TABLE 4.
Performance Comparison of Predictive Models: Responders
Algorithms | Clusters | AUC | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|
Logistic regression | |||||||
All features | 1 | 0.757 (0.213) | 0.617 (0.193) | 0.800 (0.133) | 0.658 (0.202) | 0.790 (0.095) | 0.734 (0.110) |
2 | 0.608 (0.297) | 0.592 (0.382) | 0.642 (0.171) | 0.517 (0.285) | 0.725 (0.224) | 0.621 (0.171) | |
Combination | 0.682 (0.262) | 0.604 (0.294) | 0.721 (0.169) | 0.587 (0.251) | 0.757 (0.170) | 0.677 (0.151) | |
Whole cohort | 0.638 (0.144) | 0.400 (0.154) | 0.760 (0.177) | 0.570 (0.209) | 0.642 (0.110) | 0.615 (0.131) | |
10 features | 1 | 0.757 (0.232) | 0.500 (0.360) | 0.900 (0.141) | 0.658 (0.390) | 0.783 (0.125) | 0.759 (0.110) |
2 | 0.708 (0.233) | 0.633 (0.343) | 0.617 (0.172) | 0.550 (0.270) | 0.710 (0.236) | 0.620 (0.207) | |
Combination | 0.732 (0.227) | 0.566 (0.349) | 0.758 (0.211) | 0.604 (0.331) | 0.746 (0.187) | 0.689 (0.176) | |
Whole cohort | 0.653 (0.146) | 0.371 (0.276) | 0.778 (0.128) | 0.422 (0.243) | 0.654 (0.085) | 0.609 (0.076) | |
Random forest | |||||||
All features | 1 | 0.710 (0.233) | 0.367 (0.331) | 0.900 (0.141) | 0.583 (0.466) | 0.723 (0.131) | 0.707 (0.171) |
2 | 0.550 (0.220) | 0.433 (0.288) | 0.750 (0.204) | 0.517 (0.309) | 0.620 (0.167) | 0.600 (0.197) | |
Combination | 0.630 (0.235) | 0.400 (0.303) | 0.825 (0.187) | 0.550 (0.386) | 0.671 (0.155) | 0.683 (0.181) | |
Whole cohort | 0.706 (0.192) | 0.431 (0.267) | 0.794 (0.139) | 0.571 (0.230) | 0.677 (0.126) | 0.648 (0.142) | |
10 features | 1 | 0.550 (0.291) | 0.233 (0.274) | 0.760 (0.310) | 0.370 (0.462) | 0.607 (0.190) | 0.570 (0.244) |
2 | 0.500 (0.297) | 0.183 (0.254) | 0.750 (0.264) | 0.333 (0.471) | 0.515 (0.150) | 0.487 (0.217) | |
Combination | 0.525 (0.287) | 0.208 (0.258) | 0.755 (0.280) | 0.351 (0.454) | 0.561 (0.173) | 0.528 (0.228) | |
Whole cohort | 0.697 (0.098) | 0.443 (0.249) | 0.796 (0.142) | 0.548 (0.214) | 0.686 (0.062) | 0.655 (0.062) | |
XGBoost | |||||||
All features | 1 | 0.657 (0.185) | 0.550 (0.273) | 0.760 (0.207) | 0.607 (0.330) | 0.746 (0.137) | 0.684 (0.118) |
2 | 0.477 (0.272) | 0.433 (0.235) | 0.550 (0.307) | 0.492 (0.287) | 0.540 (0.220) | 0.407 (0.195) | |
Combination | 0.567 (0.244) | 0.491 (0.255) | 0.655 (0.276) | 0.549 (0.306) | 0.643 (0.207) | 0.545 (0.211) | |
Whole cohort | 0.655 (0.150) | 0.476 (0.223) | 0.662 (0.139) | 0.488 (0.152) | 0.650 (0.138) | 0.583 (0.136) | |
10 features | 1 | 0.607 (0.343) | 0.433 (0.316) | 0.760 (0.207) | 0.525 (0.389) | 0.704 (0.148) | 0.643 (0.201) |
2 | 0.423 (0.230) | 0.392 (0.125) | 0.550 (0.258) | 0.457 (0.216) | 0.497 (0.134) | 0.475 (0.145) | |
Combination | 0.515 (0.299) | 0.412 (0.234) | 0.655 (0.251) | 0.491 (0.308) | 0.600 (0.173) | 0.559 (0.191) | |
Whole cohort | 0.652 (0.065) | 0.486 (0.206) | 0.708 (0.106) | 0.530 (0.049) | 0.675 (0.086 | 0.616 (0.058) |
AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.