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ABSTRACT
Objective  To develop and validate a risk prediction 
model for the prediction of preterm birth using maternal 
characteristics.
Design  This was a retrospective follow-up study. Data 
were coded and entered into EpiData, V.3.02, and were 
analysed using R statistical programming language 
V.4.0.4 for further processing and analysis. Bivariable 
logistic regression was used to identify the relationship 
between each predictor and preterm birth. Variables with 
p≤0.25 from the bivariable analysis were entered into 
a backward stepwise multivariable logistic regression 
model, and significant variables (p<0.05) were retained 
in the multivariable model. Model accuracy and goodness 
of fit were assessed by computing the area under the 
receiver operating characteristic curve (discrimination) and 
calibration plot (calibration), respectively.
Setting and participants  This retrospective study was 
conducted among 1260 pregnant women who did prenatal 
care and finally delivered at Felege Hiwot Comprehensive 
Specialised Hospital, Bahir Dar city, north-west Ethiopia, 
from 30 January 2019 to 30 January 2021.
Results  Residence, gravidity, haemoglobin <11 mg/dL, 
early rupture of membranes, antepartum haemorrhage 
and pregnancy-induced hypertension remained in the final 
multivariable prediction model. The area under the curve of 
the model was 0.816 (95% CI 0.779 to 0.856).
Conclusion  This study showed the possibility of 
predicting preterm birth using maternal characteristics 
during pregnancy. Thus, use of this model could help 
identify pregnant women at a higher risk of having a 
preterm birth to be linked to a centre.

INTRODUCTION
Preterm birth is described as babies that 
are born alive before the end of 37 weeks of 
pregnancy.1 Preterm birth can be accidental 
(due to spontaneous preterm labour and/
or preterm membrane rupture) or induced 
by the provider (by caesarean or labour 

induction).2 Most preterm births happen 
spontaneously.3

An estimated 15 million babies worldwide 
are born too early per year. That is more than 
1 in 10 infants. About 1 million newborns 
die per year because of preterm birth 
complications.4

Across 184 countries, the rate of preterm 
birth ranges from 5% to 18% of babies born.5 
However, there are stark disparities in survival 
rates around the world. Half of the babies 
born at or below 32 weeks die in low-income 
settings due to lack of practical, cost-effective 
and critical care, such as comfort, breast-
feeding assistance, basic infection care and 
trouble breathing.6

Furthermore, the effect of preterm birth 
is also prolonged beyond the neonatal 

STRENGTHS AND LIMITATIONS OF THE STUDY
	⇒ An adequate number of participants with the out-
come helped us to construct the model using a suffi-
cient number of predictor variables and the inclusion 
of sensitivity analyses.

	⇒ Multiple imputations were used to address missing 
data, which has been shown to be a valid technique 
for dealing with missing data within logistic regres-
sion models, resulting in less bias than excluding all 
women with missing data.

	⇒ The prediction model is constructed from easily ob-
tainable maternal characteristics that make it appli-
cable in primary care settings.

	⇒ A single-site study, it is confined to a single area, 
which needs external validation before using it in 
another context.

	⇒ Furthermore, data were collected from each moth-
er’s card; due to this, some important variables were 
missed, such as previously highlighted factors of 
preterm birth in different studies.
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phase and throughout life.7 Hence, the largest risk of 
severe health issues, including cerebral palsy, intellectual 
disability, chronic lung disease, and vision and hearing 
loss, is faced by babies born before maturity. This intro-
duces a lifelong disability dimension. At some point in 
their lives, most people will face the struggles and poten-
tial disasters of preterm birth either directly in their fami-
lies or indirectly through events for the nations.7 8

To alleviate this burden, in the past few decades, 
numerous methods have been attempted internation-
ally, including in Ethiopia, to prevent and enhance the 
treatment of preterm births.9–11 As part of the strategy, it 
is essential to diagnose or predict preterm birth earlier 
in pregnancy to take appropriate measures for high-risk 
groups. However, in most nations, predicting preterm 
birth is still largely based on subjective clinical experi-
ence. This approach may increase unnecessary hospital 
admissions and unnecessary but potentially harmful treat-
ments, such as the use of steroids for the maturation of 
the fetal lung and tocolysis.12 13

There were clinical prediction models that aim to 
estimate the likelihood of preterm birth that include 
laboratory tests that are typically inaccessible in low-
resource settings, such as fetal fibronectin, insulin-like 
growth factor binding protein-1, interleukin 6 (IL-6) and 
placental α-macroglobulin-1.14–19 Most current research 
on Preterm Birth (PTB) prediction focuses on finding 
PTB risk factors using a hypothesis-testing methodology 
in highly controlled environments. PTB has been linked 
to a number of risk factors, including previous preterm 
labour, multiple gestation (carrying several children), 
diabetes, problems with the cervix, uterus or placenta, 
smoking, and infections.20–22 However, women who have 
preterm delivery often have no known risk factors.23 In 
addition, some of the predictors (such as prior PTB) do 
not apply for first-time mothers.

Predicting the risk of PTB in pregnant women has been 
the subject of numerous studies,24 but no model exists 
that is accurate enough to be used in clinical settings. 
Most research (eg, cervical length or fetal fibronectin) has 
concentrated on predictors during the second or third 
trimester.25 These predictors, however, can only forecast 
PTB at intermediate risk and have only been shown to 
be reliable in high-risk populations. Unfortunately, the 
majority of women who give birth early have no evident 
risk factors, and more than half of PTBs happen in low-
risk pregnancies, indicating the limited usefulness of 
using fetal fibronectin or cervical length in the general 
population.26

Due to scarce resources, using readily available data to 
predict PTB seems appealing in low-income and middle-
income communities. But relatively few models have been 
made public. The considerable range in PTB occurrence 
across the globe, which suggests differences in exposure 
to psychosocial, sociodemographic and medical risk 
factors as well as genetic variations, is also significant.27–29 
As a result, it is necessary to develop and evaluate PTB 
prediction models in various populations.

Therefore, developing and validating a risk prediction 
model for the prediction of preterm birth using maternal 
(clinical and nonclinical) characteristics based on the 
available measurements is paramount to allow early 
preterm birth interventions such as in utero transfer to 
tertiary care centres, appropriate corticosteroid admin-
istration while preventing excessive use, neuroprotective 
magnesium sulfate therapy and antibiotic treatment in 
the event of infection14 30

METHODS AND MATERIALS
Study setting
This retrospective study was conducted among 1260 preg-
nant women who used prenatal care and finally delivered 
at the Felege Hiwot Comprehensive Specialized Hospital, 
Bahir Dar city, North-West Ethiopia, from 30 January 
2019 to 30 January 2021. Bahir Dar is the capital city of 
Amhara national regional state and is 575 km north-west 
of Addis Ababa.

The hospital currently has a total of 1431 employees (5 
obstetricians and gynaecologists and 63 midwives among 
others) in different disciplines. It has a total of 500 formal 
beds, 11 wards (emergency ward and inpatient wards such 
as gynaecological and obstetric, surgical, orthopaedic, 
medical, paediatric, Laison and Director (L&D), eye 
unit, Neonatal Intensive Care Unit (NICU), psychiatric, 
oncology, and 22 Outpatient Departements (OPDS)), 
39 clinical and non-clinical departments/service units/
providing laboratories, diagnostic, curative and rehabili-
tation services at outpatient and inpatient bases as well as 
disease prevention and health promotion services.

Sample size determination
The sample size required for model development was 
determined based on the minimum standard of 10 events 
per candidate predictor considered, according to the 
formula N = (n×10)/I, where N is the sample size, n is the 
number of candidate predictor variables and I is the esti-
mated event rate in the population.31 Since there were 17 
candidate predictors considered and 10 events per candi-
date predictor, the estimated number of events for the 
study was 170. According to a study done at Debre Tabor 
hospital the prevalence of preterm 13%,32 so taking into 
account this the required sample size was calculated as 
follows, n=170*100/13=1308.

Study design and participants
The theoretical design of the present study was; the inci-
dence of preterm birth as a function of multiple predic-
tors during pregnancy. The source population of the 
study was all pregnant mothers who gave birth at Felege 
Hiwot Comprehensive Specialized Hospital (FHCSH). 
To be included in this study, mothers must meet all of 
the following eligibility criteria; all medical records of 
mothers who gave live birth and had at least one Ante-
natal Care (ANC) follow-up in FHCSH from 30 January 
2019 to 30 January 2021.
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Sampling method and procedures
A simple random sampling technique was employed to 
select participants using the medical registration number 
of a delivered mother from the delivery registration 
book. First, all mothers who delivered at FHCSH in the 
last 2 years were identified from the delivery registration 
book. After that, records of mothers who met the inclu-
sion criteria were included in the study. Subsequently, a 
sampling frame was prepared. Finally, the study unit was 
selected by using a computer-generated random number.

Data collection
Outcome assessment: The outcome variable was 
attributed to women whose medical records indicated 
a physician or midwife diagnosis of preterm birth and 
delivery between 28 and 36 completed weeks of gestation. 
The gestational age (GA) was measured using either Last 
Normal Menstrual Period (LNMP), which is found to be a 
more reliable measure of GA in a low-resource setting,33 34 
or an early ultrasound result (12 weeks).

Predictor assessment data were collected using a struc-
tured checklist through chart review. Checklists were 
developed after reviewing various relevant literatures.35–39 
Checklists consisted of sociodemographic (maternal 
age, residence) and maternal obstetric characteristics: 
(history of preterm birth, history of abortion, history 
of stillbirth, gravidity, parity, multiple pregnancy, ante-
partum haemorrhage (APH), premature rupture of 
membranes (PROM), gestational diabetes mellitus, and 
pregnancy-induced hypertension (PIH)), and maternal 
medical condition: (haemoglobin (HGB) level, diabetic 
mellitus, chronic hypertension, Urinary Tract Infection 
(UTI) and HIV).

Quality assurance mechanisms
To maintain the quality of data, the data collectors and 
supervisors were trained for a day on the objective of 
the study, the content of the checklists and how to fill 

the checklists. Reviewing of 15 medical chart records of 
mothers who gave birth at Felege Hiwot Comprehensive 
Specialized Hospital, which is found in North-West Ethi-
opia, were done. After that, some adjustments (removing 
variables that were not available in the medical records of 
mothers) were made accordingly. The checklist was devel-
oped in English.

Data processing and analysis
Data were entered into a software application (EpiData, 
V.3.02) and were analysed by using R statistical program-
ming language V.4.0.4 for further processing and analysis. 
There were 13 (1%), 2 (0.2 %), 11 (0.9 %), 15 (2.5%), 
21 (1.7%), 29 (2.3%), 20 (1.6%) and 20 (1.6%) missing 
values for PROM, residence, chronic hypertension, 
multiple pregnancies, gestational diabetes mellitus, PIH, 
APH and HGB, respectively.

We assumed the data were missing at random, and we, 
therefore, performed multivariate imputation by chained 
equations for all variables evaluated in the prediction 
model.40 Sensitivity analysis was performed to assess 
whether the assumption of missing at random is valid or 
not, and the results were reasonably comparable (table 1). 
Descriptive statistics including median, IQR and percent-
ages, were carried out.

Model development and validation
For model development, bivariable logistic regression 
was done to obtain insight into the association between 
each potential predictor and preterm birth. Variables 
with p≤0.25 from the bivariable analysis were entered 
into a backward stepwise multivariable logistic regression 
model, and significant variables (p<0.05) were retained 
in the multivariable model. The results of significant 
predictors were reported as coefficients with 95% CIs. 
To check for the model accuracy and goodness of fit, we 
computed the area under the receiver operating char-
acteristic (ROC) curve (discrimination) and calibration 

Table 1  Sensitivity analysis of the model to predict preterm birth: comparison of the regression coefficients, SEs and p values 
for complete case analysis and multiple imputed data

Predictor variables

Complete case analysis Multiple imputations

Β SE P value Β SE P value

Chronic hypertension (yes) 0.7313 0.6297 0.24 0.581 0.6285 0.92

Residence (rural) 0.815 0.1946 <0.001 1.154 0.1958 <0.001

GDM (yes) 0.709 0.4028 0.07 0.472 0.4236 0.26

HGB (<11 g/dL) 0.497 0.2185 0.02 0.642 0.2153 0.001

PROM (yes) 1.898 0.2080 <0.001 2.097 0.2129 <0.001

APH (yes) 1.194 0.2858 <0.001 1.298 0.2874 <0.001

PIH (yes) 1.353 0.2600 <0.001 1.368 0.2523 <0.001

Multiple pregnancy (yes) 0.539 0.3173 0.08 0.446 0.3257 0.17

Gravidity (primigravida) 0.426 0.1944 0.02 0.711 0.1976 <0.001

APH, antepartum haemorrhage; GDM, gestational diabetes mellitus; HGB, haemoglobin ; PIH, pregnancy-induced hypertension; PROM, 
premature rupture of membranes.
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plot (calibration) using ‘classifierplots’ and ‘givitiR’ pack-
ages of R, respectively. The area under the curve (AUC) 
ranged from 0.5 (no predictive ability) to 1 (perfect 
discrimination).41 The regression coefficients and their 
95% confidence levels, and the AUC were adjusted for 
overfitting or overoptimism using the bootstrapping tech-
nique. To make internal validation, we computed 1000 
random bootstrap42 samples with the replacement of all 
predictors in the data. The model’s predictive perfor-
mance after bootstrapping is considered as the perfor-
mance that can be expected when the model is applied 
to future similar populations. To evaluate the clinical 
and public health impact of the model, we performed 
a decision curve analysis (DCA)43 of standardised net 
benefits across a range of threshold probabilities (0 to 1). 
In the DCA, the model was compared with two extreme 
scenarios; ‘intervention for all’ and ‘no intervention’. In 
our case, the intervention considered is the referral of 
high-risk pregnant women to facilities where appropriate, 
corticosteroid administration, and antibiotic treatment is 
given.

Risk score development
To construct an easily applicable preterm birth prediction 
score, we transformed each coefficient of the model into 
a rounded number by dividing it by the lowest coefficient. 
The number of points was subsequently rounded to the 
nearest integer. We determined the total score for each 
individual by assigning points for each variable present 
and adding them up. The score was transformed to 
dichotomous, allowing each pregnant woman to be classi-
fied as having a high risk or low risk of preterm birth. The 
ROC curve was plotted and the AUC was calculated to 
measure the discriminatory power of the scoring system.

Patient and public involvement
There was no direct interaction with patients in this 
study and no direct patient involvement in the design or 
conduct of this study.

RESULT
Demographic, obstetric and clinical characteristics of mothers
A total of 1260 study cards were reviewed from a sample 
of 1308; about 48 cards were not reviewed due to the 
outcome of intrauterine fetal death and abortion. Table 2 
shows the demographic, obstetric and clinical character-
istics of mothers who gave birth, included in the analysis. 
The median age of the study participants was 26 years with 
IQR 24–30 years; the majority of the participants (1086, 
86.2%) were in the age group of 20–34 years.

More than three-fourths of the participants 926 
(73.49%) were urban residents. Of the total of mothers 
who delivered at FHCSH, more than two-thirds of 841 
(66.7%) were multigravida. About parity, above, half 
of them (713, 56.6%) were multipara. Concerning past 
obstetric history, 55 (6.5%) of them had a history of 
previous preterm birth, 76 (9%) of them had a history 

of stillbirth and 162 (19.3%) of them had a history of 
abortion.

Development of a prediction model for preterm birth
Out of 1260 delivered neonates, 169 (13.4%, 95% CI 
11.6% to 15.4%) were preterm infants.

The bivariable logistic regression analysis found several 
factors were eligible to be included in the prediction 
model. These variables were HGB level, gravidity, resi-
dence, gestational diabetes mellitus, APH, PIH, chronic 
hypertension, PROM and multiple pregnancies. Using 
the results, a prediction model was developed, and the 
equation for the prediction model was obtained (table 3).

Both backward and forward selection showed the same 
results; β after internal validation with bootstrapping is 
shown. Simplified risk score: we divided the coefficient of 
predictors included in the reduced model by the smallest 
(0.666). The probability or risk of preterm birth=1/
(1+exp – (−3.517+1.148 * Residence (rural)+0.666 
*gravidity (primigravida)+2.051*PROM (yes)+1.348 * 
APH (yes)+1.387*PIH+0.677*HGB (<11 g/dL).

The AUC of the final reduced model was 0.816 (95% CI 
0.779 to 0.856) (figure 1A). The calibration test had a p 
value of 0.492, indicating that the model does not misrep-
resent the data or the calibration of the model was visually 

Table 2  Demographic, obstetric and clinical characteristics 
of mothers who gave birth at FHCSH, North-West Ethiopia, 
2021

Characteristics Category Frequency
Per cent 
(%)

Gravidity Primigravida 419 33.3

Multigravida 841 66.7

Residence Urban 926 73.5

Rural 334 26.5

GDM Yes 44 3.5

No 1216 96.5

APH Yes 84 6.7

No 1176 93.3

PIH Yes 110 8.73

No 1150 91.27

HGB level <11d/dl 236 18.7

≥11 g/dL 1024 81.3

Chronic hypertension Yes 21 1.7

No 1239 98.3

PROM Yes 195 15.5

No 1065 84.5

Multiple pregnancies Yes 90 7.2

No 1170 92.8

APH, antepartum haemorrhage; GDM, gestational diabetes 
mellitus; HGB, haemoglobin; PIH, pregnancy-induced 
hypertension; PROM, premature rupture of membrane.
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accurate since the observed and predicted probabilities 
were similar (figure 1B).

In addition, to verify whether any maternal characteris-
tics were used as a specific predictor of preterm birth we 
performed an ROC analysis. The analysis indicated that 
residence (AUC=0.604, 95% CI 0.564 to 0.643), gravidity 
(AUC=0.59, 95% CI 0.571 to 0.628), PROM (AUC=0.580, 
95% CI 0.544 to 0.616), APH (AUC=0.695, 95% CI 0.661 
to 0.729), PIH (AUC=0.721, 95% CI 0.685 to 0.757) and 
HGB (AUC=0.630, 95% CI 0.591 to 0.668) emerged as 
better predictors of preterm birth (figure 2).

Validation of the model with the bootstrap technique 
showed hardly any indication of undue influence by 
particular observations, with an optimism coefficient 
of 0.085 and resulting AUC of 0.789 (corrected 95% CI 
0.748 to 0.83).

Using ‘SpEqualSe’, the predicted risk cutoff point for 
the coefficient (β) was a probability of >0.1320, and the 
model has a sensitivity of 75.74%, specificity of 72.87%, a 
positive predictive value of 30.2%, and a negative predic-
tive value of 95.1%.

When applying DCA, we first evaluate whether our 
model understudy has a higher net benefit than the 
default strategies (referring all and none). This model 
outperforms the default strategies across the relevant 
threshold range. The model has the highest net benefit 
across the entire range of threshold probabilities, which 
indicates that the model has the highest clinical and 
public health value. Hence, the referral decision made 
using the model has a higher net benefit than not refer-
ring at all or referring all regardless of their risk threshold 
as shown in figure 3.

Risk classification using a simplified risk score
We created a simplified risk score from the model for 
practical use. The reduced model’s prediction score was 
simplified by rounding all regression coefficients. The 
simplified score had a considerably comparable predic-
tion accuracy to the original β coefficients, with an AUC 
of 0.786 (95% CI 0.729 to 0.827) (figure 4). The possible 
minimum and maximum scores a mother can have are 0 
and 11, respectively.

Using ‘SpEqualSe’, the suggested threshold score to 
predict preterm birth using risk scores is ≥3 with a sensi-
tivity of 75.14% and specificity of 67.46% (table 4).

When dichotomised into low risk (<3) and high risk 
(≥3) based on the risk score, 278 (14.36%) were catego-
rised as high risk and 982 (77.9%) as low risk for preterm 
birth.

DISCUSSION
In this study, the incidence of preterm birth was found to 
be 13.4%. Maternal characteristics were identified in this 
retrospective study to build a preterm birth prediction 
risk score. We intended to employ maternal features that 
are easily accessible and pertinent to clinical practice in 
countries with constrained resources, including Ethiopia. 
These nations may not have the financial resources to pay 
for ultrasound exams and laboratory tests. The optimal 
combination of maternal factors to predict preterm birth 
includes residency, gravidity and HGB <11 mg/dL, early 
rupture of membranes, APH, and PIH, according to 
the prediction model. The model has an AUC of 0.816 
(95% CI 0.776 to 0.856). Predicting the probability of 
preterm birth in pregnant women is essential to take 
appropriate measures accordingly. Identifying women 
at risk of preterm birth is an important task for clinical 
care providers. However, in low-income and middle-
income countries, there are only a few methods available 
for reliably predicting actual preterm labour in women. 
Previously, the focus of the research was to explain the 
maternal and fetal determinants of preterm birth. In 
recent years, the focus shifted to predicting preterm birth 
optimally using a combined set of characteristics.

Without any advanced laboratory or imaging testing, 
this study measured the predicted performance of a 
model based on maternal features during pregnancy. 
Furthermore, we discovered that using SpEqualSe as an 
optimal cut-off point, the sensitivity and specificity of this 
prediction model reached 75.14% and 67.46%, respec-
tively, at the score threshold of 3.

In our study, a combination (residency, gravidity, HGB 
<11 mg/dL, early rupture of membranes, APH and 

Table 3  Coefficients and risk scores of each predictor included in the model to predict preterm birth (n=1260)

Predictor variables*

Multivariable analysis

Original β (95 % CI) Bootstrap β P value Risk score

Residence (rural) 1.161 (0.780 to 1.545) 1.148 <0.001 2

Gravidity (primigravida) 0.675 (0.291 to 1.061) 0.666 0.01 1

PROM (yes) 2.081 (1.669 to 2.50) 2.051 <0.001 3

APH (yes) 1.364 (0.806 to1.915) 1.348 <0.001 2

PIH (yes) 1.387 (0.887 to 1.879) 1.368 <0.001 2

HGB <11 g/dL 0.676 (0.255 to 1.09) 0.677 <0.001 1

*Variables retained in the reduced model are; residence, APH, HGB, PIH, gravidity and PROM.
APH, antepartum haemorrhage; HGB, haemoglobin ; PROM, premature rupture of membrane.
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PIH) of maternal characteristics resulted in an AUC of 
0.816 (95% CI 0.776 to 0.856), with excellent accuracy 
according to diagnostic accuracy classification.44

We found that early rupture of membranes is a strong 
predictor of preterm birth. Similar evidence was found in 
different studies.36 37 45 46 The effect of a burst membrane 
on uterine contraction could explain this. Existing scien-
tific evidence confirms that when a membrane ruptures, 
natural uterotonic chemicals are released, and these 
uterotonic chemicals drive uterine contraction, resulting 
in PTB. This finding suggested that due attention should 
be given to women with PROM.

In our study, PIH is a strong predictor of preterm birth. 
Similar studies have demonstrated that PIH was predictive 

of subsequent preterm birth.47 48 This could be related to 
vascular injury to the placenta caused by PIH issues or 
iatrogenesis caused by the severity of hypertension or its 
complications. As a result, the oxytocin receptors are acti-
vated, resulting in preterm labour and delivery. Or else 
this conclusion could be explained by current scientific 
evidence suggesting that PIH is linked to vascular and 
placental injury, which causes oxytocin receptors to be 
activated, resulting in PTB. Therefore, it is imperative 
to identify populations at risk of PIH and introduce risk-
lowering interventions.

Another strong predictor of preterm birth is the place 
of residence. Current evidence shows that there is an asso-
ciation between preterm birth and rural residence.49–53 

Figure 1  (A) Area under the receiver operating characteristics (ROC) curve for the prediction model, and (B) Predicted versus 
observed preterm birth probability in the sample. This analysis includes mothers who gave birth at FHCSH, 2021 (n=1260). 
Calibration plot created using ‘givitiCalibrationBelt’f in R programming. AUC, area under the curve.
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This gap may be explained by the greater accessibility 
and availability of maternal health services in metro-
politan regions. It has long been understood that social 
deprivation and the nuanced interactions between them 
affect prenatal outcomes, including premature birth.54 
Hence, accessing maternal health services targeted to 
rural women could improve prenatal outcomes including 
the risk of preterm birth.

APH is the predictor of preterm birth which is supported 
by different studies.55 Identification of groups at risk for 
APH and the introduction of risk-reducing measures are 
therefore essential. Other predictors of preterm birth are 
gravidity and HGB <11 g/dL (anaemia) which is in line 

with different studies.32 56 Molecular factors could explain 
how anaemia, iron deficiency, or both, could result in 
preterm delivery. In reality, a number of plausible molec-
ular processes have linked anaemia to a higher risk of 
premature birth. Accordingly, maternal and fetal stress 
can be caused by anaemia (by resulting in hypoxia) and 
iron deficiency (by increasing serum norepinephrine 
concentrations), which in turn induces the production of 
corticotrophin-releasing hormone (CRH). Additionally, 
iron deficiency may raise the risk of maternal infections, 
which can again boost the synthesis of CRH. High levels 
of CRH are known to be a risk factor for PTB since they 
increase the likelihood of PTB. Thus, we can conclude 

Figure 2  Receiver operating characteristic (ROC) curve of maternal parameters for prediction of postpartum glucose 
intolerance: residence, premature rupture of membranes (PROM), antepartum haemorrhage (APH), pregnancy-induced 
hypertension (PIH), haemoglobin (HGB) and gravidity.

Figure 3  A decision curve plotting the net benefit of the model against threshold probability.
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that, in order to prevent PTB, routine ANC services need 
to place a greater emphasis on anaemia prevention.

A study conducted in China showed that a model 
developed using advanced maternal age, lower maternal 
height, history of preterm delivery, amount of vaginal 
bleeding during pregnancy, and lack of folic acid intake 
before pregnancy for the prediction of overall preterm 
birth had a AUC of (0.6).57 It had lower discriminatory 
performance than the present study, this difference may 
be due to some of the predictors they used such as lower 
maternal height, lack of folic acid intake before pregnancy 
and advanced maternal age. However, the predictors they 
used such as lack of folic acid intake before pregnancy are 
not easily obtainable information in routine clinical prac-
tice, which makes their model less practical in our setting. 
This prediction model constitutes variables that are easily 
obtainable and have reasonable accuracy to be used by 
both mid-level and lower-level health professionals in 
primary care settings. Among the maternal characteristics 

included in our model, five can be easily found by history 
taking and one by test for HGB.

The model’s accuracy is consistent with a retrospec-
tive study done in China that established a preterm birth 
prediction model based on maternal characteristics, 
including demographics and clinical characteristics, and 
a model with predictors (gravidity, educational status, 
residency, history of preterm birth, twin pregnancy, 
pregestational diabetes mellitus (type I or II), chronic 
hypertension,and place of birth) with AUC of 0.749 (95% 
CI 0.732 to 0.767).48

On the other hand, a model incorporating four predic-
tors (cervical length at admission, GA, amniotic fluid, 
glucose and IL-6) has an AUC of 0.8658 and similarly, 
the combination of biophysical, biochemical, immuno-
logical, microbiological, fetal cell, exosomal, or cell-free 
RNA at different GAs, integrated as part of a multivari-
able predictor model may be necessary to advance our 
attempts to predict spontaneous preterm labor (sPTL) 
and preterm birth. In the prediction of spontaneous 
preterm birth within 48 hours, a prognostic model 
including quantitative fetal fibronectin (qfFN) and clin-
ical risk factors showed excellent results.59 60 Both models 
have higher discriminatory performance. Our study 
has lower discriminatory performance than the studies 
described above, this could be because we used secondary 
data available from the register and as this data set is 
limited and some variables that require advanced labora-
tory tests were not included in the model.

Hence, predictors necessitate laboratory testing, which 
is often unavailable in low-resource settings. As a result, 
such predictors are difficult to come by in ordinary clin-
ical and public health practice, making the model less 
useful.

A study conducted in the UK found that data on 
maternal characteristics and obstetric history at 11–13 

Figure 4  Area under the receiver operating characteristics (ROC) curve for the simplified risk score to predict the risk of 
preterm birth among mothers who gave birth at FHCSH, 2021. AUC, area under the curve.

Table 4  Risk classification of preterm birth using the 
simplified prediction score (n=1260)

Score* (risk 
category)

Prediction model based on maternal 
characteristics

Number of mothers
Incidence of 
preterm birth

<3 (low) 982 (77.9%) 72 (7.9%)

≥3 (high) 278 (14.36%) 97 (53.59%)

Total 1260 (100%) 169 (13.4%)

*Score = (2*PIH) + (3*PROM) + (HGB <11 mg/dL) + 2*residence + 
(2*APH) + gravidity.
APH, antepartum haemorrhage; HGB, haemoglobin; PIH, 
pregnancy-induced hypertension; PROM, premature rupture of 
membranes.
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weeks of gestation were predictive of spontaneous early 
preterm delivery; this model had an AUC of 0.6761 which 
had lower discriminatory performance than the present 
study. This difference may be the difference in the study 
population.

A model that predicts a risk of preterm delivery in 
women with multiple pregnancy incorporating previous 
preterm delivery, monochorionicity, smoking, educa-
tional level, and triplet pregnancy for preterm and very 
preterm delivery had c-indexes of 0.68 (95% CI 0.63 to 
0.72) and 0.68 (95% CI 0.62 to 0.75), respectively.62 It had 
lower discriminatory performance than the present study. 
This might be due to the difference in the study popula-
tions. In the present study, the study population included 
both women who had multiple pregnancies and singleton 
pregnancy.

In our prediction score, using 3 as a cut-off point has 
an acceptable level of specificity, sensitivity, PPV and NPV 
to predict preterm birth. It is also possible to shift the 
cut-off point to increase either of the accuracy measures 
depending on the aim of the programme and availability 
of resources.

The strength of the study was using an adequate 
number of participants with the outcome, which helped 
us to construct the model using a sufficient number of 
predictor variables. In addition, our prediction model 
was constructed from easily obtainable maternal charac-
teristics that make it applicable in primary care settings 
and multiple imputations were used to address missing 
data, which has been shown to be a valid technique 
for dealing with missing data within logistic regression 
models, resulting in less bias than excluding all women 
with missing data.

However, the findings from this study should be inter-
preted with the perspective of the following limitations. 
As a single-site study, it is confined to a single area, which 
needs external validation before using it in another 
context. Furthermore, data were collected from each 
mother’s card; due to this, some important variables 
were missed, such as previously highlighted factors with 
preterm birth in different studies.

Conclusions and recommendations
This study shows the possibility of predicting preterm 
birth using a simple prediction model constructed from 
maternal characteristics. Thus, the optimal combination 
of maternal characteristics such as residence, gravidity, 
HGB <11 mg/dL, PROM, APH and PIH shows the possi-
bility of predicting preterm birth using a simple predic-
tion model constructed from maternal characteristics. In 
addition, risk score calculation based on a combination of 
predictors was effective and had comparable accuracy with 
the model-based approach of the original β coefficients. 
This score may assist in clinical decision making. In addi-
tion, incorporating this convenient and easily applicable 
score in the healthcare system can be used by clinicians to 
inform pregnant mothers about the future course of their 
outcome after external validation. Doing further research 

is needed to validate the prediction tool using prospective 
follow-up studies in another context before introducing it 
to clinical and public health practices.
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