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Abstract

Collagen is the most abundant structural protein in humans, with dozens of sequence variants 

accounting for over 30% of the protein in an animal body. The fibrillar and hierarchical 

arrangements of collagen are critical in providing mechanical properties with high strength 

and toughness. Due to this ubiquitous role in human tissues, collagen-based biomaterials are 

commonly used for tissue repairs and regeneration, requiring chemical and thermal stability over 

a range of temperatures during materials preparation ex vivo and subsequent utility in vivo. 

Collagen unfolds from a triple helix to a random coil structure during a temperature interval in 

which the midpoint or Tm is used as a measure to evaluate the thermal stability of the molecules. 

However, finding a robust framework to facilitate the design of a specific collagen sequence 

to yield a specific Tm remains a challenge, including using conventional molecular dynamics 

modeling. Here we propose a de novo framework to provide a model that outputs the Tm values 

of input collagen sequences by incorporating deep learning trained on a large data set of collagen 

sequences and corresponding Tm values. By using this framework, we are able to quickly evaluate 

how mutations and order in the primary sequence affect the stability of collagen triple helices. 

Namely, we confirm that mutations to glycines, mutations in the middle of a sequence, and short 

sequence lengths cause the greatest drop in Tm values
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1. Introduction

Type I collagen is the most abundant protein in animals, forming the matrix of the skin, 

tendons, bone, and vasculature. Collagen consists of amino acid sequences, generally in 

the form of repeat units of glycine-X-Y where amino acids proline and hydroxyproline 

are especially abundant1. The fixed angles of proline or hydroxyproline enable collagen 

sequences to fold into a triple helical structure, or tropocollagen, which forms the basic 

structural unit of collagen. In this triple-helical arrangement, glycine is the only amino acid 

that can be incorporated in the helix without distortion and is, therefore, a strict requirement 

for fibril-forming collagens. This fundamental structural unit is typically 300 nm long, and 

1.5 nm in diameter and can pack with other three-stranded collagen molecules to form 

hierarchical structures, including fibrils and fibers 2-8. This hierarchical structure enables 

significant mechanical tensile loading of collagen in physiological conditions 9-13; collagen 

fibrils can reach a tensile modulus of 0.2 to 0.86 GPa while maintaining elasticity in the 

human body 11,14-17.

With such remarkable structure and mechanics, as well as biocompatibility, collagen-based 

biomaterials are routinely sought for use in vivo tissue repairs. Collagen-based biomaterials 

have been successfully used in drug delivery systems, skin repair, and other biomedical 

applications 18,19. However, the use of collagen as biomaterial constructs remains limited 

in large part due to the inability to design and assemble collagen structures in vitro that 

emulate the structural hierarchy seen in vivo, reflective of triple-helical stability as well 

as higher order assembly. Such limits in the ability to recapitulate collagen triple helical 

structures in vitro, are reflected in reduced temperature stabilization and, in practice, in 

thus reduced mechanics and more rapid degradation in vivo. Such limitations remain as 

significant hurdles to the more widespread use of collagen in a broader range of tissue 

repairs. Thus, one metric to evaluate collagen’s mechanical integrity is from its melting 

point or Tm, defined as the midpoint during the temperature window in which the triple helix 

unfolds.

Several researchers have examined various biological species to discover or design collagen 

peptides with greater thermal stability 20-25. Others have tried to add various additives to 

increase Tm 21. A significant effort by Persikov et al. developed equations to predict Tm 

values based on local interactions between different amino acid chemistries in collagen 

tripeptides 26-29. While significant work has sought to understand the effects of variables 

including primary sequence and additives on the thermal stability of collagen, having a 

predictive framework that facilitates a priori design of collagen sequences with specific 

Tm values without prior knowledge of chemical interactions would enable researchers to 

more efficiently design and synthesize thermally stable collagen for desired applications. 
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Such a framework for discovery, when combined with advancing concepts in controlled 

self-assembly, would propel the field of collagen-based biomaterials forward.

However, a major challenge to this goal has been to uncover sequence-structure-function 

relationships in collagen across its length scales 6,11,30,31. Most of the earlier studies 

have reported progress using atomistic-based methods, such as molecular dynamics or 

coarse-graining, however, these approaches tend to be computationally expensive and cannot 

easily explore vast variations of sequences and mutations. In this paper we propose to 

develop a method that overcomes some of these limitations to set the foundation for 

an effective machine-learning based approach towards identify sequence-structure-function 

relationships in collagen molecules. We hypothesize that machine learning can effectively 

relate complex sequences to effective physical, chemical and biological functions without 

knowledge of underlying biological interactions. Machine learning has emerged as a useful 

tool in the analysis of large datasets to help develop design principles of biological materials 
32-36. Through careful design and application of neural networks and use of appropriate 

datasets, machine learning can provide useful information for predicting various behaviors 

of biological materials without prior knowledge of chemical interactions 33,34

This paper reports the development of a deep neural network machine learning model 

to predict Tm values of de novo collagen sequences. Through the application of a self-

evolutionary algorithm, 1D convolution, bidirectional long short-term memory (LSTM), 

and dropout features, the model trains on a dataset of existing collagen sequences and 

Tm values derived from the literature. Using this framework, the effect of mutations in 

specific residues, sequence length, and order on Tm values is quickly analyzed to derive 

design principles about the thermal stability of collagen. The goal of this work is to 

twofold. First, this machine learning method applied to generate thermally stable de novo 
collagen sequences creates a general framework for the use of machine learning models 

in biomaterial applications. Second, the insights gained from rapid testing of collagen 

sequences contribute general design principles about the thermal stability of collagen, with 

implications not only in biomaterial designs, but also in understanding collagen-related 

mutations and associated disease states.

2. Materials and Methods

2.1 Collagen Dataset

We collected 566 collagen sequences with reported Tm values from a survey of literature 

(see Table S1). These available melting temperatures were collected from the PubMed, Web 

of Science, Scopus, Directory of Open Access Journals (DOAJ) Google Scholar databases 
26,27,45-54,37,55-57,38-44. Experimental thermal stability data sets for the observed Tm values 

(in °C) for the Gly-X-Y tripeptide units in triple helical collagens-like peptides are based 

on host-guest peptides and are integrated to produce an algorithm for predicting global 

melting temperatures. These experimental results are expanded further using predictions of 

Tm values of host-guest sequences from Persikov et. al.26 The distribution of the dataset is 

presented in Figure 1 where sequences have experimentally measured melting temperatures 

ranging from a few degrees C to 70°C with the mean at ~30°C. The data shows a normal 

distribution which is used in the machine learning model (Figure 1c). Outliers in the data, 
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specifically the negative Tm value sequences, are generally from extrapolated experimental 

data.58

2.2 Development of the End-to-end Deep Learning Model

We provide a summary of the deep learning model reported here, as shown in Figure 2. 

This model is named ColGen to represent a collagen sequences generator which is capable 

of generating new type I collagen sequences with known Tm values. A natural language 

processing (NLP) model was adopted 59,60.

Tokenization is used, reflecting a common approach when processing the raw texts or 

sequences of symbols. Tokens can be considered as the fundamental building blocks of 

our data which was represented in single letter code for each amino acid along the main 

chin61,62. Tokenization is first applied to the collagen sequences before passing them 

through the deep learning model. Every collagen sequence was first encoded into a series 

of digital tokens, that is, every amino acid is treated as a unique number from 1 to 21 for 

all the 20 essential amino acids and one nonessential amino acid, hydroxyproline, found in 

collagen.

2.3 Neural net structure

The tokenized sequences were passed through an embedding layer which is able to 

recognize the relationship between tokens during the training process. After the embedding 

layer, data flows through a 1D convolutional layer to harness the internal features from the 

input. The data is then routed into bidirectional LSTM layers to learn all hidden features 

from each collagen sequences. Finally, a fully connected neural network - composed by two 

dense layers – is used to ultimately output the predicted Tm value as a scalar value. This 

flow of information provides an end-to-end model that relates a sequence of amino acids of 

varying lengths to its melting temperature.

Figures S1 and S2 provide detailed information into the architecture of the neural network 

used. The neural network features a total of 49,041 trainable parameters.

2.4 Model training

The dataset was randomly split into training dataset testing dataset, where 80% of the data is 

used for training and the other 20% is used for testing to examine the ability of prediction of 

our model.

The model is trained on a Xeon workstation with a GTX-3090 GPU, for 200 epochs. It is 

worth noting here, the well-trained model can be deployed in a laptop or desktop computer 

without further requirement of GPUs.

3. Results

We begin the analysis by training the machine learning model. We find that ColGen 

demonstrates good predictive accuracy of Tm values in the testing set (Figure 3a). The data 

shows that testing data is generally well predicted, and a large range of temperatures can be 
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predicted by the model. In addition, the training and validation error remain consistent at a 

mean squared error of ~0.2 after 120 epochs (Figure 3b).

Because the ColGen model enables fast characterization of the Tm values of different 

collagen sequences, the model was used to understand how mutations and chain length 

affect Tm value. ColGen enables a rapid search of these effects. (GPO)10 was used as 

a standard comparison, referred to here as the “pristine sequence,” as it has the highest 

known thermal stability value in literature 20-56-63-64 due to stereoelectronic effects from 

hydroxyproline 65-67. Mutations were made in either the G, P, or O position, where either the 

G, P, or O positions were replaced with another amino acid, and this process is repeated over 

all amino acid substitutions. The resulting Tm values from each of these calculations are then 

averaged.

Based on the GolGen model, mutations in the middle of the pristine collagen sequence 

have the greatest destabilizing effect on collagen Tm values (Figure 4a). This suggests the 

presence of a critical transition location along the length of the sequence, potentially near the 

midpoint of the sequence or at least away from the chain ends depending on overall length, 

that is critical in holding the full chain length together. Further, mutations made along the 

first several residues at the N terminus of the collagen sequence are more destabilized and 

have a lower Tm value than mutations made along the last several residues at the C terminus. 

This indicates a directionality along the sequence and is validated by experimental data 

which shows that the N-terminal regime is required for the trimerization of other triple 

helical collagens 68,69. This is in contrast to other work on fibril-forming procollagens which 

suggests that type 1 collagen molecules in vivo have a C-terminal that is responsible for 

chain selection and trimerization 70-74. This difference between our model and procollagen 

fibrillar formation results is likely because several peptides included in this training data 

may have been folded in N-to-C direction with a nucleation domain at the N terminus 75,76.

The effect of chain length on Tm was also measured. As shown in Figure 4b, the model 

faithfully captures that Tm values increase upon increasing number of amino acids (triplets) 

due to increasing hydrogen bonding between triplets. However, there is a limit to the 

increase in thermal stability that is also captured by the model. This leveling off is achieved 

at about 14 triplet repeats at around 80C and is consistent with experiments and a thermal 

stability prediction algorithm developed by Persikov et. al 26. Similar intrinsic strength limits 

have been found in hydrogen bonded alpha helix and beta sheet structures 77-79.

To quantify how the increasing number of mutations affects the thermal stability of collagen, 

we define the term “disorder parameter” which means the number of repeating triplets with 

mutations in the G, P, or O position compared to the pristine sequence. Thus, increasing 

disorder parameter increases deviation from the pristine sample. As expected, increasing 

disorder decreases the thermal stability of the pristine sequence consistent with experimental 

data (Figure 5a) 26. Further, disruptions in glycines are the most destabilizing. This is 

consistent with experimental findings that disruptions in glycine severely impact stability 

and often constitute disease states, though we cannot directly correlate the position of our 

glycine mutations to the position of naturally observed mutations due to the shorter sequence 

length we employ in this study 58,80-82.

Yu et al. Page 5

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2022 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This model could be useful in informing sequence design of bacterially-produced collagen, 

which enable larger production of tailored collagen sequences 23,50,83. Given that bacteria 

are unable to express hydroxyproline for bacterially-produced collagen, the machine 

learning model developed here could also serve as a tool to predict which amino acids may 

help as a replacement to hydroxyproline. Figure 5b demonstrates these results, showing that 

positively charged, negatively charged and polar amino acids are only slightly destabilizing 

compared to (GPO)10 up to a certain extent, but positively charged amino acids (R, H, K) 

are the least destabilizing compared to other types of amino acids if significant mutations are 

introduced in the O position.

4. Discussion and conclusions

We developed a platform that adopts a deep learning model trained with input sequences 

collected from the literature to predict Tm values and a self-evolutionary module to optimize 

Tm values. To evaluate the long-term interference within a cut-off, the size of kernel 

function is prescribed and the data flows through several fully connected neuron layers 

with non-linear activation functions. The deep learning model predicts Tm values of de novo 

sequences as the output.

Our model shows good prediction power in extrapolating Tm values of the testing set for 

collagen sequences not included in our training dataset. The trained deep learning model 

is able to predict Tm values within an acceptable error range considering the amount of 

experimental data. The machine learning algorithm also allows us to quickly determine how 

specific amino acids mutations, the amount of disorder in the sequence, and the sequence 

length affect the thermal stability of collagen. We determine that mutations in the middle of 

the sequence greatly affect stability and that there the maximum achievable temperature is 

already reached at a sequence length of 14 repeat units.

While the model enables a quick prediction of Tm values, there are some limitations that 

should be expanded upon in future work. These limitations primarily arise from the data 

set used to train the model, which could be further expanded to include a wider range of 

sequences and sequence lengths. For example, the current dataset has a maximum Tm range 

of 70C. While the collagen model is able to predict sequences up to 80C, the model’s 

predictive capacity beyond this temperature range is unclear. New sequences with higher Tm 

ranges would provide one way to validate the model. Further, the model is only trained on 

the standard amino acids and hydroxyproline. As such, it would be unable to predict the 

Tm values of other non-native amino acids and this problem too should be resolved by an 

expanded data set. Further, experimental melting temperature tests of the predictions from 

the collagen sequence mutation would help validate the model.

Despite these limitations, the application of this algorithm to collagen sequences more 

broadly would enable researchers and engineers to design specific collagen sequences 

with desired Tm values to match specific processing steps related to collagen materials 

formation and subsequent biomedical applications. More importantly, this approach would 

lead to more stable and thus mechanically more robust collagen biomaterials to meet new 

medical applications. Such design control would also provide a foundation for understanding 
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collagen degradation rates in vivo, thus correlating Tm to rates of collagen-based biomaterial 

remodeling/regeneration in vivo. Tuning such rates would be a significant advance the field 

of regenerative medicine.

Many collagen-based diseases are based on mutations in the primary sequence, which relate 

to the models and predictive tools offered here. Thus, this new method would offer insight 

and new perspectives on disease states in the context of collagen stability, along with 

implications for possible interventions and regeneration/repair routes in the future. Further, 

this approach could be propagated up length scales to enable predictions of macroscale 

biomaterial features and assembly.

In addition to expanding the utility of thermally stable collagen sequences, this work 

represents a starting point future work on a priori design of protein sequences with specific 

properties without prior chemical knowledge, for instance through the use of genetic 

algorithms in conjunction with the machine learning model reported here – to solve the 

inverse problem 84 A more immediate application may be other fibrous proteins, such as 

silks, keratins, resilins, reflectins and elastins, which have repeating protein sequences and 

could be optimized with such an algorithm to maximize mechanics, stability and functions. 

The formulation reported here could find many other generalizable applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Distribution of data from literature, based on experimental results.
a) Overview of the problem studied here, to predict the melting point Tm from the sequence 

of collagen molecules. b) Experimental melting temperatures collected. c) Normalized Tm 

value distribution. Thermal stability data sets for observed Tm values for Gly-X-Y tripeptide 

units in triple helical collagen-like peptides are integrated here to produce an algorithm for 

predicting global melting temperatures. Data from 26,27,45-54,37,55-57,38-44.
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Fig. 2. Overview of machine learning model.
a) We design a deep learning network to discover hidden features of collagen sequences 

by introducing embedding layer. b) The structure of our deep learning model starts at an 

embedding layer, followed by two 1D convolution layers, then we flatten all the features and 

send them into a fully connected layer for regression to determine Tm value. Figures S1 and 

S2 provide details of the neural network model.
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Fig. 3. Predictive accuracy of ColGen, and training performance.
a) Data comparing training with test set demonstrates a 95% confidence interval. Plotting R2 

of training / testing / generation. b) Training and validation error over epochs demonstrate a 

well fit model. The validation and training errors reach a plateau around 150 epochs.
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Fig. 4. Characterization of the effects of various types of mutations, predicted by ColGen.
a) Tm values of mutations in G, P, or O position demonstrates that mutations in the middle 

of the sequence are the most destabilizing for Tm values. Mutations in the G position are the 

most destabilizing to the peptide. Error bars indicate standard deviation of all amino acids 

that were mutated. b) Thermal stability as a function of collagen sequence length, where 

length is number of repeat units (GOP) demonstrates that there is a critical length at which 

the Tm can no longer be increased significantly. This critical length is consistent with other 

studies.85
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Figure 5. Characterization of effect of disorder on Tm, as predicted by the model.
A) Tm values of disorder arranged by G, P, or O position confirm that increasing mutations 

along the chain decreases thermal stability of the triple helix. Error bars indicate standard 

deviation of all amino acids that were mutated. b) Tm values of disorder in the O position 

demonstrates that initial mutations to polar, positive charged, and negative charged amino 

acids confer the same degree of stability in the molecule. However, upon increasing 

mutations, polar amino acids are the least destabilizing to the triple helix, suggesting that 

they should be used for bacterial expression of collagen where expression of O is not 

possible.
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