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ABSTRACT

There are unmet needs for pharmacologic agents beyond current medications, such as 
statins, to effectively lower low-density lipoprotein cholesterol levels to target goals, 
especially in patients with very high or extremely high risk. Pharmacological targeting of 
mRNA represents an emerging, innovative approach with the potential to expand upon 
current therapies. In RNA-targeted therapeutics, a novel approach is the use of chemically 
modified oligonucleotides to inhibit the production of target proteins at their sites of gene 
coding. There are two main classes of RNA-targeted therapeutics: single-stranded antisense 
oligonucleotides (ASOs) and double-stranded small inhibiting RNAs. ASOs are synthetic 
molecules with a length of 15–30 nucleotides that are designed specifically to bind to a 
target mRNA in a sequence-specific manner. Using these agents to inhibit the translation of 
key regulatory proteins, such as apolipoprotein CIII, apolipoprotein(a), and angiopoietin-
like protein 3, has demonstrated treatment efficacy for dyslipidemia. Many cardiovascular 
outcome trials with ASOs are ongoing. As clinicians, we must carefully monitor the long-
term safety and efficacy of this new modality through large clinical trials in the future.

Keywords: Antisense oligonucleotides; Dyslipidemia; Apolipoprotein C-III; Apolipoprotein(a); 
Angiopoietin-like protein 3

INTRODUCTION

Low-density lipoprotein (LDL) is a crucial risk factor for the initiation and progression of 
atherosclerotic cardiovascular disease (ASCVD).1,2 Clinical trials have consistently shown 
that reductions in low-density lipoprotein cholesterol (LDL-C) levels by statins reduce 
morbidity and mortality in patients with ASCVD,3,4 and there is no argument with major 
guidelines that recommend statins as first-line therapy to lower LDL-C levels.5,6 However, in 
a subgroup of very high-risk patients, statin monotherapy or a combination therapy of statins 
with other lipid-lowering agents does not effectively lower LDL-C to reduce major adverse 
cardiovascular events. These include patients with familial hypercholesterolemia, those 
who are refractory to existing lipid-lowering agents, and those who are intolerant to statins.7 
Clearly, there is a need for pharmacological agents to lower LDL-C levels to target goals in 
very high-risk patients that cannot be met by current therapeutics.
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Traditional small-molecule lipid-lowering agents such as statins and fibrates target the 
catalytic or regulatory domain of proteins. For example, statins competitively inhibit 
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase,8 while fibrates activate 
peroxisome proliferator-activated receptor α (PPARα).9 However, small-molecule agents 
cannot effectively control proteins without a well-defined catalytic or regulatory domain, such 
as apolipoprotein CIII (apoCIII), apolipoprotein(a) (apo[a]), and angiopoietin-like protein 3 
(ANGPTL3). These proteins can be targeted with monoclonal antibodies, but large amounts 
of antibodies would be required to completely inactivate these proteins, and such high plasma 
concentrations would generate adverse levels of immune complexes. These factors also impact 
safety and cost issues and have limited the use of monoclonal antibody drugs other than 
proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors in this field.10

RNA-targeted therapeutics represent an innovative approach to LDL-C control through the 
use of chemically modified oligonucleotides to inhibit the production of target proteins at 
their sites of gene expression. There are two main classes of RNA-targeted therapeutics: 
single-stranded antisense oligonucleotides (ASOs) and double-stranded small inhibiting 
RNA.11 These therapies block important target proteins in lipoprotein metabolism.

In this review, we focus on ASO technology and ASO agents targeting apoCIII, apo(a), 
and ANGPTL3 that have emerged as new therapeutic modalities in lipid-lowering therapy. 
Regarding ASO agents, the rationale for target identification, pharmacology, and clinical trial 
results are discussed.

ANTISENSE OLIGONUCLEOTIDE TECHNOLOGY

ASOs are single-stranded, synthetic molecules with a length of 15–30 nucleotides, 
designed to bind specifically to a target mRNA in a sequence-specific manner.12 ASOs are 
chemically modified by processes such as phosphorothioate backbone modifications, where 
phosphorothioate is used as a substitute for the phosphodiester linkages between nucleotide 
bases. For ASO drugs, this modification confers increased resistance to nucleases and 
increases binding activity to plasma proteins. As a result, it enhances plasma half-life and 
facilitates drug delivery to target tissues.13

ASOs can modulate gene expression by two different mechanisms (Fig. 1).11 First, ASOs 
bind to and occupy the target mRNA without triggering RNA degradation (occupancy-
only mediated). This mechanism results in changes in RNA processing, inhibition or 
enhancement of translation, and inhibition of interactions of the target mRNA with key 
proteins. Second, ASOs induce targeted mRNA degradation (enzymatic RNA degradation) 
through the cleavage of target mRNAs by RNase H1. ASOs contain chemically modified 
RNA nucleotides flanking a central region composed of 8–10 DNA nucleotides. The RNA 
nucleotides enhance affinity to complementary sequences, while the DNA nucleotides serve 
as a substrate for RNase H1. The degradation process of mRNA by RNase H1 is specific for 
RNA in an RNA-DNA duplex and takes place in both the cytoplasm and nucleus.14
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APOLIPOPROTEIN CIII

1. Rationale for target identification
Plasma triglycerides are a combination of triglyceride-rich lipoproteins and their remnant 
lipoprotein particles. Although triglycerides themselves are not considered a crucial risk 
factor for ASCVD, elevated levels of plasma triglyceride-rich lipoproteins and their remnants 
have been causally linked to ASCVD and explain important concepts of remnant CVD 
risks.15,16 Elevated triglyceride levels result in the elevation of very low-density lipoprotein 
(VLDL) and chylomicron remnants, activating cholesteryl ester transfer protein, and 
increased levels of small, dense LDL-C. These remnant particles and small, dense LDL-C 
contribute to cholesterol deposition and the growth of atheromatous plaques.17

ApoCIII is a key regulator of triglyceride-rich lipoprotein metabolism (Fig. 2). It is a potent 
inhibitor of lipoprotein lipase (LPL), the enzyme responsible for the lipolysis of triglycerides 
in VLDL and chylomicron particles. In addition, by LPL-independent pathways, ApoCIII 
inhibits the hepatic clearance of VLDL and chylomicron remnants.18 High plasma apoCIII 
levels are associated with an increased risk of coronary heart disease (CHD).19, 20 In addition, 
loss-of-function mutations in the APOC3 gene are associated with 40% lower triglyceride 
levels and a 40% lower risk of CHD than observed in individuals without those mutations.21,22 
The cardiovascular benefits of serum triglyceride reduction are not consistent.23 However, 
considering the contribution of triglyceride-rich lipoproteins to atherosclerosis and the 
association of loss-of-function mutations in the APOC3 gene with a lower risk of CHD, 
apoCIII appears to be a promising target in the prevention of ASCVD.
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Fig. 1. Modulation of gene expression by ASOs. ASOs can modulate gene expression by two different mechanisms. 
First, ASOs bind and occupy the target mRNA without triggering RNA degradation (occupancy-only mediated): 
(A) splicing modulation by base pairing with sequence elements in pre-mRNA to inhibit or enhance the utilization 
of splicing sites; (B) translation modulation by base pairing with mRNA, either to inhibit or activate translation 
through binding to inhibitory elements; (C) microRNA modulation either by base pairing with microRNA to 
inhibit the function of the microRNA or by base pairing with microRNA-binding sites of a particular mRNA to 
eliminate the effect of a particular microRNA. Second, ASOs induce target mRNA degradation (enzymatic RNA 
degradation): (D) DNA-like ASOs that trigger complementary RNA cleavage by RNase H1. 
ASO, antisense oligonucleotide.



2. Pharmacology
The first drug specifically targeting apoCIII mRNA was volanesorsen (previously identified 
as ISIS 304801 or ISIS-APOCIIIRx). Volanesorsen is a 2′-methoxyethyl-modified ASO with 
phosphorothioate substitutions administered subcutaneously once a week.24,25 Subsequently, 
IONIS-APOCIII-LRx (previously identified as AKCEA-APOCIII-LRx or ISIS 678354) was 
developed. This agent has the same nucleotide sequence as unconjugated volanesorsen, but 
additionally contains a triantennary N-acetyl galactosamine (GalNAc) complex. It has been 
tested with subcutaneous injections weekly or every 4 weeks.26

3. Clinical trial results
Volanesorsen has been tested in patients with elevated triglyceride levels and in patients with 
familial chylomicronemia syndrome (FCS), an autosomal recessive disease of chylomicron 
metabolism associated with severe hypertriglyceridemia and recurrent pancreatitis due to a 
deficiency in lipoprotein lipase function.

In a phase 2 trial (NCT01529424), treatment with volanesorsen resulted in a significant 
reduction in triglyceride levels in patients with hypertriglyceridemia.27 At the highest dose of 
300 mg weekly, apoCIII and triglyceride levels were reduced by 80% and 70%, respectively, 
when volanesorsen was administered as monotherapy, and by 71% and 64%, respectively, 
when it was added to fibrate as a combination therapy.

In three patients with FCS, volanesorsen reduced triglyceride levels by up to 86% through an 
LPL-independent pathway.28 The APPROACH trial (NCT02211209) was a 52-week phase 3 trial 
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Fig. 2. The metabolism of TRLs and the role of apoCIII. Triglyceride-rich VLDL is released from the liver and 
converted to IDL by lipoprotein lipase (LPL). Chylomicrons are formed in the intestine and transformed into 
chylomicron remnants by LPL. ApoCIII regulates TRL metabolism by inhibiting the activity of LPL (LPL-dependent 
pathway) and by interfering with hepatic clearance of TRL remnants (LPL-independent pathway). 
TRL, triglyceride-rich lipoprotein; apoCIII, apolipoprotein CIII; VLDL, very low-density lipoprotein; IDL, 
intermediate-density lipoprotein; LPL, lipoprotein lipase; CETP, cholesteryl ester transfer protein.
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of 66 FCS patients with fasting triglyceride levels ≥750 mg/dL.25 After treatment with 300 mg 
of volanesorsen weekly, apoCIII levels were reduced by 84% at 3 months, and triglyceride levels 
were reduced by 77%. Seventy-seven percent of patients in the volanesorsen group achieved 
triglyceride levels of < 750 mg/dL. Sixty percent and 45% of patients in the volanesorsen group 
exhibited injection-site reactions and thrombocytopenia with platelet levels of <100,000/μL, 
respectively, suggesting that we must monitor platelet levels closely in future clinical settings.

COMPASS (NCT02300233) was a 26-week phase 3 trial of 113 patients with fasting triglyceride 
levels ≥500 mg/dL.29 After treatment with 300 mg of volanesorsen weekly, triglyceride levels 
were reduced by 71% at 3 months, representing an absolute reduction of 869 mg/dL. In the 
volanesorsen group, 24% of patients exhibited injection-site reactions, one patient exhibited 
thrombocytopenia with platelet levels <50,000/μL, and one patient exhibited serum sickness.

In May 2019, volanesorsen was approved in the European Union for the treatment of adult 
patients with FCS.30 A phase 2/3 trial of volanesorsen in patients with familial partial 
lipodystrophy is underway (NCT02527343).

Meanwhile, in a phase 2 trial of patients with hypertriglyceridemia and established ASCVD 
or high cardiovascular risk (NCT03385239), treatment with IONIS-APOCIII-LRx for 6 months 
resulted in triglyceride reductions of 23% with 10 mg every 4 weeks, 56% with 15 mg every 2 
weeks, 60% with 10 mg every 4 weeks, and 60% with 50 mg every 4 weeks, compared with an 
increase of 6% in the placebo group.31 A phase 3 trial of IONIS-APOCIII-LRx in patients with 
FCS is underway (NCT04568434). We can expect more clinical outcomes from apoCIII target 
treatment in the future, especially if it can significantly reduce the hard outcomes of ASCVD 
in addition to its dramatic triglyceride-lowering effects.

APOLIPOPROTEIN(a)

1. Rationale for target identification
Lipoprotein(a) (Lp[a]) consists of an LDL-like moiety covalently linked to apo(a). The LDL-
like moiety contains a single molecule of apolipoprotein B100, an outer phospholipid-risk 
shell and unesterified free cholesterol, and a lipid core consisting of cholesteryl esters and 
triglycerides (Fig. 3). Apo(a) shows a high degree of homology with plasminogen. Whereas 
plasminogen consists of a tail domain, 5 kringle domains, and a protease domain, apo(a) 
consists of 10 different domains homologous to a plasminogen kringle 4 (named KIV in 
apo[a]), followed by a kringle 5-like domain, and a protease-like domain. Apo(a) consists of 
10 different types of KIVs, of which KIV type 2 (KIV2) is present in different copy numbers in 
the various apo(a) isoforms, whereas only a single copy of the other KIV domains is present 
in all apo(a) isoforms.32

Lp(a) concentrations are well known to have strong associations with coronary heart disease, 
stroke, and aortic valve stenosis.33,34 The exact mechanisms by which Lp(a) accelerates 
these disorders have not been fully elucidated, but the oxidized phospholipids present on 
apo(a) might play an important role by promoting endothelial dysfunction, lipid deposition, 
inflammation, and osteogenic differentiation.32 A case-control study showed that two LPA 
gene variants were strongly associated with both increased Lp(a) levels and an increased risk of 
coronary disease.35 In addition, the number of KIV2 repeats in apo(a), which correlates inversely 
with levels of Lp(a), exhibited a negative association with the risk of myocardial infarction.36 
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A Mendelian randomization analysis showed that a reduction in Lp(a) by 101.5 mg/dL had an 
equivalent association with CHD risk to a 38.7 mg/dL reduction in LDL-C levels.37

No therapeutic agents have been approved for lowering Lp(a) specifically. Studies of agents 
approved for lowering Lp(a) nonspecifically, including niacin, PCSK9 inhibitors, mipomersen, 
and estrogen, demonstrated no direct cardiovascular benefits on Lp(a) levels. However, the 
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patients in these studies were not recruited based on elevated Lp(a) levels, and because of the 
left-skewed distribution of Lp(a), it was not possible to estimate the importance of an absolute 
reduction of Lp(a) for ASCVD events precisely from these results alone.38

2. Pharmacology
The first drug specifically targeting apo(a) mRNA was IONIS-APO(a)Rx (previously labeled 
ISIS-APO[a]Rx). IONIS-APO(a)Rx is 2′-O-methoxyethyl-modified ASO with phosphorothioate 
substitutions that is administered subcutaneously.39 Pelacarsen (previously denoted AKCEA-
APO[a]LRx or IONIS-APO[a]LRx or TQJ230) is a modified form of IONIS-APO(a)Rx that is 
conjugated with a triantennary GalNAc complex, and it showed more than 30 times higher 
potency than the parent ASO.40

3. Clinical trial results
In a phase 1 trial, six doses of IONIS-APO(a)Rx resulted in significant reductions of Lp(a) 
levels in a dose-dependent manner: 39% in the 100-mg group; 59% in the 200-mg group, 
and; 77% in the 300-mg group.39 In a phase 2 trial, treatment with IONIS-APO(a)Rx produced 
an Lp(a) level reduction of 67% in cohort A and 72% in cohort B.40

In a phase 1 trial, pelacarsen resulted in an Lp(a) level reduction of up to 92%.40 In a phase 
2 trial, which included patients with established ASCVD and Lp(a) levels of >60 mg/dL, 
pelacarsen was administered in ascending doses at intervals of 1 to 4 weeks. After 6 months 
of treatment, Lp(a) was successfully reduced by 35% at a dose of 20 mg every 4 weeks, 56% 
at 40 mg every 4 weeks, 58% at 20 mg every 2 weeks, 72% at 60 mg every 4 weeks, and 
80% at 20 mg every week, as compared with 6% with placebo. There were no significant 
differences in adverse events regarding platelet counts, liver and renal toxicity, and influenza-
like symptoms. As the most common adverse event, 27% of patients in the pelacarsen group 
exhibited injection-site reactions.41

A phase 3 trial of pelacarsen in patients with established ASCVD and Lp(a) levels of >70 mg/
dL is currently ongoing (NCT04023552).

ANGIOPOIETIN-LIKE PROTEIN 3

1. Rationale for target identification
ANGPTL3, which is produced in the liver and secreted into the circulation, inhibits 
lipoprotein lipase and endothelial lipase, thereby influencing triglyceride and high-density 
lipoprotein cholesterol (HDL-C) levels (Fig. 4).42,43 The mechanism whereby ANGPTL3 
regulates LDL-C levels is not clear, but endothelial lipase-dependent VLDL clearance may 
be involved.44 Human studies have shown that loss-of-function mutations in the ANGPTL3 
gene are associated with low levels of triglycerides, LDL-C, and HDL-C.45,46 An earlier study 
showed that participants heterozygous for ANGPTL3 loss-of-function variants exhibited 
approximately 50% lower ANGPTL3 levels than those without these variants, and had a 39% 
lower risk of coronary artery disease.47 Another study showed that participants heterozygous 
for ANGPTL3 loss-of-function variants demonstrated a 17% reduction in triglyceride levels, 
a 12% reduction in LDL-C levels, and a 34% reduction in risk of coronary artery disease.48 
Treatment with evinacumab, a monoclonal antibody against ANGPTL3, resulted in a decrease 
in atherosclerotic lesion area and necrotic content in an atherosclerosis-prone mouse model, 
and a decrease in triglyceride levels by up to 76% and LDL-C levels of up to 23% in humans.47
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2. Pharmacology
Vupanorsen (previously denoted as AKCEA-ANGPTL3-LRx or IONIS-ANGPTL3-LRx or ISIS 
703802) is a GalNAc-conjugated ASO. Its 20 nucleotides are linked by 13 phosphorothioate 
bonds and 6 phosphodiester bonds. It is administered subcutaneously.49

3. Clinical trial results
In a phase 1 trial, participants with triglyceride levels > 90 mg/dL were treated with a 
single dose (20, 40, or 80 mg) or multiple doses (10, 20, 40, or 60 mg per week for 6 
weeks) of vupanorsen.49 After 6 weeks of treatment, participants in the multiple-dose 
groups demonstrated a reduction in ANGPTL3 levels (47% to 85%), triglycerides (33% to 
63%), LDL-C (1% to 33%), VLDL cholesterol (28% to 60%), non-HDL-C (10% to 37%), 
apolipoprotein B (3% to 26%), and apoCIII (19% to 59%). There were no serious adverse 
events. In a phase 2 trial, participants with triglyceride levels >150 mg/dL, type 2 diabetes, 
and hepatic steatosis were treated with vupanorsen (40 or 80 mg every 4 weeks, or 20 
mg every week) subcutaneously.50 After 6 months of treatment, significant reductions in 
triglycerides of 36%, 53%, and 47%, and in ANGPTL3 of 41%, 59%, and 56% were observed 
in the groups that received 40 mg every 4 weeks, 80 mg every 4 weeks, and 20 mg every week, 
respectively. Treatment with 80 mg of vupanorsen every 4 weeks reduced apoCIII levels by 
58%, remnant cholesterol by 38%, total cholesterol by 19%, non-HDL-C by 18%, HDL-C 
by 24%, and apolipoprotein B by 9%. The most common adverse events were injection-
site pruritus (14%) and injection-site erythema (12%). No patient exhibited a platelet level 
<100,000/mm3.

CONCLUSION

A summary of ASOs targeting apoCIII, apo(a), and ANGPTL3 is provided in Table 1. The use of 
antisense technology has made it possible to inhibit the unique protein targets of dyslipidemia 
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lipase; GPIHBP1, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1.



with high specificity and high potency. Although this technology has led to major advances 
in lipid-lowering therapy, delivery to target tissues other than the liver, biological barriers 
to permeability, the formation of anti-drug antibodies, and oral availability remain major 
challenges. Despite these challenges, the application of ASOs to targets of dyslipidemia has 
paved new paths for the treatment of dyslipidemia and prevention of ASCVD. We look forward 
to the results of ongoing cardiovascular outcome trials using ASO drugs.
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Table 1. ASOs targeting apoCIII, apo(a), and ANGPTL3
Target ApoCIII Apo(a) ANGPTL3
Rationale for target 
identification

• Observational evidence • Observational and genetic evidence • Loss-of-function mutations in ANGPTL3 gene
• Loss-of-function mutations in APOC3 gene • Mendelian randomization studies

Pharmacology • �Volanesorsen (ISIS 304801, ISIS-APOCIIIRx): 
weekly subcutaneous injection

• �Pelacarsen (AKCEA-APO[a]LRx, IONIS-APO[a]
LRx, TQJ230): GalNAc-conjugated ASO, 
subcutaneous injection, administration 
every 1 to 4 weeks

• �Vupanorsen (AKCEA-ANGPTL3-LRx, IONIS-
ANGPTL3-LRx, ISIS 703802): GalNAc-
conjugated ASO, subcutaneous injection, 
administration every 1 to 4 weeks

• �IONIS-APOCIII-LRx (AKCEA-APOCIII-LRx, ISIS 
678354): GalNAc-conjugated volanesorsen, 
subcutaneous injection, administration 
every 1 to 4 weeks

Clinical trial results • �Volanesorsen: significant reductions 
in apoCIII and triglycerides (>70%) in 
hypertriglyceridemia and FCS

• �Volanesorsen: injection site reactions and 
thrombocytopenia in FCS

• �Volanesorsen: European Union approval in 
adult patients with FCS (2019)

• �IONIS-APOCIII-LRx: significant reductions 
in apoCIII, triglycerides, and apoB in mild 
hypertriglyceridemia

• �Phase 1 and 2 trials: reduction of 
lipoprotein(a) by up to 80%

• �Phase 1 trial of vupanorsen with reductions 
in triglyceride (47% to 85%) and LDL-C (1% 
to 33%) levels

• �Phase 2 study of vupanorsen in patients with 
hypertriglyceridemia, type 2 diabetes, and 
nonalcoholic fatty liver disease: reductions 
in triglyceride levels (36% to 47%)

<Ongoing> <Ongoing>
• �Phase 2/3 trial of volanesorsen in patients 

with hypertriglyceridemia and familial 
partial lipodystrophy (NCT02527343)

• �A phase 3 trial of pelacarsen in patients 
with established ASCVD and Lp(a) levels of 
>70 mg/dL (NCT04023552)

• �Phase 3 trial of IONIS-APOCIII-LRx in 
patients with FCS (NCT04568434)

ASO, antisense oligonucleotide; apoCIII, apolipoprotein CIII; apo(a), apolipoprotein(a); ANGPTL3, angiopoietin-like protein 3; GalNAc, N-acetyl galactosamine; 
FCS, familial chylomicronemia syndrome; apoB, apolipoprotein B; LDL-C, low-density lipoprotein cholesterol; ASCVD, atherosclerotic cardiovascular disease; 
Lp(a), lipoprotein(a).
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