Table 2.
Performance of the forecasting models
S. no | Model | MSE | MAE | R2 |
---|---|---|---|---|
1 | Random forest | 6.92e-05 | 0.0028 | 0.9351 |
2 | XGBoost | 4.82e-05 | 0.0024 | 0.9547 |
3 | Gradient boosting | 9.42e-05 | 0.0032 | 0.9116 |
4 | AdaBoost | 7.38e-05 | 0.0027 | 0.9308 |
5 | Artificial neural network | 6.45e-04 | 0.0129 | 0.3958 |
6 | RF-XGBoost-LR (hybrid) | 4.79e-05 | 0.0024 | 0.9551 |
The bold values shows the performance of the proposed model