensus sequences calculated from each
MSA into SVD space using Equation (3) (pink stars,
Figure 7). These consensus sequences are farther from
zero along the first singular coordinate than any of the
MSA sequences because consensus sequences capture
conservation to a greater extent than any of the MSA
sequences.

In addition to conservation, differences in the lengths of
the curated sequences in the MSA gives rise to variation in
σ1u

1ð Þ
i values. Though all sequences are aligned to an

MSA of length ℓ, they have different lengths owing to dif-
ferent numbers of gap characters.†† As illustrated in
Figure 5, the σ1u

1ð Þ
i value for sequence i is equal to the

sum of the elements in v
*ð1Þ

that correspond to non-gap
residues in that sequence (Equation 6). Long sequences
sum up more v

*ð1Þ
terms than short sequences, elements

of v
*ð1Þ

all have the same sign, the sum (which is equal to
σ1u

1ð Þ
i ) is larger. This is illustrated in Figure S5, which

shows a correlation between sequence lengths (excluding
gap characters) and σ1u

1ð Þ
i values. It is worth noting that

the correlation between σ1u
1ð Þ
i and length is not as strong as

that with consensus identities (compare Figures S4 and S5).
A key feature of the σku

kð Þ
i plots for HD and Ras is

that the sequences are not distributed uniformly in SVD
space, but are partitioned into discrete clusters and pro-
jections. These features are most pronounced for the first
few singular coordinates, although they persist beyond

††Furthermore, the full encoded sequences may be considerably longer
due to additional N- and C-terminal sequences and by internal
insertions present in a minority of MSA sequences.
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σ4u
4ð Þ
i (Figures S6 and S7). These groupings suggest that

the sequences of the HD and Ras MSAs can be divided
into subfamilies. These subfamilies are likely to reflect
groups of proteins with specialized functions, and may
reflect sequence and/or organismal phylogeny.

6 | CLUSTERING OF SEQUENCES

To identify and analyze groups of sequences revealed in
σku

kð Þ
i plots, a clustering method can be applied to the

sequence coordinates. Here, we use k-means clustering, a
method that partitions m sequences into κ clusters by
minimizing the squared Euclidean distance between each

sequence and its cluster center. To perform k-means clus-
tering, the number of clusters (κ) must be specified.
Sometimes an optimal κ value is obvious from the distri-
bution of sequence σku

kð Þ
i values, but sometimes it is not.

To help choose a good value for κ, one can compute the
“within-cluster sum of squares” (WCSS), and see how it
decreases as the number of clusters κ is increased. In
plots of WCSS versus κ, often referred to as elbow plots,
the WCSS drops steeply at low values of κ and then flat-
tens abruptly.‡‡ The value of κ at this break-point is the

(a)

(b)

(c)

(d)

1,000

2,000

1,000

FIGURE 6 Singular values for

homeodomain and Ras. (a,c) Singular values

and (b,d) cumulative singular values for

homeodomain (a,b) and Ras (c,d) are shown in

black bars. Red bars are singular values for an

MSA where residues in each column is

randomly shuffled, eliminating sequence

covariance. Blue bars are singular values for an

F-matrix where each column is randomly

shuffled. In total, the singular values sum to

9,646 and 37,273 for HD and Ras, respectively.

MSA, multiple sequence alignment

‡‡Using a quantitative metric like WCCS to find an optimal k-value is
particularly useful when clustering in a high-dimensional space, where
visual inspection of clusters is a challenge.
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minimum number of clusters required to get compact,
well-separated groups.

For the HD and Ras sequences, clustering on the
first three singular coordinates shows fairly clear
WCSS breakpoints at k¼ 4 (Figure S8); thus, we chose
k¼ 4 clusters for all subsequenct analysis. Some clus-
ters, such as the orange and red HD clusters, show
clear separation from other clusters (Figure 7). For
other clusters, such as the green, red, and blue Ras
clusters, there is no clear separation. In such cases,
clustering slices an ellipsoid of sequences into roughly
equal halves. Although this type of clustering provides
a useful heuristic for separating sequences at the ends
of the ellipsoid, sequences near the boundary between
clusters should not be considered to belong to distinct
subfamilies.

In addition to helping to visualize subfamilies
within sequence space, clustering provides a useful
handle for sequence analysis of protein subfamilies.
For example, comparing the phylogenetic relation-
ships among clusters can reveal orthologous and
paralogous relationships among sequences. Likewise,
functional information about specific sequences
can be used to infer cluster-wide functional attri-
butes. In addition, as shown in the next section, the
residues that define each cluster can be identified,
mapping phylogeny and function to sequence and
structure.

7 | RESIDUE DISTRIBUTIONS IN
SINGULAR VALUE
DECOMPOSITION SPACE AND THE
DETERMINANTS OF SEQUENCE
CLUSTERS

The coordinates of sequences in SVD space are determined
by the residues that make up each sequence. By examining
the SVD coordinates of residues (the 20ℓ v kð Þ

i elements of
the residue eigenvectors§§), it may be possible to identify
the specific residues that define that cluster.

The vi
*ðkÞ

values for the HD and Ras residues along the
first three singular coordinates are shown in Figure 8.
Because the first axis in the singular coordinate system is a
measure of sequence conservation, the vi

*ð1Þ
values for a

given MSA all have the same sign, and as anticipated
from Figure 4a, correlate with the degree of conservation
(Figure S9). For all other axes (k>1), both positive and
negative values are obtained. Since most of the 20ℓ resi-
dues occur very infrequently, most of the v 1ð Þ

i are close to
0. Residues that occur frequently at a given position have
large positive v 1ð Þ

i values, but are constrained to lie within
a paralleliped with one vertex centered at the origin of
the coordinate system (Figure 8b,d and Videos S3
and S4).

FIGURE 7 The sequence spaces of HD and Ras generated by SVD. Each point corresponds to a single HD (a,b) or Ras superfamily

sequence (c,d) from the MSAs analyzed by SVD. Pink stars are consensus sequences derived from the entire MSA. k-Means clustering was

performed on σ1u
1ð Þ
i , σ2u

2ð Þ
i , and σ3u

3ð Þ
i values to assign sequences to one of four clusters (colored red, blue, orange, and green). To visualize

the 3D plots from different angles, see Videos S1 and S2. MSA, multiple sequence alignment; SVD, singular value decomposition

§§As noted above, we plot v kð Þ
i and not σkv

kð Þ
i to preserve the relationship

between v kð Þ
i and σku

kð Þ
i (Figure 5).
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Unlike the sequences, there is no obvious clustering
of residues in SVD space (compare Figures 7 and 8).
However, the v kð Þ

i values determine the σku
kð Þ
i values

(Equation (2)), thus, the distribution of the former should
reflect that of the later. To determine which v kð Þ

i residue
values are responsible for cluster positioning, the MSA
can be partitioned by cluster identity and the fraction of
each residue at each position can be determined for each
cluster. Comparing residue frequencies between different
clusters reveals residues that are enriched in each cluster.
The v kð Þ

i values of these residues are likely to give
sequence clusters their unique σku

kð Þ
i values.

Residues that have high frequencies in one of the four
clusters of HD and Ras are colored in Figure 8, using
cluster colors from Figure 7. These residues tend to popu-
late the extreme vertices the, v 2ð Þ

i , v 3ð Þ
i plane. As expected,

residues that are enriched in a particular cluster are gen-
erally in the same direction as the σ2u

2ð Þ
i , σ3u

3ð Þ
i values of

sequences in the same cluster (Figure S10).

8 | RELATIONSHIP OF SEQUENCE
CLUSTERS TO SEQUENCE AND
SPECIES PHYLOGENY

The clustering of σku
kð Þ
i values in SVD space (Figure 7)

suggests that the MSA comprises multiple subfamilies.

Subfamily structure within a group of sequences is typi-
cally identified by constructing a phylogenetic tree,
where phylogeny is inferred directly from the protein
sequences being analyzed. Such sequence-based trees are
expected to be related to SVD clusters, since both
methods use the same information.

Sequence trees for HD and Ras are shown in
Figure 9a,b, with cluster identities colored as in Figure 7.
At the local level, sequences from the same SVD cluster
tend to group together. For Ras, this grouping extends
over the entire red cluster, which forms a single, large
contiguous block (Figure 9b); likewise, the orange and
blue Ras clusters form more-or-less contiguous blocks. In
contrast, the green Ras cluster is broken up, separating
the red, blue, and orange blocks. This distribution reflects
the distribution of the four sequence σku

kð Þ
i clusters in the

first three dimensions of SVD space, which is roughly tri-
podal in shape (Figure 7c,d). The red, orange, and blue
clusters form the legs of the tripod and are distinct from
one another (as in the sequence tree), each connecting
directly to the green cluster at the vertex.

In contrast, the HD sequence tree (Figure 9a) shows
considerable mixing of SVD clusters, especially the blue
and the green clusters. Sequences in the orange SVD
cluster are tightly grouped, although they are interrupted
by a block of sequences form the red group, which is
itself broken up into two blocks at opposite ends of the

FIGURE 8 Residue distributions in SVD sequence space. Each point corresponds to one of the 20ℓ residues of the HD (a,b) or Ras (c,d)

MSAs. Values are the elements of the residue eigenvectors (Equation 5). Although scaling these values by their corresponding values would

weigh the relative contribution of residues to the sequence alignment, plotting unscaled values gives the direct contribution of each residue

in a sequence to the corresponding value (Figure 5). Colored points indicate residues that have frequencies within a k-means cluster

enriched by 0.4 or greater compared to out-of-cluster residue frequencies, and represent a sequence signature for that particular cluster.

Colors are the same as in Figure 7. To visualize the 3D plots from different angles, see Videos S3 and S4. MSA, multiple sequence alignment;

SVD, singular value decomposition
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tree. Although the blue and green clusters are not cleanly
segregated in SVD space, consistent with their mixing on
the sequence tree, the red and orange clusters are, yet
they are interspersed on the sequence tree. Thus, it seems
that some sequence features revealed by SVD differ from
those used to construct the tree.

Another way to generate trees from a set of sequences
is to use established taxonomies of the organisms from
which the sequences derive. We generated such species
trees (Figure 9c,d) with PhyloT (https://phylot.biobyte.
de/). Although sequence- and species-trees are related,
the terminal nodes of species trees (which represent indi-
vidual species), can contain multiple sequences
(Figure 9c,d), whereas those of sequence-based trees have
only one sequence each (Figure 9a,b). One evolutionary
mechanism that results in sequence multiplicity involves

gene duplication and neofunctionalization under selec-
tive pressure, followed by genetic drift. This generates
two distinct families of paralogous sequences, which
would be separated from each other in a sequence tree
(and likely in SVD space), but would be shared in the
clades of a species tree.

Paralogous sequences are seen for both HD and Ras
(Figure 9c,d). For HD, the blue cluster shows the broad-
est distribution, and is found in nearly all of the species
that could be identified by PhyloT. These species include
metazoans, fungi, viridiplantae, and other eukaryotes
including amoebozoans and protozoans. The green clus-
ter is also found in most fungi and metazoans, suggesting
a paralogous relationship with blue cluster sequences,
although it is sparsely represented in plants and other
eukaryotes. In contrast, the orange and red clusters are

(a) (b)

(c) (d)

FIGURE 9 Phylogenetic trees and their relation to SVD clusters. (a,b) Sequence trees of sequences in the HD and Ras MSAs,

respectively. (c,d) Species trees of sequences in the HD and Ras MSAs, respectively. Colored marks on the outside of each tree indicate

cluster identities using the color scheme in Figure 7. For the species trees, color wedges on the inside indicate major taxa. Sequence trees

were generated in MAFFT29 using default settings. Species trees were generated from PhyloT (https://phylot.biobyte.de/), using the UniProt

IDs associated with each sequence in Pfam. Note that there are fewer sequences on the species trees (310 and 430 for HD and Ras,

respectively) than on the sequence trees (4,995 and 10,265 for HD and Ras, respectively) because only sequences from organisms with

unique UniProt IDs can be depicted. Trees were rendered using iTOL.30 MSA, multiple sequence alignment; SVD, singular value

decomposition
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limited exclusively to metazoans, suggesting that these
HDs are associated with the HOX genes, which deter-
mine the body plan of segmented animals.15 Taken
together, this distribution suggests that sequences in the
blue cluster represent an ancestral HD form, whereas
those from the orange and red clusters are more recent
adaptations.

For Ras, the green cluster is most broadly distrib-
uted, and is found in most species identified by phyloT
including metazoans, fungi, viridiplantae, and in a
large number of bacterial species.26 The red cluster is
densely distributed across all eukaryotes but is not
found in bacteria. The orange and blue clusters are
found in metazoans and yeast, but are largely absent
from plants and some other eukaryotes. This distribu-
tion suggests that sequences from the green cluster
form an ancestral lineage, sequences from the red clus-
ter represent a paralogous group that diverged early in
the eukaryotic lineage, and sequences from the orange
and blue clusters represent paralogous groups that
diverged more recently.

Comparison of the distribution of deep ancestral
and more recent paralogue clusters shows some shared
features for HD and Ras. First, clusters of putative
ancestors (blue for HD, green for Ras) are located near
the origin of the σ2u

2ð Þ
i , σ3u

3ð Þ
i plane, whereas other more

taxonomically restricted clusters (red and orange for HD,
red, orange, and blue for Ras) are at more extreme values
of σ2u

2ð Þ
i and/or σ3u

3ð Þ
i (Figure 7). Second, for both HD

and Ras, the recent paralogue clusters appear to have
larger σ1u

1ð Þ
i values than the ancestral clusters, suggest-

ing a greater degree of sequence variation among
ancestral sequences. This type of effect may also arise
from a difference in the numbers of ancestral versus
recent paralogue clusters and/or a difference in length
as described above. The observation that paralogous
groups are resolved in the first few dimensions of SVD
space is consistent with a mathematical analysis of
PCA of phylogenetically related protein sequence
subgroups.

9 | MAPPING FUNCTIONAL
ATTRIBUTES INTO SINGULAR
VALUE DECOMPOSITION SPACE

If the sequence clusters in SVD space represent paralo-
gues, sequences in each cluster might be expected to
have different functional properties. This can be exam-
ined by identifying specific biochemical activities for
sequences that are either within the MSA or homolo-
gous to MSA sequences, and projecting these

FIGURE 10 Mapping functional features into SVD space. Projection of sequences with known HD DNA binding specificities (a,b) and

Ras-family specializations (c,d) into SVD space. Projected sequences are colored according to clusters from Figure 7, which are reproduced

(e–h) for comparison, and colored black in the projections to contrast the projected sequences. For both protein families, projected sequences

segregate to a particular cluster, indicating that these clusters represent specific functional groups. SVD, singular value decomposition
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sequences into SVD space. If sequences with a particu-
lar activity all project to a particular cluster, the whole
of that cluster can be considered to represent
sequences with that activity. This type of mapping
would enable functional annotation of sequences
within the cluster that have not been characterized,
and would reveal residues that contribute specific
functions using the approach described above.

For HD sequences, the DNA specificities of the
84 HDs in Drosophila melanogaster have been deter-
mined and have been divided into 11 specificity
groups.21 We took the sequences from each of these
groups, aligned them with our HD MSA, and projected
them into SVD space using Equation (3). The two larg-
est families, which contain the engrailed and antenna-
pedia genes, project into multiple clusters: engrailed
projects to the green, yellow, and red (but not blue)
clusters, whereas antennapedia projects to the green
and yellow (but not red or blue) clusters (not shown).
In contrast, sequences from the remaining groups pro-
ject primarily into a single cluster (Figure 10a,b). Inter-
estingly, only the Six, TGIF, and Iroquois families
(which together have been categorized as “atypical”21)
project to the putative ancestral blue cluster, suggest-
ing these genes may represent ancestral families.

An even stronger functional segregation pattern is
seen for Ras. Using a classification scheme that assigns
sequences to various subcellular processes,25 we find
that sequences classified to the Rho, Rab, and Ras sub-
families map to the three projections in the, σ2u

2ð Þ
i ,

σ3u
3ð Þ
i plot (yellow, red, and blue clusters, respectively,

Figure 10). Sequences in the Arf subfamily map to the
putative ancestral green cluster at the vertex, whereas
Ran sequences map to the intersection between Arf and
Rab. Combined with the taxonomic analysis above, this
suggests that Rab-associated vesicular transport25 was an
early adaptation in the eukaryotic lineage. In contrast,
the actin regulation associated with the Rho proteins and
the transmembrane signaling and gene regulation path-
ways controlled by the Ras proteins was a more recent
adaptation.

10 | SCRIPTS FOR SINGULAR
VALUE DECOMPOSITION
ANALYSIS

Python scripts for SVD analysis of MSAs are available at
GitHub (https://github.com/barricklab-at-jhu/SVD-of-
MSAs, Appendix S3). These scripts are combined in a sin-
gle Jupyter notebook that, given an MSA, performs all
steps in preprocessing, SVD, and downstream analysis,
generating most of the plots presented here (Figure S11).
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