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Breast cancer (BC) affects 1 in every 8 women in the United States and is currently the most prevalent cancer worldwide. Precise
staging at diagnosis and prognosis are essential components for the clinical management of BC patients. In this study, we set out to
evaluate the feasibility of the high-definition single cell (HDSCA) liquid biopsy (LBx) platform to stratify late-stage BC, early-stage BC,
and normal donors using peripheral blood samples. Utilizing 5 biomarkers, we identified rare circulating events with epithelial,
mesenchymal, endothelial and hematological origin. We detected a higher level of CTCs in late-stage patients, compared to the
early-stage and normal donors. Additionally, we observed more tumor-associated large extracellular vesicles (LEVs) in the early-
stage, compared to late-stage and the normal donor groups. Overall, we were able to detect reproducible patterns in the
enumeration of rare cells and LEVs of cancer vs. normal donors and early-stage vs. late-stage BC with high accuracy, allowing for
robust stratification. Our findings illustrate the feasibility of the LBx assay to provide robust detection of rare circulating events in
peripheral blood draws and to stratify late-stage BC, early-stage BC, and normal donor samples.
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INTRODUCTION

Accurate prognosis at the time of a diagnosis with early-stage
breast cancer is a critical aspect of the diagnostic workup. Analytes
in the blood-based liquid biopsy carry the opportunity for better
characterization of the systemic burden of the disease during this
clinical process. Breast cancer (BC) is the most common cancer in
women globally and with 7.8 million cases diagnosed in the past 5
years, it is the world’s most prevalent cancer overall'=3,
Approximately 94% of patients are initially diagnosed with early-
stage BC, without evidence of macroscopic metastasis, however,
despite the initial lack of detectable metastases and administra-
tion of subsequent treatments, 40% of the early-stage BC patients
will go on to develop recurrence over their lifetime*. Relapse,
progression, and onset of distant metastasis (late-stage BC) have a
significant negative impact on clinical outcomes, dropping the
5-year survival rate from 91% to less than 30%'-3. Considering the
impact on survival rates, it is vital that robust stratification of early-
stage BC be made possible at the time of the initial diagnostic
workup and throughout the course of the disease.

Currently, the standard screening method for BC is mammo-
graphy, with a tissue biopsy to confirm diagnosis®. In patients
with biopsy confirmed cases of BC, tumor burden and treatment
response are typically assessed by clinical evaluation of symptoms
alongside imaging®. While cross sectional advanced imaging is
sometimes used to identify disease spread, it is expensive, often
inconclusive, and fails to provide insight into the status and
changes of the molecular profile of the tumor. Solid tissue biopsies
have great utility in clinical care and can provide information on
tumor biomarker and histological subtyping, molecular profiles,
and advise treatment planning. Nevertheless, they have several
caveats. First, primary tumors or metastatic lesions are not always

easily accessible. Second, although solid biopsies provide valuable
insights into the molecular signatures of the tumor, they are
limited to the precise sampling area and could fail to capture the
tumor heterogeneity'®'*, However, since CTCs have been shown
to be shed from both primary and metastatic tumor sites, they
have demonstrated the potential to resolve spatial heterogeneity
of the tumor'>2', Third, and most crucial, solid biopsies are
inherently incompatible with characterization of the subclinical
systemic spread of the disease in addition to being challenging for
longitudinal monitoring since they are painful, invasive, and
always carry a potential risk to the patient?2-25,

Liquid biopsy (LBx), with a focus on peripheral blood, is a
minimally-invasive method that can provide key information
about the tumor and the systemic burden of the disease in the
circulatory system?”?8, The utility of LBx for BC detection in the
metastatic setting has been well-established with numerous
clinical trials focusing on their utility to inform clinical decision-
making and improve patient outcomes?°-3>. Most of the LBx
studies on BC focus on the presence of circulating tumor cells
(CTCs), however, in the case of early-stage BC where CTC positive
patients are scarce®~%°, more comprehensive analysis of tumor-
related analytes in the LBx could be beneficial to assess the
disease status. Currently, the CellSearch (Menarini Silicon Biosys-
tems, Bologna, Italy) system has 510k device clearance by the FDA
for BC and is limited only to late-stage metastatic disease®’.
CellSearch enriches for circulating tumor cells (CTCs) using the cell
surface marker Epithelial Cell Adhesion Molecule (EpCAM), which
makes it unable to detect cells with downregulated EpCAM
undergoing epithelial-to-mesenchymal transition (EMT) and
mesenchymal CTCs. With the growing focus on mesenchymal
CTCs and their more aggressive role as metastatic precursors
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Fig. 1 HDSCAS3.0 Rare Event Gallery. a Images represent two candidate rare events, categorized by marker expression. b Signal distribution
of immunofluorescent markers for channel-classified cells. Designated colors represent each channel-classified group, assigned in a. (LEVs not

included due to variation in segmentation). Scale bar represent 10 pm.

compared to epithelial CTCs*2*3, there is a need for next

generation LBx systems that can detect the more complete set
of epithelial, mesenchymal, endothelial and transitional cell types.

The third generation high-definition single cell assay
(HDSCA3.0) workflow provides the opportunity to identify and
characterize epithelial, mesenchymal, endothelial, and hemato-
poietic cells, as well as large extracellular vesicles (LEVs), building a
platform capable of providing a more comprehensive overview of
the circulating rare events and capturing the heterogeneity of the
LBx**. The non-enrichment method of HDSCA provides a single
cell profile of all circulating events, with a sensitivity of 1 in 6
million cells, compared to clinical flow cytometry, which has a
reported sensitivity of 1073 to 10~>%. Furthermore, the HDSCA
workflow samples do not require immediate analysis after
processing and can remain in cryopreservation for prolonged
periods prior to analysis, as opposed to other methodologies
which typically requires immediate analysis. Last, by combining
high resolution imaging and immunofluorescence, we can capture
a higher resolution of cellular morphology and biomarker
localization.

In this study, we demonstrate the feasibility of using the
HDSCA3.0 to stratify late-stage BC, early-stage BC, and normal
blood donor status, using peripheral blood samples. We observe a
distinctly higher presence of CTCs in the late-stage BC, compared
to the early-stage and normal groups. Additionally, we determine
that tumor-associated LEVs are found more frequently and in
greater abundance in the early-stage BC group compared to late-
stage and normal blood donor groups. In combination, this allows
for both the stratification of cancer vs. normal and early- vs. late-
stage BC with statistical confidence. Our results open the
opportunity for a complementary LBx at the time of diagnostic
workup for cancer detection, stage stratification, and disease
monitoring.
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RESULTS

Patient demographics and clinical baseline

A total of 155 blood draws from 130 participants, with 74 (56.9%)
treatment-naive, nonmetastatic early-stage patients, 26 (20%)
metastatic late-stage, and 30 (23.1%) normal donors, were
included in this study. All participants were female. Patients’
demographics are provided in Supplementary Table 1. The total
sample set included 310 slides each containing approximately 3
million nucleated cells that were processed and analyzed for rare
event detection (Methods).

Identification, enumeration, and morphometric analysis of
rare cells

We identified and categorized candidate rare cells using an
automated rare cell detection workflow followed by manual
enumeration based on the four-channel immunofluorescence
staining corresponding to DAPI, PanCK, VIM, CD45/CD31, and
cellular morphology (Fig. 1). Kruskal-Wallis H test (one-way
ANOVA) was performed for all comparisons and the p values
below *0.05 were considered statistically significant. Enumeration
of total rare cells revealed a significantly higher overall count in
late-stage BC patients (mean = 48.67, median = 36.36, range =
8.01-383.32 cells/ml) compared to early-stage BC (mean = 36.19,
median = 23.06, range = 1.58-284.54 cells/ml; p =0.01), and late-
stage BC compared to normal donors (mean = 14.27, median =
12.89, range = 0-37.43 cells/ml; p=0.0015x10%". A significant
difference was also observed between the early-stage BC patients
and normal donors (p =0.0012) (Fig. 2a, b).

CTCs that were identified as DAPI + | PanCK+ were defined as
epi.CTCs and enumerated for normal donor, early-stage BC, and late-
stage BC samples. The epi.CTC enumeration of all samples revealed
a median of 0 cells/ml (mean = 2.66, range = 0-50.10 cells/ml). For
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Fig. 2 Enumeration of Circulating Rare Cells. a Frequency of enumerated rare cells between late-stage, early-stage, and the normal group
based on channel classification. b Comparison of the distribution of rare cells between groups, Kruskal-Wallis H test (one-way ANOVA)
performed on all samples. Graphs display total cells per ml. All p values below *0.05 considered statistically significant. ¢ UMAP rendering of
rare cells based on morphometric features. Each designated color represents a classification group marked in a. d Heatmap illustrating signal
intensity of biomarkers on DAPI + | PanCK+ cells detected in late-stage and early-stage BC groups. e Correlation plot (Pearson correlation)
between rare cell categories and LEVs for all samples. Each designated color represents a classification group marked in the figure on panel a.
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Fig. 3 Comparison of Tumor-Associated LEVs. a Frequency of enumerated LEVs between late-stage, early-stage, and the normal group
based on channel classification. b Comparison of the distribution of LEVs between groups, Kruskal-Wallis H test (one-way ANOVA) performed.
All p values below *0.05 considered statistically significant. ¢ Size comparison of LEVs and rare cell events. All sizes represent diameters in
micron. Sizes calculated by feature conversion from 100x images. d Heatmap displaying signal intensity of biomarkers on LEVs and
DAPI + PanCK+ cells. e Scaled frequency plots of rare cells and LEVs in patients, designated colors represent classification groups marked in

the figure on panel c.

the late-stage group, 75% of patients had at least one epi.CTC (mean
= 6.75, median = 2.02, range = 0-50.10 cells/ml), compared to only
27% of early-stage patients (mean = 0.77, median = 0, range =
0-12.13 cells/ml; p=0.0011x10"%). Late-stage patients had a
significantly higher level of epi.CTCs than the normal donor group
(mean = 0.39, median = 0, range = 0-2 cells/ml; p = 0.0038x107°3).
No significant difference in the epi.CTCs was observed between the
early-stage BC and the normal donor groups. (Fig. 2a, b).

VIM + CTCs (mes.CTCs) were identified as DAPI+ |PanCK+ |
VIM + . For all samples we observed a median of 0 cells/ml (mean
= 1.27, range =0-16.42). The late-stage BC group revealed a
significantly higher overall count of mes.CTCs (mean = 2.52,
median = 1.02, range = 0-16.42 cells/ml), in comparison with the
early-stage BC (mean = 0.91, median = 0, range = 0-7.06 cells/ml;
p=0.0019) and the normal donor (mean = 0.55, median = 0,
range = 0-5 cells/ml; p = 0.0024) groups. No significant difference
was observed between the normal donor and early-stage BC
groups) (Fig. 2a, b).

npj Breast Cancer (2022) 112

Additional  candidate  CTCs  include  PanCK + |CD45/
CD31 + (double positive CTC) and PanCK+ |VIM + | CD45/
CD31 + (triple positive CTC) cells. No significant difference was
observed between the levels of double positive CTCs between the
groups. The triple positive CTCs were found at significantly higher
frequencies in both the early-stage BC (mean = 12.80, median =
1.80, range = 0-240.04 cells/ml; p =0.008) and the late-stage BC
(mean = 4.34, median = 2.07, range = 0-40.56 cells/ml; p = 0.014)
compared to the normal donor (mean = 1.56, median = 0, range
0-17.062 cells/ml) group. No significant difference was
observed in the comparison between the early- and late-stage
groups (Fig. 2a, b).

Other detectable rare cells include morphologically distinct
VIM + | CD45/CD31 + | DAPI +, CD45/CD31 + | DAPI+, DAPI+,
and VIM + | DAPI + cells. The VIM + | DAPI 4 only cells showed a
significant increase in the late-stage group (mean = 14.43, median
= 4.74, range = 0-266.82 cells/ml), compared to the early-stage
(mean 3.84, median 144, range 0-27.81 cells/ml;
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Fig. 4 Clinical Data. a Comparison of summed LEV levels between differing statuses at last follow-up in early-stage BC. Kruskal-Wallis H test
(one-way ANOVA) performed. All p values below *0.05 considered statistically significant. b Comparison of summed LEV levels between early-
stage patients with clinically identified HER2 4 and HER2- tumors. Kruskal-Wallis H test (one-way ANOVA) performed. All p values below *0.05
considered statistically significant. Data illustrated in truncated violin plots.

p = 0.00056) and the normal donor (mean = 1.72, median = 0.93,
range = 0-12.10 cells/ml; p =0.0031x10~%?) groups (Fig. 2a, b).

Morphological analysis was conducted on the identified rare
cells based on extracted image features from EBImage. A visual
representation of the identified rare cells based on their
morphometric features has been provided as a uniform manifold
approximation and projection (UMAP) figure (Fig. 2c), as well as a
low-dimensional TSNE plot (Supplementary Figure 1). In the UMAP
projection, the majority of manually classified cells cluster
together by channel type classification, indicating robust manual
classification across the cohort. The CTCs detected in late-stage BC
samples demonstrated higher PanCK expression, measured by
normalized signal intensity, (mean = 0.80, median = 0.87, range =
0-0.60) than their early-stage BC counterparts (mean 0.61,
median = 0.56, range = 0.44-0.74, p = 0.00015) (Fig. 2d).

A correlation analysis between the frequency of classified rare
cell categories was conducted for all samples and no strong
correlation was found (Fig. 2e).

Identification and enumeration of tumor-associated LEVs

LEVs, classified as DAPI-| PanCK+ events were most prevalent in
the early-stage BC group, with 94% of patients having at least one
LEV per ml, compared to 60% in the late-stage group (Fig. 3a).
Kruskal-Wallis H test (one-way ANOVA) was performed and all p
values below *0.05 were considered statistically significant. The
frequency of LEVs was overall elevated in the early-stage BC group
(mean = 43.78, median = 20.31, range = 0-400.52), compared to
the late-stage BC (mean = 2.92, median = 1.37, range = 0-21.91,
p =0.0027x107°"2) and the normal donor (mean = 0.99, median
= 0, range = 0 to 6.73, p=0.0024x10""%) groups. A significant
difference was also observed between the late-stage BC and the
normal donor groups (p = 0.018) (Fig. 3b). Identified LEVs fell into
the size range (5.89-14.02 micrometer in diameter), representing
the smallest rare event category (Fig. 3c). The marker expression
profile of classified LEVs were similar to that of epi.CTCs, with
some expression of VIM and CD45/CD31 detected, as shown in
Fig. 3d. Scaled plots depicted in Fig. 3e indicate a higher overall
presence of LEVs in the early-stage group, compared to the late-
stage and normal donor. A correlation analysis between the

Published in partnership with the Breast Cancer Research Foundation

frequency of classified rare cell categories and LEVs was
conducted for all samples and no strong correlation was found.

Correlations with clinical outcome

In the patient population with identified hormone receptor (HR)
and end-of-therapy status (44 early-stage/57% and 12 late-stage/
46%) (Supplementary Table 1), we evaluated whether the
identified rare events are associated with clinical markers and
patient outcomes. In the early-stage BC group, the overall median
time from diagnosis to follow-up was 27 months (range = 8 to 99,
n = 44), with no reported mortalities. We performed Kruskal-Wallis
H test (one-way ANOVA) and all p values below *0.05 were
considered statistically significant.

Our results indicate a significantly higher frequency of LEVs in
the early-stage BC group with the last follow-up status of “alive,
free of disease” (mean = 46.10, median = 20.25, range = 0-400.52
LEVs/ml, n = 39) in comparison to those with “alive, active cancer”
(mean = 18.03, median = 11.89, range = 7.41-32.88 LEVs/ml;
p=0.047, n =5) (Fig. 4a). Levels were also found to be elevated in
patients with human epidermal growth factor receptor 2 (HER2)
negative (mean = 48.22, median = 21.46, range = 0-400.52 LEVs/
ml, n =37) compared to HER2 positive (mean = 15.13, median =
11.34, range = 7.41-46.41 LEVs/ml; p = 0.026, n = 7) tumor status
(Fig. 4b). No significant correlation was observed between HER2
tumor status and follow-up patient status in the early-stage BC
patients.

In the late-stage BC group, the overall median time from
diagnosis to follow-up was 19.5 months (range = 1 to 41, n = 14),
with no cases reported to be cancer-free. We found significantly
higher epi.CTC levels in group with the follow-up status of
“deceased, active cancer on day of death” (mean = 21.96, median
= 17.68, range = 0 to 50.10 cell/ml, n = 6), compared with “alive,
active cancer” (mean = 1.37, median = 1.48, range = 0-3.40 cell/
ml; p=0.045, n = 8).

Epi.CTC counts were also found to be elevated in BC patients
with estrogen receptor (ER) positive (mean = 14.78, median =
2.18, range = 0-50.10, n =9) compared to ER negative (mean =
1.93, median = 2.44, range = 0-3.83, p=0.072, n=15) tumor
status. The same relationship was also detected between the
progesterone receptor (PR) positive (mean = 20.33, median =

npj Breast Cancer (2022) 112
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13.70, range = 0-50.10, n=6) and PR negative (mean = 2.59,
median = 1.69, range = 0-10.15, p=0.086, n=38) patients,
although both levels did not reach statistical significance. No
significant relationship was observed between ER/PR tumor status
and follow-up patient status in the late-stage BC patients. No
significant difference was observed between HER2 tumor status
and epi.CTC levels.

Patient level classification model

The random forest model exhibited acceptable performance, as
measured by the ROC/confusion matrix, between normal vs.
cancer and early-stage vs. late-stage comparisons (Fig. 5a, b). LEV
enumeration was the strongest predictor for correctly classifying
into late, early, and normal, followed by epi.CTC enumeration. (Fig.
5¢). Our normal vs. cancer model reached 0.99 AUC in classifica-
tion and an F1 score (0.98%), exhibiting robust performance.

npj Breast Cancer (2022) 112

Additionally, our early-stage vs. late-stage model reached 0.91
AUC, with similar performance for F1 score (0.86%) (Fig. 5d).

DISCUSSION

In this study, we set out to stratify late-stage BC, early-stage BC,
and normal donor peripheral blood samples based on rare
circulating events identified using the HDSCA3.0 LBx platform. We
utilized 5 biomarkers to identify and distinguish rare circulating
events as epithelial, mesenchymal, endothelial, or hematological
origin. Using this comprehensive profiling without prior enrich-
ment, we were able to observe events in all samples, allowing for
robust stratification with both manual classification and mathe-
matical model-building approaches. We were able to detect
reproducible patterns in the enumeration of rare cells and LEVs.
These reproducible patterns separate the relevant groups of
cancer vs. normal control and early-stage cancer vs. late-stage

Published in partnership with the Breast Cancer Research Foundation



cancer with high accuracy. Our findings demonstrate the
feasibility to provide robust and reproducible detection of rare
circulating events in peripheral blood draws and to stratify late-
stage BC, early-stage BC, and normal donor samples.

Since metastasis is the most common cause of cancer
mortality', earlier detection and precise diagnosis of existent
and early tumor dissemination is imperative to improving patient
outcomes. In our study, we found a statistically significant increase
of CTCs in patients of the late-stage compared to early-stage BC
groups. Previous studies have attributed the higher frequency of
CTCs in late-stage BC patients to the dissemination of tumor?,
therefore the lower incidence rate observed in the early-stage
cancer setting could be explained by the organ-confined nature of
the disease and lack of widespread metastasis. Previous work has
demonstrated a link between CTC burden in late-stage BC and
progression-free survival®’, however, administration of treatment
has been shown to affect the abundance of CTCs*. In this study of
late-stage BC patients, with draws taken either on and off therapy,
we were able to detect epi.CTCs in 75% of the samples and
observe negative association of epi.CTC count with overall
survival. Therefore, our results using a high-sensitivity none-
nrichment technology demonstrate that epi.CTCs may still be
detected, and provide prognostic value prior to the initiation of
therapy, as well as during treatment. Furthermore, we have
observed heterogeneity in the channel-type classification of rare
cells, and each is likely a mixture of multiple functional cell types.
For the PanCK + |CD45/CD31 + population, we have previously
identified this group as platelet-coated CTCs**. The group of
PanCK + |[VIM + | CD45/CD31 + cells that display platelet coating
around the cell can be mesenchymal platelet-coated CTCs, as
previously —described*®.  Additionally, bona-fide PanCK + |
VIM + | CD31 + cells can show up triple positive with a distinctive
morphology that is characteristic of the endothelial-phenotype?.

Despite advances in the LBx field, the low abundance of CTCs,
especially in early-stage cancer, remains a challenge for establish-
ing precise diagnosis and prognosis in this setting. Furthermore,
tumors are complex and are comprised of heterogeneous cell
types, with CTCs that are defined by dual positivity for EpCAM and
Cytokeratin only representing a fraction of the total tumor cells
responsible for dissemination and relapse®®=>2. Motivated by these
prior observations, this next-generation LBx was designed to
identify and characterize the tumor heterogeneity in the
circulatory system. By including eight rare cell categories, we
were able to observe the heterogeneous phenotypes in circulation
and to use these multiple LBx analytes to stratify the samples
according to disease status with high statistical significance.

Detection of LEVs represent a promising new LBx analyte®>. Our
results demonstrate a statistically higher overall presence of
tumor-associated LEVs in the early-stage BC group, compared to
the late-stage BC group and the normal donors. The high level of
LEVs in the early-stage BC patients could be explained by the
presence of the primary tumor, since these early-stage BC patient
samples were collected prior to any treatment, at which time the
patient still had their primary tumor intact. This contrasts with the
late-stage patients, who are more likely to have had their primary
tumor removed prior to the time of blood draw. Tumor-associated
LEVs have been described as a component of the tumor
microenvironment>*, and primary tumors have been shown to
harbor more cellular heterogeneity in comparison to metastatic
lesions which are mostly composed of tumor cells®. Additionally,
previous findings have implicated extracellular vesicles for their
role in facilitating premetastatic niche preparation®®*’. Tumor
progression and metastasis requires the acquisition of invasive
traits within the primary tumor alongside the generation of a
permissive microenvironment at distant metastatic sites. Previous
studies have found that in the case of BC, extracellular vesicles can
initiate organ-specific premetastatic niche preparation®®. These
results suggest that there is an additional possibility that LEVs are
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secreted into circulation in pre-metastatic early-stage disease from
the primary tumor to facilitate the preparation of metastatic
niches and are less inclined to be present in late-stage disease
where the metastatic sites are well-established. Furthermore, a
large number of tumor-derived vesicles have been shown to
induce immune cell dysfunction and increase immunosuppression
to promote tumor progression and immune escape®®%'. Tumor-
derived extracellular vesicles can impact tumor immunity by
impairing antigen presentation®?, inhibiting cytotoxic immune cell
activity®>%, or increasing immunoregulatory activity®®®’. In the
present study, the finding of the high prevalence of large EVs in
the treatment-naive breast cancers may be indicative of biology
distinct from the late-stage observations and model findings. Our
study demonstrates that detection of LEVs, when applied along-
side rare cell enumeration, provides a more sensitive and specific
LBx analysis. Future experiments in both clinical samples and
model systems will be needed to further delineate the exact
mechanism of LEV interactions with the immune system as well as
their role in metastatic niche preparation.

The OPTICOLL study was originally designed to provide a
comprehensive analysis of pre-analytical variables of LBx®®%° and
is providing a platform for discovery using sample preparation
methods that have been previously validated. A limitation of this
study is the number of patients with the sufficient follow-up that
we were able to include. The results of this study should however
provide sufficient feasibility to conduct larger trials and higher
patient recruitment as the next step towards clinical utility. Both
the use of additional lineage markers and the inclusion of LEVs in
addition to CTCs has significantly advanced our ability to separate
the patient groups. The patients with sufficient follow-up did not
yet include plasma preparation for cell-free analysis, which one
would expect to also add value. However, previous studies in
breast cancer have shown that cfDNA is not able to stratify breast
cancer stages in suspected patient populations, in treatment-naive
samples’®. Additionally, for early-stage BC, there is a challenge due
to the lower concentrations of ctDNA, compared to cfDNA”". In
future studies, we plan to further investigate the merits of a
combined approach for analysis as the sample preparation has
now been optimized to enable both, cell-free and cell-based
analysis from the same blood draw.

However, despite the current limitations, we were able to
observe a highly significant difference in the LBx analytes between
breast cancer patients and normal controls, and between the late-
stage and early-stage BC samples collected. While the current
observations are consistent with prior hypotheses of various liquid
biopsy analytes, we expect these results will trigger further model
system experiments to continue the exploration of the early and
late-stage implications of LEVs in particular as well as the design of
additional trials to define the clinical utility as a potential adjunct
to the diagnostic workup.

A more comprehensive profiling of the LBx as demonstrated
here has the potential to complement the current diagnostic
workup following a positive screening test. The current NCCN
guidelines do not recommend systemic imaging such as FDG-PET
scanning for the majority of early-stage patients as most patients
will receive some form of adjuvant treatment’?. However, LBx
findings, such as the frequencies of LEVs and CTCs, may provide
diagnostic and prognostic information that would impact the
utility of adjuvant systemic therapy in subsets of patients.
Emerging data has also shown the importance of tumor profiling
in the recurrence setting for optimized intervention using both
targeted and chemotherapeutics. LBx may additionally identify
those patients who have occult secondary tumors as evidenced by
persistence of LEVs following primary surgery or predict whether
post-operative patients are more or less likely to benefit from
adjuvant radiotherapy. For patients at risk of breast cancer, LBx
may also have a role as an adjunct to radiologic screening for
breast cancer by stratifying the Breast Imaging-Reporting and
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Data System (BI-RADS) category 3 patients into categories 2 or 4
based on LBx results. Such a combined approach may reduce the
patient anxiety associated with indeterminate mammography
results and reduce the need for 6 months call-back imaging. Each
of these hypotheses require testing in large-scale prospective
trials.

METHODS
Study design

A total of 100 BC patients and 30 normal donors are included in
this study. Cancer patients were recruited to the prospective
Physical Sciences in Oncology study (PSOC-0068) -entitled
OPTlImization of blood COLLection (OPTICOLL)%®. Here, we present
a subset consisting of 74 patients clinically classified as early-stage
and 26 patients clinically classified as late-stage BC at time of
enrollment (Supplementary Table 1.). All cancer patients were
enrolled between April 2013 and January 17, 2017, at multiple
clinical sites in the United States: Billings Clinic (Billings, MT), Duke
University Cancer Institute (Durham, NC), City of Hope Compre-
hensive Cancer Center (Duarte, CA), and University of Southern
California Norris Comprehensive Cancer Center (Los Angeles, CA).
Patient recruitment took place according to an institutional review
board-approved protocol at each site and all study participants
provided written informed consent®®%°, This study was approved
by the University of Southern California, University Park Institu-
tional Review Board (FWA 00007099, USC UPIRB #UP-14-00523).

The study schedules were coordinated and unified across the
clinical sites. For patients included in this study with non-
metastatic treatment naive disease (early-stage BC), the blood
draws were acquired prior to any treatment. Patients with
metastatic disease (late-stage BC) had multiple blood specimens
collected at the beginning of a new line of therapy, either as a first
line of therapy or post-progression while on therapy for the
treatment of metastatic malignancy. A total of 10 normal blood
donor samples were procured from the Scripps Clinic Normal
Blood Donor Service and defined as individuals with no known
pathology. Additionally, 20 age and gender-matched normal
donor samples were provided from Epic Sciences and defined as
women between 45 and 82yrs (median =57) with no known
pathology. Normal donors will refer to the accumulation of both
Scripps Clinic and Epic Sciences samples.

Blood collection and processing

Approximately 8 mL peripheral blood was collected in 10-mL
blood collection tubes (Cell-free DNA BCT, Streck) at the respective
clinical site. Blood specimens were shipped to and processed at
the Convergent Science Institute in Cancer (CSI-Cancer) at the
University of Southern California within 24-48 h of collection, as
previously described?®. Upon receipt, all samples underwent red
blood cell lysis and the remaining nucleated cell population was
plated in a monolayer on custom-made cell adhesive glass slides
(Marienfeld, Lauda, Germany), at approximately 3 million cells per
slide. The prepped slides were subsequently incubated in 7% BSA,
dried and stored at —80 °C%76869,

Immunofluorescence assay

Two slides from each patient, corresponding to approximately 6
million nucleated cells, were thawed and subsequently stained
using IntelliPATH FLX™ autostainer (Biocare Medical LLC, Irvine,
CA, USA) in batches of 50 slides (46 patient slides [2 slides per
patient] and 4 control slides) as previously described?”445°, All
steps were performed at room temperature. Cells were fixed with
2% neutral buffered formalin solution (VWR, San Dimas, CA) for
20 min, nonspecific binding sites were blocked with 10% goat
serum (Millipore, Billerica, MA) for 20min. Slides were
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subsequently incubated with 2.5 ug/mL of mouse antihuman
CD31 monoclonal antibody (Ab) (clone: WM59, MCA1738A647,
BioRad, Hercules, CA) preincubated with 100ug/mL of goat
antimouse IgG monoclonal Fab fragments (115-007-003, Jackson
ImmunoResearch, West Grove, PA) for 4 h. After incubation with
CD31-Fabs, cells were permeabilized using 100% cold methanol
for 5 min. Cells were then incubated with an Ab cocktail consisting
of mouse antihuman pan-cytokeratin (PanCK) mAbs (clones: C11,
PCK-26, CY-90, KS-1A3, M20, A53-B/A2, C2562, Sigma, St. Louis,
MO), mouse antihuman CK19 mAb (clone: RCK108, GA61561-2,
Dako, Carpinteria, CA), mouse antihuman CD45 Alexa Fluor® 647
mAb (clone: F10-89-4, MCA87A647, AbD serotec, Raleigh, NC), and
rabbit anti-human vimentin (VIM) mAb (clone: D21H3, 9854BC,
Cell Signalling, Danvers, MA) for 2 h. Slides were then incubated
with Alexa Fluor® 555 goat antimouse IgG1 antibody (A21127,
Invitrogen, Carlsbad, CA) and counterstained with 4/,6 diamidino-
2-phenylindole (D1306, ThermoFisher, Waltham, MA) for 40 min.
Slides were then mounted with an aqueous mounting media to
preserve cellular integrity for further downstream analysis.

Image acquisition and feature extraction

After staining, the slides were imaged using automated high-
throughput fluorescence scanning microscopy at 100x magnifica-
tion, resulting in 2304 image frames per slide, as previously
reported?’. Exposure times and gain for PanCK, VIM, CD45/CD31,
and DAPI (DNA) channels were determined computationally by
the scanner control software to normalize the background
intensity levels across all slides. Using customized EBImage
(4.12.2) software and the R scripting language for image analysis,
cells were segmented, and their cellular and nuclear descriptors
were extracted as previously described*.

Rare event identification, classification, and analysis

Rare events were detected by the third-generation of our
computational algorithm for unsupervised clustering, as pre-
viously described®*. In brief, this approach allows for the
classification of cells into common and rare groups based on
principal component analysis of cells’ morphometric features and
subsequent hierarchical clustering (Fig. 6). Additionally, the
algorithm identified large DAPI-|PanCK+ events (1-10 um in
diameter) to be classified as LEV candidates, as previously
demonstrated®3,

Rare cells were then further classified into 8 classes based on
the combinations of immunofluorescent marker expression in 3
categories: PanCK, VIM, CD45/CD31. Four categories showed no
expression of cytokeratins but were determined positive for either
VIM or CD45/CD31, or determined positive or negative for both.
Enumerations of the cellular categories were done by trained
analysts who determined the final enumeration per cell type.

Finally, the frequency of rare events (CTCs and LEVs) for each
category was reported as the concentration of rare cells per ml
(mean, median, range), calculated by measuring the total number
of nucleated cells per two slides, estimated using DAPI-stained
nuclei count, against the total complete blood count of the
received sample.

Morphometric comparison

The computational approach uses EBImage to segment cells and
extract quantitative cellular and nuclear features**. For our
morphometric analysis, we utilized the extracted features to
further analyze the identified rare cells. Features correspond to cell
size and eccentricity, nucleus size and eccentricity, immunofluor-
escent intensity of the DAPI, PanCK, VIM, CD45/CD31 channels,
and the ratios of all combinations of these features to one another.
Values for the immunofluorescent channels are reported as the
mean signal over cell area, normalized per slide to interval 0-1.
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Statistical analysis

Statistical two-sided analyses were performed using R (Version
4.1.1,, Boston, MA). Groups were compared using Kruskal-Wallis
(one-way ANOVA on ranks) for non-parametric rank-based
dependence between multiple groups to compare whether the
distributions have a median shift greater than the null hypothesis,
and student’s t-test to determine if there is a significant difference
between the means of two groups, for all analyses. P values below
0.05 were considered statistically significant. No correction was
conducted as the comparisons were planned comparisons. Pearson
correlation was used to evaluate the relationship between study
groups.

Machine learning model

The primary goal of this study was to determine the ability of
HDSCA3.0 rare cell detection to stratify normal donor, early-stage
BC, and late-stage BC into distinct groups based on the rare
cellular events detected using the LBx approach. While this
stratification was initially performed using statistical analysis on
the cell counts, we explored the ability of using machine learning
models with the target variable of disease state. We used the
manual enumeration recorded as event counts per ml per
fluorescent channel type. To overcome discrepancies in the
sample size, we randomly oversampled the late-stage BC group
to match the size of the early-stage BC cohort. Similarly, we
oversampled the normal group to match the size of the combined
BC groups. To ensure we were not biasing the dataset by
oversampling two groups, we also performed combinations of
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random undersampling of early-stage and oversampling normal,
as well as undersampling both early- and late-stage groups.

For the model, we tested random forest, logistic regression, and
naive bayes algorithms using Python 3 (Python Software
Foundation, https://www.python.org/) and Orange 3.0 data-
mining toolbox in Python”. Model comparison was done by
measuring the accuracy, sensitivity, specificity, and AUC (area
under the ROC curve) to evaluate performance. In all comparisons,
the random forest was the top performing algorithm.

To determine the stratification efficiency of the LBx using
HDSCA3.0, a random forest algorithm was used to develop models
to predict disease state classification. We built a random forest
model with 10 trees. Our random forest model was trained,
validated, and tested using data from 296 samples (74 early-stage,
74 latestage, and 148 normal donors). Training and validation of
the model was performed on ~75% of the dataset through
random selection (111 BC and 111 normal donors for cancer vs.
normal/56 early-stage BC and 55 latestage BC for early vs. late),
using 10-fold cross validation. Testing of the model was
performed on the remaining ~25% of the dataset (37 BC and 37
normal donors for cancer vs. normal/18 early-stage BC and 19 late-
stage BC for early vs. late), thereby maintaining the class
distribution across training/validation/test sets.

DATA AVAILABILITY

All data discussed in this manuscript are either included in the main manuscript text.
Data files and image repository can be accessed through BloodPAC Accession ID:
BPDC000126 and the permalink (URL) https://data.bloodpac.org/discovery/
BPDC000126
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CODE AVAILABILITY

The code used to analyze the single data uses standard third-party open-source
libraries and packages in R and Python. The code used to identify CTCs in the HDSCA
workflow uses custom code and is proprietary and licensed to Epic Sciences for
commercial use.
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