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Summary

The hippocampus is implicated in memory formation, and neurons in the hippocampus take part in 

replay sequences that have been proposed to reflect memory of explored space. By recording from 

large ensembles of hippocampal neurons as rats explored various tracks, we show that sustained 

replay appears after a single experience. Further, we found that with repeated experience in a novel 

environment, replay slows down, taking more time to traverse the same trajectory. This effect was 

dependent on experience, not passage of time, and was environment-specific. By investigating the 

slow gamma (25–50Hz) hover-and-jump dynamics within replays, we show that replay slows by 

adding more hover locations, increasing the resolution of the behavioral trajectory. We provide 

evidence that inhibition and cortical engagement both increase as replay slows. Thus, replays can 

reflect single experiences, and evolve with re-exposure, in a manner consistent with the encoding 

of greater detail into replay memories with experience.
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eTOC blurb

By recording from large ensembles of hippocampal neurons as rats explored various tracks, 

Berners-Lee et al. find that sustained replay appears after a single experience. Further, with 

repeated experience on a novel track, replay slows down, taking more time to traverse the same 

trajectory.

Introduction

How quickly is the memory of a new place stored in the brain, and how is that memory 

modified upon re-exposure to the same place? These questions are particularly relevant for 

the hippocampus (HP), which is implicated in both the representation of space (O’Keefe 

and Nadel, 1978) and the formation of memory (Scoville and Milner, 1957; Morris et al., 
1982). Hippocampal neurons are known as place cells because their responses are spatially 

localized within “place fields” as the animal moves around an environment. These place 

field responses have been a natural focus for questions about memory formation (Wilson 

and McNaughton, 1993; Mehta, Quirk and Wilson, 2000; Frank, Stanley and Brown, 2004). 

However, the interpretation of place field responses is complicated by the fact that the 

stimuli and behaviors associated with the place must be present for the place cell to generate 

the response. Here we consider instead a probe of memory in place cells that utilizes 

these cells’ remarkable capacity for activation outside of their place fields. Beginning just 

seconds after exploring space, HP place cells spike in sequences that depict the prior spatial 

experience on a speeded-up timescale (Nadasdy et al., 1999; Lee and Wilson, 2002; Foster 

and Wilson, 2006; Csicsvari et al., 2007; Karlsson and Frank, 2009; Gupta et al., 2010; but 

see Liu, Sibille and Dragoi, 2019 for an alternative perspective on the role of experience). 

This phenomenon, known as HP replay, offers an opportunity to monitor the development 

of place memories independently of the experiences during which they were encoded. We 

present here, to our knowledge, the first study of the rapid development of, and progressive 

changes to, the format of replay, in response to the repetition of individual experiences 

consisting of individual running laps along an initially novel linear track. Moreover, we 

differentiate between the various factors that might account for these changes such as the 

passage of time, or acquisition of experience in a different environment, or, the acquisition 

of experience in the current environment. Finally, we identify specific elements of replay 

associated with individual experiences, to reveal that the structure of replay is built up 

incrementally through the integration of distinct signatures of individual experiences.

There are reasons to expect that replays will develop rapidly in response to a novel 

environment. The HP is especially active in response to novelty (Larkin et al., 2014) 

and replay rates increase during and after exposure to a novel environment in a plasticity-

dependent manner (Foster and Wilson, 2006; Cheng and Frank, 2008; Silva, Feng and 

Foster, 2015). However, even in experiments with novel environments, replays are usually 

studied only after animals have run dozens of trials. Where replay has been reported after 

a single trial (Foster and Wilson, 2006), the duration of the memory was not assessed 

beyond a minute-long stopping period. So, the one-trial development of lasting replay 

remains underexplored. Similarly, there are reasons to anticipate changes to replay upon 

re-exposure to the same places. Many aspects of HP activity change across laps on a 
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novel track. More place fields appear on the track (Wilson and McNaughton, 1993), their 

shape changes (Mehta, Quirk and Wilson, 2000), neurons fire more (Frank, Stanley and 

Brown, 2004), coordination between HP place cells increases (Cheng and Frank, 2008), and 

compressed sequences of future positions emerge that align to the HP theta rhythm (~8Hz 

in the LFP) while the rat runs (termed “theta sequences”; Feng, Silva and Foster, 2015). 

Thus, with experience in a novel environment, there is increased activity, co-activity, and 

sequences during running that are on a timescale suitable for plasticity. However, whether 

the trajectory information depicted within replays changes due to experience has not been 

explored at an equally fine-grained temporal scale. For example, it is known that certain 

characteristics of replay can change day by day (Cheng and Frank, 2008), but it remains 

unknown whether and how replays change on a moment by moment basis. In particular, 

it remains to be determined whether, after re-exposure, replays repeat, replace or augment 

existing information contained within earlier replays.

Here we used high density tetrode recordings to monitor the spiking activity of up 

to hundreds of HP neurons simultaneously in freely moving rats exploring a novel 

environment, and measured the development of replay both upon initial exposure, and 

during repeated re-exposures. Our data reveal establishment of replay after a single 

experience, that can persist for at least an hour. We also find changes to replays after 

repeated experience, that augment the information in replay with representations of places 

that were not contained in the earlier replay patterns. In this way, replay memories evolve 

with experience, in a manner suggestive of the incorporation of greater detail with more 

experience.

Results

Replays appeared after a single experience

We analyzed data recorded from putative hippocampal (HP) neurons in 17 male Long-Evans 

rats as they ran back and forth on linear tracks, gaining different amounts of experience 

(number of rats in each experiment, and numbers of cells recorded simultaneously, listed 

in Table 1). To test whether replays occur after a single experience in a novel environment, 

we used the following behavioral design with four phases (Figure 1a): (I) Rats first rested 

on a familiar platform (Pre-rest; 29–64 minutes, mean 45) before (II) running 1–2 passes 

across a novel track (“Run 1”; 2 passes = 1 pass in each running direction = 1 lap). (III) 

They then rested again on the platform (“Rest”; 61–86 minutes, mean 71), after which (IV) 

they ran multiple passes on the track (“Run 2”; 40+ passes). Place fields were constructed 

from each cell’s spiking and the animal’s position, measured in phase II, using standard 

methods (Mehta, Barnes and Mcnaughton, 1997; Foster and Wilson, 2006; S Cheng and 

Frank, 2008; see Methods). Candidate replay events (lasting 100 – 500 ms) during either 

Pre-rest or Rest were detected as periods of elevated spiking across the population of 

recorded cells. Memoryless Bayesian position decoding was applied to each candidate 

replay event, using 2.5 cm position bins and 20 ms bins time bins (Figure 1b), again 

using standard methods (Davidson, Kloosterman and Wilson, 2009a; Silva, Feng and Foster, 

2015) We constructed thresholds on two measures applied to each candidate event: the 

absolute weighted correlation between position and time during the event (which is a single 
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score for each event using the posterior probabilities of all position-time combinations, see 

(Silva, Feng and Foster, 2015), and the maximum jump distance between the peak decoded 

position at successive time bins (also a single score for each event). For each of either 

Pre-Rest or Rest, we compared the number of candidate events passing both thresholds 

with a distribution of this same quantity based on 5000 shuffled data sets, generating a P 

value. Since any particular threshold value was arbitrary, we repeated this analysis for all 

combinations of all possible values of the two thresholds, to generate a matrix of P values 

for each rest period (eg Figure 1c).

Visual comparison of the P value matrices for Pre-Rest and Rest periods (before and after 

the novel experience, respectively) revealed a much wider range of significant parameters 

in the post-experience Rest period (Figure 1c), and visualization of the highest scoring 

events from Pre-Rest suggested poor sequence quality compared to Rest (Figure 1b). We 

quantified these effects using a procedure described previously (Silva, Feng and Foster, 

2015), which had established that random data, generated by the experimenter, produces 

significance in many regions of the P value matrix, thus exposing a danger of false positive 

results. The only reliably diagnostic part of the P value matrix (ie where random data 

did not produce significance) is a small region in the lower left corner, representing high 

correlations between position and time, concurrently with small steps between successively 

represented positions (green box, Figure 1c). We therefore applied this same analysis to our 

P value matrices, measuring mean P values across the diagnostic region, and also in the three 

particular edge cases close to the region border used in the previous study (green asterisks, 

Figure 1c). By all four measures, replay in the Pre-Rest period was not significant, while 

replay in the Rest period was highly significant. Thus, significant replay was detected during 

the >1 hour long Rest period, after only a single behavioral experience.

We also re-did these analyses equating either the number of events or time spent in both 

pre-rest and rest periods and still found that the pre-sleep period did not have a significant 

amount of replay (quadrant p-value matching the number of events P = 0.53, matching the 

time of the session P = 0.39) while there is still a significant amount of replay in post-sleep 

(P = 2.0 e-4 in each of the two control scenarios).

We also tested whether replays expressed on the track, known as local replays, appeared 

after single passes on a novel track. To do this we analyzed data from experiments where 

rats ran a full session (14+ passes) on a novel track. To enable comparison with the single 

lap study described above, for each stopping period on the track, we decoded replay as 

above but using spiking from only the immediately preceding or following lap to estimate 

place fields (preceding for passes >=1; following for the stopping period prior to the first 

pass). We did not observe replays when the rat was first placed on the track before exploring 

it (Figure 1d), however after only one pass across the track we observed a significant number 

of replays (Figure 1e). Thus, whether the rat remained in the same environment or was 

moved elsewhere, replays appeared after a single experience.

Replays slowed down with experience in a novel environment

Although replays appeared after a single lap, we hypothesized that the experience accrued 

over repeated passes might produce changes in replays on a novel track (Figure 2a). Indeed, 
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replays were rapid when they appeared and then slowed across the first 14 passes, taking 

more time to make their way across the track (Figure 2a–c). Replays increased in duration 

across the first 14 passes (Figure 2d). Further, replays decreased in slope across the first 14 

passes (Figure 2e). There were no changes in replay correlation or jump distance over this 

period (Figure S1a–b, all p ≥ 0.2) and any other significant changes we saw were unreliable 

(Figure S1c–l).

To test whether this effect was particular to novel environments, we also analyzed 

experiments where rats ran multiple-lap sessions on familiar tracks (defined as a track the 

rat had previously run at least one multiple-lap session). Changes in replay duration and 

slope were not observed on the familiar track, and the changes on the novel track were 

significantly greater than on the familiar (Figure S2). Additionally, we tested whether a 

novel change in the environment, such as a change in the reward landscape, could produce 

rapid replays. To test this we performed an experiment where rats ran on familiar track but 

the reward value had been changed on one end of the track, a manipulation that uniquely 

modulates reverse replays (Ambrose, Pfeiffer and Foster, 2016). This did not produce 

changes in duration or slope, and significantly differed from the effect of novelty (Figure 

S3).

Only local replays slowed down with experience

To test whether these changes in duration and speed on a novel track were unique to 

replays, we compared replays (Figure 3a, left) with non-replays (Figure 3a, right; defined 

as candidate events failing to pass the two thresholds that defined the green box in Figure 

1c). Non-replay events did not slow down over passes, and differed significantly in this 

from replays (Figure 3b). Although non-replays exhibited a significant decrease in slope, the 

change across laps was significantly less than for replays (Figure S4). The significant change 

in slope in non-replays is likely due to our high criteria for replays. When we looked at only 

the non-replays with a weighted correlation of less than 0.4 and maximum jump distance of 

greater than 0.7 (the opposite quadrant to the green box in Figure 1) we found that they did 

not change in slope across passes (N = 355, R = −0.02, P = 0.7). Thus, replays of the current 

environment slowed down more than non-specific spike density events.

To explore further the specificity of this effect, we tested whether remote replays of other 

environments slowed down while the rat gained experience in a new environment. To do 

this we analyzed data from experiments where we allowed rats to run on two different novel 

tracks (‘A’ and ‘B’, Figure 3c) with a rest session on a familiar platform in between. We 

found in this subset of data that local replays increased in duration (Figure 3d), and also, 

despite greater variability on trial 1, decreased significantly in speed (Figure S4). However, 

remote replays of Track A while the rat was on Track B did not slow down (Figure 3e, 

Figure S4), and comparison of local and remote replay revealed a significant difference 

(Figure 3e, Figure S4). Additionally, the duration and slope of Track B replays at the end 

of session 1 was not different than at the beginning of session 2. Thus, replays of the 

environment the animal was experiencing slowed down, while spike density events without 

trajectory information and replays of remote environments did not.
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Time alone was not sufficient to slow replays down

We tested an alternative hypothesis of how replays slow down: an internal process put in 

motion by a novel experience that could also occur offline. We tested this for replay during a 

rest period following a single pass, and found that replays did not increase in duration during 

rest (Figure 4a,b). However, when the rat was placed back on the track that it had hitherto 

experienced only once, replay duration increased across passes, and this was significantly 

different to the preceding rest (Figure 4b). There was a corresponding trend for slope to 

decrease (Figure S4e). Additionally, we found a breakpoint in duration during the first pass 

of Run 2 when replay durations started to increase (Chow test, N = 508, duration: F = 14.3, 

P = 1.8e-4) that was significant compared to a shuffled distribution (P = 0.001). By contrast, 

neither the duration nor slope of replay changed between the end of Rest and the first four 

passes of Run 2 (Wilcoxon rank-sum test, Rest: N = 228, Run 2: N = 8, duration: P = 0.8, 

slope: P = 0.2). Thus, replays did not increase in duration after a single experience, but only 

with continued experience.

We further considered that replays could continue to slow down during offline periods, 

provided that sufficient experience had already been accrued. To test this, we analyzed 

replays that occurred during a rest session after a full session on a novel track (Figure 4c). 

Replays slowed down across passes on the novel track, but after being placed in a familiar 

rest box, replays did not slow down further, and the difference was significant (Figure 4d; 

Two-way ANOVA: main effect of group: F(1,294) = 5.6, P = 0.019, main effect of pass: 

F(1,294) = 7.69, P = 5.9e-3, interaction: F(1,294) = 5.5, P = 0.020). There was no change 

in the duration or slope of replays between the end of Run 1 and the first four passes 

of Rest (Wilcoxon rank-sum test, Run: N = 216, Rest: N = 15, duration P = 0.96, slope 

P = 0.84). Additionally, there was a significant breakpoint in the changing duration and 

slope of replays at the beginning of Rest (Chow test N = 295, duration: F = 5.5, P = 0.02, 

Monte-Carlo P = 0.026, slope: F = 3.9, P = 0.048, Monte-Carlo P = 0.048). Taken together, 

irrespective of the amount of experience a rat had in a novel environment, replays did not 

slow down with rest after a novel experience, only with additional continued experience.

Replays slowed down by adding more, smaller steps

Replays do not move smoothly across an environment, but instead “hover-and-jump” at the 

timescale of slow gamma (Pfeiffer and Foster, 2015; 25–50Hz; Figure 5a–b). We examined 

how hover-and-jump dynamics change with experience. We first replicated previous findings 

that replays exhibited hover-and-jump dynamics at the slow-gamma timescale (Figure 5c). 

We then found that multiple features of hover-and-jumps including the step duration, hover 

duration, jump duration, gamma frequency, gamma power, and gamma mean resultant vector 

(MRV) remained constant across experience (Figure S5). However, the number of steps that 

replays took increased across passes (Figure 5d) while the distance that each step covered 

(step size) decreased (Figure 5e; Figure S1). Hence, replays slowed down by using more, 

smaller steps along the track (Figure 5f).

Experience allowed for greater detail to be incorporated into replays

We next explored the way in which steps were added to replays with experience, using 117 

sessions from 11 rats that ran novel or familiar tracks. First, we examined the distribution 
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of places on the track where replays tended to hover. Having established that there are 

fewer hovers within replays in early laps, we wanted to see whether, when taken all 

together, replays tended to hover in fewer locations in early laps (instead of reducing the 

frequency of hovering equally across all locations in early laps). To consider all available 

evidence for possible hover locations, we used all candidate events, rather than only those 

that passed our previous criteria for replay. Events tended to hover in certain places on 

the track, creating a bumpy distribution of hover locations (Figure 6a). To make sure 

that this effect did not depend on inhomogeneities in the distribution of place fields, we 

performed an artificial place field population flattening procedure, a cell ID shuffle, and 

decoding of running periods and compared the distributions of those control procedures 

(Figure S6). Through these analyses we found that the tendency of replays to dwell in 

particular locations depended on the mapping of spikes to information but not on any chance 

variability in the fields we sampled or any spurious effect of Bayesian decoding interacting 

with inhomogeneous place fields.

We next examined whether hover locations remained stable while replays slowed down 

across passes on novel tracks. To test this, we divided the first 14 passes of each novel 

session into four quartiles by time, such that each quartile had the same number of replays, 

and visualized the distribution of hover locations across these quartiles (Figure 6b). Across 

all sessions, the hover distributions were more similar across quartiles than a shuffle control 

in which the quadrants’ hover distributions were randomly circularly shifted (Figure 6c). 

Thus, although individual replays in early passes hovered at fewer locations, they were the 

same locations that later, slower replays would hover in.

We next wanted to test the hypothesis that unique hover locations were inserted over 

passes, consistent with the notion that detail was being added to replay as animals gained 

increasing experience. In this case, replays on the first pass should have exhibited only a 

subset of the final hover locations, with additional hover locations being inserted after later 

passes (Figure S7 “insertion hypothesis”). Alternatively, replays after the first pass, despite 

being individually shorter and containing fewer hover points, might have been capable as 

a population of sampling from all hover locations. This would imply that replay had the 

full capacity to access any of the final set of hover locations, and thus that no new learning 

occurred over passes (Figure S7; “sampling hypothesis”). To distinguish between these 

hypotheses, we tested whether there were fewer unique hover locations on the first pass of a 

novel track than one would expect by chance sampling. We compared the number of peaks 

of the first pass hover location distribution (Figure 6d, gray dotted lines) to the number of 

peaks of a distribution generated by randomly selecting replays from all subsequent passes, 

keeping the number of replays and the number of hovers consistent with the first pass. We 

found that the average of the real number of peaks in the first passes’ hover distribution 

was less than expected (Figure 6e; Monte-Carlo P = 0.022). Thus, new hover locations were 

inserted into replays due to the experience of running passes on the novel track (Figure 6).
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Longer, later replays were associated with higher interneuron activity and greater PFC 
neuronal modulation

We have shown that replays cross the track rapidly with little experience in a novel 

environment, and then slow down with subsequent experience. Novelty affects many aspects 

of brain function and so there could be multiple candidate mechanisms at work (Palacios-

Filardo and Mellor, 2019). We hypothesized that inhibition could be dampened during 

early replays, allowing for rapid pass between representations of position by HP pyramidal 

neurons. To test this, we analyzed HP interneurons recorded simultaneously with pyramidal 

neurons while rats ran on linear tracks (42–115 putative HP pyramidal neurons, median 

74; 1–4 putative HP interneurons, median 1, total 19). We asked whether interneurons 

fired less during replays in early passes than in later passes (Figure 7a). Indeed, the 

population of HP interneurons tended to increase replay-related firing across passes (Figure 

7b). Our interneuron yield was low, so to further test this theory we analyzed data from 

a publicly available dataset where rats ran on novel linear tracks and more interneurons 

were recorded (48–120 putative HP pyramidal neurons, median 59; 13–20 putative HP 

interneurons, median 17, total 82) (Grosmark, Long and Buzsaki, 2016). In this data set 

as well, interneurons increased their firing rate modulation to replays over passes (Figure 

7c–d). Thus, across two datasets, we observed that interneurons were more modulated to 

replays in later passes than early passes.

We also wanted to explore a possible consequence of having longer, slower replays in 

HP. Based on the idea that engaged cortical areas perform computation during HP replay 

(Buzsáki, 1996; Carr, Jadhav and Frank, 2011; Eichenbaum, 2017; Zielinski, Tang and 

Jadhav, 2020), we hypothesized that longer replays could give those cortical areas more 

computing time. We analyzed data from HP and prefrontal cortical (PFC) neurons recorded 

simultaneously in 11 sessions from four rats as they ran an asymmetric Y-maze and were 

rewarded for performing an alternation rule (62–137 putative HP pyramidal neurons, median 

79, total 968; 7–25 PFC neurons, median 14, total 158) (X. Wu and Foster, 2014; Berners-

Lee, Wu and Foster, 2021). We compared the z-scored firing rates of all PFC neurons during 

short replays and long replays and found that PFC neurons stayed modulated longer to 

longer events (Figure 7e).

Discussion

We have investigated how hippocampal (HP) replays appear and change in novel 

environments. We found that replays appeared after a single experience, while the animal 

was resting in either that same environment or a remote location. We then explored how 

replays change with subsequent experience and found that replays slowed down across 

passes on a novel linear track. We found that the only replays that slowed down were 

those of the environment that was actively being explored. They did so by adding hover 

locations, filling in details that had been absent in early, rapid replays. We also investigated 

HP interneurons and prefrontal cortical neurons recorded simultaneously with HP replay, 

providing clues as to the potential mechanisms and consequences of replay slowing down.

Our experiments focused on changes to the speed of replay across passes in the first session 

on a novel track. Previous work has explored changes in the occurrence of replay on the 
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time-scale of days (Frank, Stanley and Brown, 2004; Cheng and Frank, 2008). Replays 

tend to occur more frequently with more experience in a novel environment but less as that 

environment becomes more familiar across days (O’Neill et al., 2008; Cheng and Frank, 

2008). It is possible that the changes in the duration and speed of replay reported here for 

the first day on a novel track would reverse over subsequent days’ sessions on the same 

track, as suggested by recent data showing shortening durations and lengthening trajectories 

across sessions (Shin, Tang and Jadhav, 2019). Experiments where the duration and slope of 

replays is investigated in data recorded across days of the same, initially novel track would 

help determine how these changes occur at longer timescales.

To what kind of memory does this HP replay correspond? Episodic memory is one-trial 

learning by definition (Tulving, 1972), while with respect to retrieval, the memories can last 

a lifetime. We have demonstrated that replay exhibits this duality at least to some degree: 

it can be acquired from one experience (one lap), and retained for an extended period of 

time (at least one hour). A second feature of episodic memory is that the subject doesn’t 

merely recall information but “re-experiences” it, in a process that Tulving called “mental 

time travel” (Tulving, 2002). Replay exhibits an intriguing correspondence to this process, 

since the representation of current location moves to other locations while the animal is itself 

stationary.

These considerations support the explicit hypothesis made by others (Carr, Jadhav and 

Frank, 2011; Buzsáki, 2015) that replay represents a form of episodic memory retrieval. 

However, our results also point to a semantic aspect to replay, since information is added 

to the replay memory of the track upon subsequent re-exposures to it. This observation 

supports the idea of replay as a model of the world, as opposed to a record of individual 

experience, and this fits nicely with several other features of replay, including evidence 

that replay captures environmental topology, and that it can generate novel combinations 

of previous experiences (Gupta et al., 2010; Foster, 2017). Our results add the notion that 

there is a kind of “graceful improvement” to the model, so that “gist” information may 

be available early on even while the model is not complete. This is partially in line with 

recent computational suggestions that episodic memory may provide “gist”-like records of 

actually experienced behavioral experience that support an efficient mode of control under 

conditions of limited experience (Lengyel and Dayan, 2008; Gershman and Daw, 2017). 

On the other hand, the notion of incremental augmentation of initial memories suggests 

that there may not be such a sharp distinction between the proposed episodic and semantic 

modes of control as proposed in the models.

We note that application of a world model to decision-making is complicated by changes 

to the model that are unrelated to the world (in this case, temporal elongation that does not 

reflect spatial elongation). For example, choice-related quantities such as spatial distance, 

or temporally discounted prediction of future reward, that could in theory be mapped to 

time-within-replay, will be difficult to extract if these temporal relationships change. This 

difficulty is particularly acute if at the same moment some spatial trajectories can be in 

a “fast” replay state while others are “slow”, as suggested by our data. Using temporal 

surrogates to compare the two trajectories would be unreliable, and a global normalization 

strategy (such as modulation of values by a global neuromodulator) would fail to ameliorate 
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the problem. However, there are at least two alternatives that might resolve this paradox. 

First, according to theoretical work, reverse replay can function as an eligibility trace in 

the context of temporal difference learning (specifically TD(λ); Cichosz, 1999; Reynolds, 

2002), and so changes in the speed of replay effectively alter the window over which the 

eligibility trace is maintained (Figure 7g). It has been proposed that the eligibility trace 

should be extensive at the beginning of learning, and shrink as learning progresses (λ 
−> 0), to manage a changing bias-variance tradeoff (Watkins, 1989). This nicely matches 

the shift observed for replay (Figure 7g). Furthermore, replays tend to be reverse early 

in learning which also fits this proposal (Foster and Wilson, 2006). A second resolution 

involves reassessing more fundamentally the role of replay in memory. It is possible 

that the information content of replay is entirely restricted to the hover points, while the 

transitions between hover points correspond to a search process that does not explicitly 

encode information. According to this idea, temporal compression does not occur at all, 

since the hover locations are static (or possibly real-time) retrieval events, and the temporal 

relationship between them expressed by replay is not utilized. Rather, replay with multiple 

hover points would reflect a search process of transitioning between intermediary items in 

search of the desired memory item. Further research is required to distinguish between these 

alternatives.

What mechanism is responsible for the changes? We can ask first whether the changes 

in replay reflect a retrieval mechanism or an encoding one. Retrieval mechanisms might 

be expected to vary globally with changes in current behavioral state, such as anxiety or 

satiety, however our data suggest that replays of different speeds can be produced in the 

same behavioral state, depending rather on whether the environment is novel or familiar. 

Moreover, this dependence was shown to be a function of experience, rather than of the 

amount of intervening time, suggesting that the speed of replay is altered in a lasting way 

by some encoding process occurring at the time of experience, including at the times of 

repeated exposures to the same trajectory. Changes in the speed of replay appear to be 

driven only by environmental novelty, as we did not see changes in speed due to unpredicted 

reward changes. This result could be informative about potential mechanisms of replay 

slowing. “Common” novelty such as changes in local cues or objects in the environment is 

thought to engage a different circuit than “distinct” novelty that is achieved with a brand new 

environment (Duszkiewicz et al., 2019). Both cases affect HP neurons (Leutgeb et al., 2004; 

Larkin et al., 2014; Ambrose, Pfeiffer and Foster, 2016) and increase dopamine (O’Carroll 

et al., 2006; Takeuchi et al., 2016), however the former may involve ventral tegmental area 

while the latter may engage the locus coeruleus, both of which project to the HP (Takeuchi 

et al., 2016; Duszkiewicz et al., 2019). Thus, dopamine input from the locus coeruleus might 

be a potential mechanism at play and it would be fruitful to investigate the role either area 

plays in modulating HP replay speed. It would also be important to expand the tests of 

common novelty on replay speed from changes in reward to changes in barriers, local and 

distant cues, and objects.

The above considerations support an encoding explanation for replay speed changes, 

however this presents a conundrum. To add interstitial locations to a fast replay, the 

sequential relationships between locations in the fast replay must be undone, while the 

sequential relationships reflecting the new, more detailed sequences must be created. We 
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propose a simple mechanism to support these changes (Figure 7f) depending on changes in 

inhibition from HP interneurons as well as the connection strengths between HP place cells 

that represent nearby locations on the track. In early passes, HP place cells may be weakly 

connected having had only a few chances to fire together while running, but inhibition is 

low. This low inhibition allows replays to jump between positions that are further away on 

the track. Across laps, more place cells come online and the strength between locations on 

the track increases. Increased inhibition in these later laps disallows large jumps between 

locations, but enough plasticity has occurred that replays can jump to each hover location. 

Simulation studies have shown that increased inhibitory activity reduces the number of place 

cells that reach the threshold to fire in replay (Malerba et al., 2016). This aspect of the 

proposed mechanism could be tested in future studies by subtly changing inhibitory drive 

during stopping periods in a novel environment to observe changes in replay speed, possibly 

uncovering the original, large jumps seen in earlier replay sequences.

Our results also have implications for attractor models of replay. The hover-and-jump 

steps and accompanying gamma rhythm have been proposed to reflect underlying attractor 

dynamics, with replays dwelling in the relatively low-energy hover locations (Pfeiffer and 

Foster, 2015). We found that the temporal aspects of individual hover-and-jump cycles, as 

well as the frequency of the associated gamma rhythm, did not change across experience. 

Rather, replays took more, smaller steps with more experience, and the HP was able to take 

variably sized steps between hover locations. Further, once a hover location appeared, it 

remained, but additional hover locations were inserted over subsequent laps. Together these 

data imply that existing attractors are stable, while new attractors are incorporated quickly, 

within as little as one trial, and whatever plasticity is required to establish the asymptotic 

properties of the attractor are completed within one trial, i.e. further experience is not 

required. As in the previous work that initially reported hover-and-jump dynamics in replay 

(Pfeiffer and Foster, 2015), we were not able to detect physical correlates of hover locations, 

such as spatially localized inhomogeneities in stimuli or behavior. However, we cannot rule 

out the possibility of such correlates, perhaps arising from behaviors that have been linked 

to place cell activity changes, such as head-scanning behavior or vicarious trial-and-error 

(Monaco et al., 2014; Redish, 2016). We also did not explore the origins of this gamma 

rhythm or its relationship with the number of ripple bouts (Oliva et al., 2018) and cannot 

rule out the notion that concatenated ripples are the root of these gamma-timescale step 

dynamics.

Recent work using optogenetic stimulation suggests that longer replays may benefit learning 

(Fernández-Ruiz et al., 2019). Here we have shown that replays naturally lengthen, and 

do so by incorporating increased detail about the experienced environment. Supporting 

the notion that these changes are functional, we have additionally observed increased 

recruitment of cortical neuronal activity as a consequence of replay lengthening. These 

changes suggest that the slowing down of HP replay leads to increased replay-related 

processing in downstream cortical circuits. Examination of the information content of these 

activations will likely shed further light on the function and significance of HP replay.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Dr. David Foster 

(davidfoster@berkeley.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• This paper analyzes some existing, publicly available data. These accession 

numbers for the dataset are listed in the key resources table and in the references. 

Other data reported in this paper will be shared by the lead contact upon request.

• Individual units were separated using custom clustering software (xclust2, 

M.A. Wilson). All analyses were performed using custom code written 

in MATLAB (Mathworks). Custom code has been deposited in a 

public repository: ZenodoDOI:10.5281/zenodo.6330850; https://zenodo.org/

badge/latestdoi/466486266

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study, we recorded from a total of 17 male Long-Evans rats (Charles River) 

weighing 450–550 g, 10–20 weeks old. All procedures were approved by the Johns Hopkins 

University Animal Care and Use Committee and followed US National Institutes of Health 

animal use guidelines. Some of the data we presented were used in previous publications 

and re-analyzed here, outlined in Pre-training and behavior. Surgical implantation and 

tetrode adjustment and data acquisition was identical to prior studies (X. Wu and Foster, 

2014; Silva, Feng and Foster, 2015; Ambrose, Pfeiffer and Foster, 2016). The methods 

for pre-training and behavior has also been published but is re-stated here. We also 

augmented this data with publicly available data from four rats (Grosmark and Buzsaki, 

2016; Grosmark, Long and Buzsaki, 2016).

METHOD DETAILS

We habituated rats to daily handling and food deprived them to 85–90% of their baseline 

weight. We then pretrained them to run back and forth on a 1–1.8-m long, 6 cm wide, 

linear track to receive a liquid chocolate-flavored reward (Carnation). The tracks had a 

reward delivery well at each end. Following recovery from surgery, we food-deprived the 

rats again and retrained them on a training linear track with recording cables attached for 

approximately 2 days before recording sessions began. All data were collected using a 

Neuralynx data acquisition system. We tracked the rat’s position using two LED diodes (red 

and green) mounted on the micro-drive and an overhead camera capturing the behavior at 60 

Hz.
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We conducted several different experiments after pre-training, surgery and recovery. The 

different behavioral paradigms and the number of sessions and rats we used are outlined 

here and summarized in Table 1. To test whether replay appears and slows down after one 

lap (Figure 1a–c, Figure 4a–b) we conducted an experiment with four rats in five sessions 

whereby after resting in a rest box, the rat ran 1–2 passes (only one session had two passes) 

across a novel linear track after which he was placed back in the rest box, and subsequently 

placed back on the same track to run a full session (30+ min). Next, to test whether remote 

replays were affected by experience in a novel environment (Figure 3c–e) we conducted an 

experiment with 20 sessions from eight rats whereby rats ran a session on a novel linear 

track, and then ran a full session on a different novel track. To test whether replays slow 

down after a full run on a novel track (Figure 4c–d) we used 13 sessions from eight rats that 

ran a full session on a novel track and then rested in a familiar rest box. To test whether 

replays slow down in a novel environment (Figure 1d, Figure 2, Figure 3a–b, Figures 5–6, 

S1, S4, S6) we recorded 39 sessions from seven rats as they ran on a full session on a 

novel linear track (Silva, Feng and Foster, 2015). To test whether HP interneurons changed 

their modulation across passes (Figure 7a–b) we used nine of those novel sessions from 

five rats where interneurons were recorded. We augmented that analysis with a published 

publicly available dataset of rats running in five novel linear track sessions recorded from 

four rats (Grosmark and Buzsaki, 2016; Grosmark, Long and Buzsaki, 2016) (Figure 7c–d). 

To test whether cortical neurons responded differently to longer replays (Figure 8a) we used 

simultaneously recorded HP and prefrontal cortical neuron (PFC) data from 11 sessions 

from four rats as they ran on a novel asymmetric Y-maze and were rewarded for alternating 

between two arms while returning to a center arm (X. Wu and Foster, 2014). To test whether 

replays slowed down in familiar environments (Figure S2), we recorded from 78 sessions 

from nine rats as they ran on familiar linear tracks. To test whether replays changed their 

speed in response to a reward change in the environment (Figure S3), we used sessions two 

and three of a three session experiment where the second session had a change in the reward 

amount (4x or 0x) at one end (40 total sessions with six rats) (Ambrose, Pfeiffer and Foster, 

2016). In session one, rats ran on a familiar track with equal reward at each end. In session 

two, one of the ends of the track had either 4x or 0x the amount of reward as the other side 

and as it had in session one. In session three the rewards were equal to each other and the 

amounts from session one. In analyses to test hover location distributions (Figure S6) we 

used 117 sessions from 11 rats as they ran on either novel or familiar tracks.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculating place fields—We used spikes from putative HP pyramidal neurons to create 

place fields in two ways: whole session fields and lap-by-lap fields. For both methods we 

binned the linear track into 2.5 cm bins and only used times when the speed of the rat 

exceeded 5 cm/sec. For each neuron, separately for each running direction, we divided the 

spikes evoked in each position bin by the occupancy in that bin and then smoothed this spike 

rate with a gaussian filter (radius = 20 bins, sigma = 2 bins). For whole session decoding, we 

used all the laps in the session to build the fields. For lap-by-lap decoding we used only the 

last 2 passes (1 lap) to build the fields. We used these lap-by-lap fields to perform lap-by-lap 

decoding whereby we decoded the candidate events at each stopping period using the fields 
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from the most recent 2 (or 1 in the case of the first stopping period) passes across the track 

(described in decoding position within candidate events).

Identifying candidate events—We identified candidate events as HP putative pyramidal 

neuron spike density events. Spikes were binned into 1 ms bins and then smoothed with a 

gaussian filter (radius = 100 ms, sigma = 10 ms). For run epochs, we removed any spiking 

occurring when the rat was running (>5 cm/sec). We identified events that exceeded 3 

standard deviations of the mean spike rate across the whole session (we defined the mean 

and standard deviation separately for each epoch). Events were clipped at the start and end 

when they returned to the mean. We removed events with durations less than 100 ms or more 

than 500 ms.

Decoding position within candidate events—As stated in Calculating place fields, 
we decoded candidate events using either using whole session fields or lap-by-lap fields. 

We also performed decoding with overlapping bins (20 ms window moving by 5 ms) and 

with non-overlapping bins (20 ms bins; Figure 1). We performed probability decoding 

to create a posterior probability of the animal’s position for each time bin, as described 

previously (Silva, Feng and Foster, 2015) by means of Bayesian decoding with a uniform 

prior over position and assuming independent rates and Poisson firing statistics for all 

neurons (Davidson, Kloosterman and Wilson, 2009b).

Structure of candidate events and replays—We assessed the structure of candidate 

events and replays using metrics described previously (Davidson, Kloosterman and Wilson, 

2009b; Silva, Feng and Foster, 2015). (i) Weighted correlation: decoded probabilities (prob) 

were assigned as weights of position estimates to calculate the correlation coefficient 

between time (T) and decoded position (P):

corr(T , P , prob) = cov(T , P ; prob)
cov(T , T ; prob)cov(P , P ; prob)

where weighted covariance between time and decoded position is

cov(T , P ; prob) =
∑i prob Ti − m(T ; prob) Pi − m(P ; prob)

∑i probi

and weighted means of time and decoded position are

m(T ; prob) =
∑i probiTi
∑i probi

and m(P ; prob) =
∑i probiPi
∑i probi

(ii) We defined maximum jump distance as the maximum distance between peak decoded 

positions in neighboring decoded time windows for each candidate event normalized by the 

length of the track.

(iii) We defined track coverage as the range of weighted mean posterior probability 

estimates of position from the event divided by the length of the track.
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(iv) We determined the decoded slope by calculating the likelihood R that the decoded 

candidate event (duration of n time bins) is along the fitted line with slope V and starting 

location ρ was calculated as the averaged decoded probability in a 30 cm vicinity along the 

fitted line:

R(V , ρ) = 1
n ∑

k = 0

n − 1
Pr( | pos − (ρ + V × k × Δt) | ≤ d

where Δt is the moving step of the decoding time window (20 ms) and the value of d was 

empirically set to 25 cm for small local variations in slope. (For those time bins k when the 

fitted line would specify a location beyond the end of the track, the median probability of all 

possible locations was taken as the likelihood.) To determine the most likely slope for each 

candidate event, we densely sampled the parameter space of V and ρ to find the values that 

maximize R.

Testing the significance of the number of replays—To test whether the number of 

replays across passes or in rest after a single lap exceeded chance, we repeated analyses 

that were developed previously in the lab (Silva, Feng and Foster, 2015), re-stated here. 

Replays were defined as candidate events that obtained both strong weighted correlation and 

small maximum jump distance in the decoding (green asterisks in Figure 1c–d, top-right 

to bottom-left, weighted correlation > 0.6 and maximum jump distance < 0.4, weighted 

correlation > 0.7 and maximum jump distance < 0.4, weighted correlation > 0.7 and 

maximum jump distance < 0.3). To determine whether there was a significant number of 

replays under different conditions, we calculated the number of candidate events that passed 

both correlation and jump distance thresholds under all combinations, and compared them 

with the distribution of numbers from 5000 shuffled data sets that were generated through 

time shuffle (Davidson, Kloosterman and Wilson, 2009b), which was done by randomly 

shuffling the time-bins of each replay 5000 times. The Monte-Carlo P-value was calculated 

as (n + 1)/(r + 1), where r is the total number of shuffles and n is the number of shuffles 

that produce greater than or equal to the number of candidate events that meet the criteria 

compared to the actual data. We subsequently represented P-values under all combinations 

of the two thresholds in a color-coded matrix (significance matrix), where a P-value below 

0.05 was considered significant and marked in red. We reported P-values at the green 

asterisks as well as the cumulative replays that fall into the entire quadrant highlighted by 

the green box (Figure 1c–d, weighted correlation > 0.6 and maximum jump distance < 0.4 to 

weighted correlation > 0.9 and maximum jump distance < 0.1).

Replays across laps and general statistics—A lap is defined as two passes across 

the track, and we broke down changes over experience into individual passes across the 

track. Significant replays are defined as those with weighted correlation > 0.6 and maximum 

jump distance < 0.4 unless otherwise noted (the two thresholds that defined the green box 

in Figure 1c). We assessed how aspects of replay changed across passes using Pearson’s 

correlation tests comparing the aspect of replay with the pass the replay occurred on, across 

all replays. In some analyses (Figure S1i–l) we first averaged the aspects of all replays in 

a given session for each pass before performing a Pearson’s correlation. For all two-way 
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ANOVAs assessing different conditions across passes we designated the passes variable as 

“continuous” in MATLAB’s “anovan” function. All statistical tests are two-sided unless 

otherwise noted.

Rest session analyses—Rest sessions were divided into “pass” equivalents, each with 

a duration of the median pass time of the associated run session. The number of passes in 

the multi-lap experiment (Figure 4d) was capped at 14 passes. For visualization, data from 

the single-lap experiment (Figure 4b) was binned into four pass bins, but all stats in both 

experiments were performed without binning. For this data, replays during the rest between 

Run 1 and Run 2 were decoded with Run 1 place fields, and Run 2 replays were decoded for 

Run 2 place fields. We compared the durations and slopes of significant replays (weighted 

correlation > 0.6 and maximum jump distance < 0.4) across passes and epochs first by 

evaluating the Pearson’s correlation for each epoch, next by using a two-way ANOVA where 

“pass” was a continuous variable, and finally with a Chow test. The Chow test assessed 

whether replays changed differentially between the two sessions (run and rest) by asking 

whether the start of the second epoch was a significant breakpoint. We also performed a 

shuffle where the order of the replay was shuffled 1000 times to produce a distribution of 

Chow test statistics which we then compared to the real value using a Monte-Carlo test: (n 

+ 1)/(r + 1), where r is the total number of shuffles and n is the number of shuffles that 

produce a Chow test statistic greater than or equal to the actual data.

Gamma and hover-jump analyses—Gamma analysis was similar to in Pfeiffer and 

Foster’s work (Pfeiffer and Foster, 2015), outlined again here. For each tetrode, we used 

the electrode with the highest theta single-to-noise ratio. For slow gamma analysis, we 

band-pass filtered the LFP between 25 and 50 Hz. To calculate power in the slow-gamma 

frequency during SWRs, we calculated the absolute value of the Hilbert transform of the 

filtered signal, smoothed it (Gaussian kernel, SD = 85 ms), and averaged the z-scored power 

across tetrodes. We determined the phase of each spike relative to the gamma oscillation on 

the tetrode from which the spike was recorded and used those phases to calculate the mean 

resultant vector. We defined the peak of the oscillation as 0°/360° and the mid-point of the 

descending phase as 90°. We defined the instantaneous gamma frequency as the reciprocal 

of the duration of each gamma cycle in the filtered signal.

We used the weighted mean posterior probability estimates of position as the decoded 

position. We defined hover-bins in a replay as those that had a difference of less than 5 cm 

between the previous time-bin and the current time-bin’s decoded position (analyses were 

repeated with 2.5 cm hover cutoff and findings were similar and significant), and we defined 

all other bins as jump-bins. We defined hovers as consecutive hover-bins and jumps as 

consecutive jump-bins. We defined the number of steps as the number of jumps in a replay 

and the step duration as the duration between when jumps in a replay started. We calculated 

the duration for each jump, hover and step in a replay so that we could assess how they 

changed across passes (Figure S5). For this analysis, when a replay started or ended with a 

hover, that hover was not included.

Hover locations and controls—We used the weighted mean posterior probability 

estimates of position as the decoded position. We generated each session’s hover location 
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distribution by taking a histogram of all decoded positions during hovers from all candidate 

events (Figure 6a). To produce a flat distribution of place fields as a control, we computed 

the difference between the mean firing rate in each position bin (Figure S6b, black line) 

and the mean of firing rate across all the position bins. We then multiplied this bias vector 

with a matrix with the size of the population of place fields (Neuron # x position bin) of 

random numbers between 0 and 1 and added this biased noise to the place fields, while 

making sure that no position bin in a field fell below zero. We continued this until the 

maximum difference between the mean of each position bin and the mean of all position 

bins was less than or equal to 1e-4 (Figure S6b, red line). We then decoded candidate 

events with these artificially flattened fields and calculated a hover location distribution as 

described previously. We did this 100 times to obtain a distribution of artificially flattened 

hover location distributions. As another control, we also performed a cell ID shuffle, where 

the ID of each neuron’s place field was shuffled 100 times. We then compared the real 

hover location distribution with these alternatives by using a Pearson’s correlation for each 

of the 100 shuffles (Figure S6j). We also did a supplementary test of the number of peaks 

in the hover location distribution. We used MATLAB “findpeaks” function using a minimum 

peak prominence of 0.4 probability and a minimum peak distance of one tenth of the 

range of track positions. We did this for the real hover location distribution as well as 

the artificially flattened field distributions and assessed whether they were different using 

a Monte-Carlo test: (n + 1)/(r + 1), where r is the total number of shuffles and n is the 

number of shuffles that produced greater than or equal to the number of peaks in the hover 

location distribution in the actual data (Figure S6f). In addition, we performed another 

control whereby we decoded the running periods (anytime > 5cm/sec for longer than 100 

ms) using the same time-sclae decoding analysis and compared the distribution of decoded 

positions (Figure S6i) with the flat field distribution (Figure S6k) by taking the Pearson’s 

correlation coefficient for each session.

Assessing how hover locations change across passes—To assess how hover 

locations changed across passes, we first divided the candidate events that occurred in the 

first fourteen passes up for each session into four groups of equal numbers of candidate 

events. We took a histogram of the decoded positions of hover bins from the events for each 

group and calculated the Pearson’s correlation R value across all pairs of these four groups 

and then took the mean of those R values. To create a chance distribution, we randomly 

circularly shifted the groups’ hover location distributions 1000 times for each session. We 

then compared the average of the sessions’ R values to the average of the sessions’ R values 

for each shuffle (Figure 6c) and tested the significance with a Monte-Carlo test: (n + 1)/(r 

+ 1), where r is the total number of shuffles and n is the number of shuffles that produce 

greater than or equal to the average R value as in the actual data.

We then tested how likely it was to get a small number of peaks in the hover location 

distribution from candidate events that occurred on the first pass. The “first pass” was 

defined as the first pass that there was a candidate event (range: 1–2, first pass was pass 1 

in 26 sessions and pass 2 in 8 sessions), excluding any sessions that did not have enough 

replays in other passes to create 1000 different distributions (5 of 39 sessions). The first pass 

had a candidate event in 76% of the sessions (26), but for the other 24% of sessions (8) 
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in which the first event occurred on the second pass, we used the second pass as the “first 

pass.” We took a histogram of the decoded position for any hover bins from the first pass. 

To find the number of peaks, we used MATLAB’s “findpeaks” function using a minimum 

peak prominence of 1.5 bins and a minimum peak distance of one tenth of the range of track 

positions. To test whether this value was smaller than chance, we generated a distribution 

of shuffles by randomly choosing the same number of candidate events as occurred on the 

first pass from any of the subsequent passes. We also added a criterion that the number of 

bins that were spent hovering across these candidate events needed to equal the number in 

the true data. We generated a distribution of 1000 shuffles for each session and compared 

the average number of peaks across sessions to the average number of peaks for each of 

these shuffles (Figure 6f) using a Monte-Carlo test: (n + 1)/(r + 1), where r is the number of 

shuffles and n is the number of shuffles that produce a number of peaks that is less than or 

equal to the true number of peaks.

HP Interneuron and PFC analyses—For HP interneuron and PFC analyses we 

loosened our criteria for replay (to weighted correlation > 0.3 and maximum jump distance 

< 0.7). This presumably increased our false positive rate for replays but allowed us to study 

second order effects of HP interneuron and PFC’s responses to replays with more power by 

increasing the number of events.

Analyses for our interneuron data was identical to those used here with Grosmark et al.’s 

data (Grosmark, Long and Buzsaki, 2016). We binned the interneuron firing rate into 20 ms 

bins and computed a modulation window (m, from −100 ms to 100 ms) that we compared 

to a baseline window (b, from −400 ms to −100 ms) around the start of replays: (m−b)/

(m+b). We calculated this modulation index for each replay and correlated it with the pass 

the replay occurred on (using the first 26 passes; Pearson’s correlation). We plotted the 

correlation of each HP interneuron in a histogram and performed a one-sided Wilcoxon 

signed-rank test to test whether the population had correlation values greater than zero.

We recorded PFC neurons alongside HP neurons as rats ran on an asymmetric Y-maze(X. 

Wu and Foster, 2014). Here, we decoded candidate events using 2-d fields (with a gaussian 

filter with radius 50 cm, sigma 5 cm; lap-by-lap decoding with 20 ms bins with 5 ms sliding 

window) and then projected the estimates of position into the three linear arms as defined by 

the experimenter. For each candidate event, we calculated the number of time-bins that the 

peak posterior of position was on each arm, and identified periods where the peak posterior 

position was on one arm for at least 50 ms. If only one arm had representation for over 

50 ms, that event was designated as an event of that arm. If no arms had a representation 

for over 50 ms, the event was discarded. If two arms had a representation for over 50 ms, 

the event was cut into two events at the midpoint between when one arm’s representation 

ended and the next arm’s representation started. We binned each PFC neuron’s firing rate 

into 40 ms bins and z-scored this across time for each neuron. We split replays into two 

equal groups based on their duration. To visualize the difference between these groups we 

averaged the z-scored firing rate for each PFC neuron for each group of replays. We assessed 

the significance of the sustained modulation to long replays two ways. We used a two-way 

ANOVA to compare 0–80 ms after replays begin to 80–160 ms after, across short and long 

replays, to test whether PFC modulation was elevated for longer during long replays. We 
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also used a one-sided Wilcoxon signed-rank to test the difference in firing rate across all 

neurons between the two groups in the 80–160 ms window after replay started. We repeated 

this test using only replays of each of the three arms as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sustained replay appears after a single experience.

• With repeated experience in a new place, replay slows down.

• This effect was dependent on experience, not time, and was environment-

specific.

• Within hover-and-jump dynamics, replays slow down by adding more hover 

locations.
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Figure 1. Replay after a single experience.
(a) Behavioral design: Rats rested on a small platform (Pre-rest) then ran 1–2 passes on a 

novel linear track (Run 1), then rested again on the platform (Rest), and subsequently ran on 

the same track for multiple passes (Run 2).

(b) From one example recording day, three replays during Pre-rest (left) and Rest (right), 

defined as follows: Of replays that crossed 40% of the track, replays were ranked by 

wc*(1-jd) and the top three were chosen. “wc” is absolute weighted correlation, “jd” is 

maximum jump distance (see Methods). Values for wc and jd shown on the right of each 

event.

(c) Significance matrices over parameter space generated by different combinations of wc 

and jd, over all recording days using the behavioral design of Figure 1a. Color bar shows 

probability values for all matrices in figure: blue values, insignificant (P > 0.05); red values, 

significant (P < 0.05); white, P = 0.05. P-values for the parameters denoted by the green 

asterisks, listed top-right to bottom-left: Pre-rest: P = 0.21, 0.73, 0.48; Rest: P = 2.0e-4, 

2.0e-4, 2.0e-4. P-values cumulatively over all parameters in the green box: Pre-rest: P = 

0.39; Rest: P = 2.0e-4. The selection of asterisk and box parameters followed that in (Silva, 

Feng and Foster, 2015)

(d) (Top) Alternative behavioral design: Example behavior from a recording session in 

which a rat ran multiple passes on a novel track (i.e. without the initial exposure depicted 
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in Figure 1a). (Bottom) Significance matrices over all recording days using this behavioral 

design. P-values for asterisks, listed top-right to bottom-left : Stopping period prior to first 

pass: P = 1, 1, 1; Pass 1: P = 0.001, 2.0e-4, 0.6; Pass 2: P = 0.024, 8.0e-4, 0.13; Pass 3: P = 

2.0e-4, 2.0e-4, 2.0e-4. Cumulative P-values for box: Stopping period prior to first pass: P = 

1; Pass 1: P = 0.002; Pass 2: P = 0.006; Pass 3: P = 2.0e-4.
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Figure 2. Replay slowed down across experience in a novel environment.
(a) Rat position (black line) as a function of time in one example recording session, in a 

novel environment. The first 15 passes and subsequent stopping periods are shown. Red 

circles indicate times and locations of replay events, highlighted in b.

(b) (Top) Decoded probability of position for the seven example replays in a. Colors indicate 

posterior probabilities, as in color bar (right). (Bottom) Matched with each replay, the spike 

rasters from all simultaneously recorded place cells, ordered by place field peak. Three 

neuron’s spikes are highlighted in blue, green and red.

(d) The duration of replay increased across the first 14 passes in novel environments (N = 

1609, R = 0.14, P = 8e-9).

(e) The slope of replay decreased across the first 14 passes in novel environments (N = 1609, 

R = −0.054, p = 0.03). All error bars depict S.E.M., correlations are Pearson’s correlation 

values.
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Figure 3. Slowing was specific to replay vs non-replay, and local replay vs remote.
(a) Examples of a replay (left) and two non-replays (right; absolute weighted correlation > 

0.6 and maximum jump distance < 40% of the track).

(b) The duration of replay across passes for all replays (black) and all non-replays (gray). 

Non-replays did not increase in duration (N = 6893, R = 0.014, P = 0.24). Two-way ANOVA 

between group and pass: main effect of group: F(1,8501) = 18.6, P = 1.7e-5, main effect of 

pass: F(1,8501) = 30.1, P = 3.3e-8, interaction: F(1,8501) = 10.9, P = 9.9e-4.

(c) Schematic of behavior for local vs non-local experiment: rats ran Session 1 on novel 

Track A, rested on a familiar platform, and then ran Session 2 on a different novel Track B.

(d) The duration of local replays increased with passes of the track (One-tail test: N = 1069, 

Duration: R = 0.13, P = 8.6e-6).

(e) The duration of remote replays of Track A did not increase with passes of Track B 

(One-tail test: N = 157, R = −0.14, P = 0.96). Two-way ANOVA local replay and remote 

replay: main effect of group P > 0.9, main effect of pass F(1,1225) = 5.3, P = 0.021, 

interaction: F(1,1225) = 10.3, P = 1.3e-3. Additionally, the duration of Track A replays at the 

end of session 1 was not different than at the beginning of session 2 (Session 1 local replays 

> 10 passes N = 856, Session 2 remote replays passes 1–4 N = 33; Wilcoxon rank-sum 

test, duration: P = 0.3). All data show mean ± S.E.M. Correlations are Pearson’s correlation 

values. *** P < 0.001, ** P < 0.02, * P < 0.05
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Figure 4. Slowing was due to experience not time.
(a) Example behavior and (b) all data for replay durations during a single pass of a novel 

track, subsequent rest, and a second exposure to the track with multiple passes. Replays did 

not increase in duration during rest (One-tail test: N =228; Duration: R = −0.14, P = 0.98), c, 

P = 2.4e-4). Two-way ANOVA: main effect of group F(1,507) = 4.7, P = 0.03, main effect of 

pass F(1,507) = 9.9, P = 2.0e-3, interaction F(1,507) = 14.9, P = 1.3e-4.

(c) Example behavior and (d) all data for replay durations during, and in rest following, 

a multiple-pass session on a novel track. Replays of the novel track (Run 1) increased in 

duration with continued experience on the track (One-tail test: N = 216, Duration: R = 0.20, 

P = 0.0019), but did not continue to increase in duration during subsequent rest (One-tail 

test: N = 79, Duration: R = 0.054, P = 0.32). Two-way ANOVA: main effect of group: 

F(1,294) = 5.6, P = 0.019, main effect of pass: F(1,294) = 7.69, P = 5.9e-3, interaction: F(1,294) 

= 5.5, P = 0.020. All data show mean ± S.E.M. Correlations are Pearson’s correlation values. 

*** P < 0.001, ** P < 0.02, * P < 0.05
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Figure 5. Replays slowed down by adding more, smaller steps.
(a) An example replay on a novel track.

(b) Step size (left axis) and slow-gamma oscillation (LFP filtered in 25–50Hz band; right 

axis) signal during the replay in a.Troughs (180° phase) in the gamma trace indicated with 

dashed lines.

(c) Both the step size and spike probability of HP pyramidal neurons were locked to 

HP slow gamma (Rayleigh test, N = 841,115, Step size: Z = 316, P = 4.1e-233, Spike 

probability: Z = 5.5, P = 4.0e-3).

(d) Across passes of a novel environment, the number of steps in replays increased (N = 

1609, R = 0.097, P = 1.0e-4)

(e) The step size (distance each step takes) decreased (N = 1609, R = −0.044, P = 3.0e-5).

(f) Schematic of replay slowing down with experience by adding more, smaller steps. All 

data show mean ± S.E.M. Correlations are Pearson’s correlation values.
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Figure 6. Addition of hover locations.
(a) Hover location distributions (example session shown here) are a histogram built up of the 

hover locations from all candidate events (two example events in insert) Dotted lines on the 

histogram and circles on the track below mark the peaks in the hover location distribution on 

the track (see Methods).

(b) Equal quartiles of candidate events from the same example session sorted by time from 

early to late passes (passes 1–14) showing consistency in hover locations across experience.

(c) Correlation value across all sessions between the four equal quartile distributions of 

hover locations (mean across the six pairwise correlations) (line). Histogram of correlation 

value calculated in the same way from 1000 data shuffles (see Methods). Real value was 

significantly greater than shuffles (Mean correlation = 0.54, Monte-Carlo P = 0.001).
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(d) The distributions of hover locations for passes 1–4 for one example session. Hover 

locations in the first pass shown by dashed red lines for each pass (peaks of histogram; see 

Methods).

(e) Number of unique hover locations for first pass of a novel environment (line), compared 

to histogram of the same quantity calculated from 1000 shuffled datasets, in each of which 

the number of first pass events is preserved but the events themselves are sampled randomly 

from all later passes of the same session. Real number was significantly lower than the 

shuffles (Monte-Carlo P = 0.022).

(f) Example three replays across Passes 1, 2, and 5 with a schematized version of hovers 

below, showing how unique hover locations build up across passes.
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Figure 7. Relationship to hippocampal inhibitory interneuron activity, and to prefrontal cortical 
unit activity
(a) Example HP interneuron firing rate centered on the start of replays in the first 8 passes 

(red) or passes 9–26 (black) in a novel environment. The modulation window is marked in 

green (m; −100 to 100 ms) and the baseline window is marked in blue (b; −400 to −100 ms).

(b) Correlation between modulation to replay (defined as [m+b]/[m−b]) and pass number, 

across all HP interneurons (N=19). The distribution of HP interneurons’ correlations was 

significantly greater than zero (one-sided Wilcoxon signed-rank test, N = 19, Z = 2.4, P = 

9.3e-3).

(c) An example neuron from a separately recorded group of rats running on novel linear 

tracks (Grosmark et al., 2016) in the same format as in a.

(d) Correlation between modulation to replay (defined as [m+b]/[m−b]) and pass number, 

across all HP interneurons (N=82). The distribution of HP interneurons’ correlations was 

significantly greater than zero (one-sided Wilcoxon signed-rank test, N = 82, Z = 2.9, P = 

2.0e-3).

(e)PFC neurons’ z-scored firing rate centered on the start of short (blue) or long (red) HP 

replay events (median split of the duration of replays). Data show mean ± S.E.M. One-sided 

Wilcoxon signed-rank test, 80–160 ms after replays, N = 158, 158, Z = −2.7, P = 3.5e-3; 

Two-way ANOVA between length of event and first 80 ms after replay compared to next 

80 ms: Main effects P > 0.05, Interaction: F(1,1264) = 4.2, P = 0.04. (Replays of each arm 
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separately: one-sided Wilcoxon signed-rank test, N = 158,158, 80–160 ms after replays: 

Arm 1 P = 0.097, Arm 2 P = 0.012, Arm 3 P = 4.0e-5.).

(f) Schematic of how experience changes replay. Left: early in a novel experience replays 

are rapid and short; interneurons are less modulated and connections between place cells are 

weak. Right: later in experience replays are slow and longer; interneurons are more active 

and connections between place cells are stronger.

(g) Replay can act as an eligibility trace for reinforcement learning. Left: upper schematic 

depicts a fast replay, as occurs early in training. Lower schematic depicts a decaying gain 

factor for synaptic plasticity, as might characterize, for example, a spike-time dependent 

plasticity rule for place cell inputs to a downstream neuron in the striatum. If plasticity is 

also modulated by a dopaminergic reward prediction error, the striatal neurons will learn 

a value function according to TD(λ), or, if the striatal neurons are also selective to action 

choice, action-values according to SARSA(λ). Right: as replay slows down, the window 

over which TD learning acts shrinks: this is equivalent to reducing λ, as is recommended as 

learning proceeds (see text for discussion). *** P < 0.001, ** P < 0.02, * P < 0.05
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Table 1.

Experiment details

Experiment Included data 
published previously

Included 
sessions not 
previously 
used in 
papers (in 
addition to 
any re-
clusted or 
previously 
used data)

Figure Sup. 
Figure

Rats Sessions HP PYR 
Neurons 
range 
(median)

Other 
Neurons 
range 
(median)

One lap No Yes 1a–c, 4a–
b

--- 4 5 38–155 (133) ---

Novel Some data also used 
in (Feng, Silva and 
Foster, 2015; Silva, 

Feng and Foster, 
2015)

Yes 2, 3a–b, 
5, 6.

1, 4a–d, 
5, 6, 7

7 39 21–115 (66) ---

Familiar Some data also used 
in (Pfeiffer and Foster, 

2015)

Yes 6a * 2, 6 9 75 20–208 (101) ---

Reward change Data also used in 
(Ambrose, Pfeiffer 
and Foster, 2016)

No --- 3 6 38 55–208 
(110.5)

---

Remote Re-clustered versions 
of data that was used 
in (Silva, Feng and 

Foster, 2015)

Yes 3c–f 4e 8 20 16–112 (46.5) ---

Remote w/rest Same as “Remote” Yes 4c–d 4f 8 13 16–158 (46) ---

Novel with 
Interneurons

Same as “Novel” Yes 7a–b --- 5 9 42–115 (74) INT: 1–4 (1), 
19 total

Grosmark et al. (Grosmark, Long and 
Buzsaki, 2016)

No 7c–d --- 4 5 48–120 (59) INT: 13–20 
(17), 82 total

Pre-frontal 
cortex

Data also used in (X 
Wu and Foster, 2014; 
Berners-Lee, Wu and 

Foster, 2021)

No 7e --- 4 11 62–137 (79) PFC: 7–25 
(14), 158 

total

*
Combined with Novel
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Recordings from hippocampal area CA1, 
PRE, during and POST novel spatial 
learning.

Grosmark, A. D., Long, J. and Buzsaki, G. 
(2016) ‘Recordings from hippocampal area 
CA1, PRE, during and POST novel spatial 
learning.’, CRCNS.org

DOI: http://dx.doi.org/10.6080/K0862DC5

Experimental models: Organisms/strains

Male Long-Evans rats Charles River RRID:RGD_2308852

Software and algorithms

MATLAB R2020b MathWorks RRID:SCR_001622

Custom data processing and analysis code This paper Zenodo DOI: 10.5281/
zenodo.6330850; https://zenodo.org/badge/
latestdoi/466486266

Neuron. Author manuscript; available in PMC 2023 June 01.

http://CRCNS.org
https://zenodo.org/badge/latestdoi/466486266
https://zenodo.org/badge/latestdoi/466486266

	Summary
	eTOC blurb
	Introduction
	Results
	Replays appeared after a single experience
	Replays slowed down with experience in a novel environment
	Only local replays slowed down with experience
	Time alone was not sufficient to slow replays down
	Replays slowed down by adding more, smaller steps
	Experience allowed for greater detail to be incorporated into replays
	Longer, later replays were associated with higher interneuron activity and greater PFC neuronal modulation

	Discussion
	STAR Methods
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	QUANTIFICATION AND STATISTICAL ANALYSIS
	Calculating place fields
	Identifying candidate events
	Decoding position within candidate events
	Structure of candidate events and replays
	Testing the significance of the number of replays
	Replays across laps and general statistics
	Rest session analyses
	Gamma and hover-jump analyses
	Hover locations and controls
	Assessing how hover locations change across passes
	HP Interneuron and PFC analyses


	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7.
	Table 1.
	Key resources table

