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Abstract: This study aimed to assess the relationship between the content of toxic trace elements,
such as aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), mercury (Hg), and lead (Pb), in
the hair of the adult population of western Kazakhstan and the distance of their residence from oil
and gas fields. The cross-sectional study included 850 adults aged 18–60 years. Inductively coupled
plasma mass spectrometry was used to measure the level of Al, As, Be, Cd, Hg, and Pb in hair. The
relationship between the concentration of toxic trace elements in the hair and the distance from
oil and gas fields was assessed in three groups (<16 km, 16–110 km, and >110 km), using multiple
linear regression analysis. The highest concentration of Hg = 0.338 µg/g was determined in the
group living near oil and gas fields (0–16 km), whereas the lowest concentration of Al = 3.127 µg/g
and As = 0.028 µg/g was determined in participants living at a long distance (more than 110 km)
(p < 0.001). The concentration of Al (−0.126 (CI: −0.174; −0.077)), Hg (−0.065 (CI: −0.129; −0.001)),
and Pb (0.111 (CI: 0.045; 0.177)) is associated with the distance to oil and gas fields. The obtained
data indicate a change in the toxic trace element content in the hair of residents in the Caspian region
of western Kazakhstan, a change that is most pronounced in residents living in the zone of oil and
gas pollution. The distance to the oil and gas fields affects the content of toxic elements in scalp hair.
In particular, the concentration of Al and Hg is associated with a decrease in the distance to oil and
gas fields, while the concentration of Pb is associated with an increase in the distance to these fields.
The lowest content of Al and As was determined in the hair of study participants living in the most
remote areas (more than 110 km from oil and gas fields). Our results demonstrate the need for the
biomonitoring of toxic elements to determine long-term temporal trends in the impact of chemicals
on public health in western Kazakhstan.

Keywords: Caspian region; hair analysis; mass spectrometry; oil production; toxic trace elements;
western Kazakhstan

1. Introduction

Environmental pollution has increased significantly in recent decades due to the active
development of mining, the processing industry, and road transport [1]. A significant source
of environmental pollution is the oil industry, which is associated with oil-field exploration,
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and the production, transportation, storage, and processing of oil and gas [2]. Environmen-
tal monitoring studies have confirmed the existence of a health risk not only for workers
directly involved in hazardous production, but also for the population as a whole [3].

At all stages of oil and gas production and processing, toxic trace elements are released
into the environment, polluting the soil, water, and air [4]. Existing oil fields potentially
have an impact on the health and environment of more than 600 million people around
the world [5]. The workers involved in cleaning up oil spills and residents of oil and gas
fields have described toxic effects in the form of headache, intoxication, and respiratory,
skin, and eye symptoms [6]. Excessive exposure to oil products leads to cardiovascular [7]
and respiratory diseases [8], pathology of the nervous system [9], and endocrine and
genetic damage [10].

Oil production is an important source of environmental pollution with elemental
Hg [11,12], Pb [13–15], As [16,17], Cd [14], Be [18,19], and Al [20–22]. The most studied
toxic trace elements are Pb, Cd, Hg, and As. When entering the human body, even in small
amounts, these trace elements have a systemic toxic effect [23,24].

The content of heavy metals in the blood is used as a biomarker in assessing the
potential risk of exposure to oil [25]. However, body fluids, such as urine, blood, saliva,
and lacrimal fluid, reflect only its short-term state, that is, the state at exactly the point
of measurement. Unlike liquid biomarkers of exposure, the deposition of trace elements
in the hair provides more accurate determination [11]. According to a study in Punjab,
the results of the analysis of trace elements in hair and urine confirm their correlation
with each other [26]. Blaurock-Busch et al. believe that if the immediate exposure, as
determined by the level of toxic trace elements in the urine, persists for weeks, months, or
longer periods, it contributes to and actually causes long-term exposure, which reflects the
ability of the hair to act as a biosubstrate for determining the level of toxic metals in the
body [27]. The concentration of toxic trace elements in the hair reflects the characteristics of
the environment, including long-term exposure to adverse environmental factors [28]. In a
number of studies, hair is used as a biosubstrate for the determination of toxic metals in
the human body [11,13,29–32].

The oil sector of the Republic of Kazakhstan accounts for 25% of the gross domestic
product and the country is eighth in the world in terms of oil reserves. The intensive devel-
opment of oil and gas fields has led to the deterioration of the environment. Kazakhstan
ranks 84th in the Environmental Performance Index and 137th in the Life Expectancy
Index [33]. The largest oil and gas fields in Kazakhstan are concentrated in the west of the
country and are often located near settlements. The inhabitants of these settlements have
been exposed to the adverse effects of oil and gas for a long time.

There are no well-equipped landfills for the disposal of waste from the oil industry on
the studied territory of western Kazakhstan. Some oil-producing companies are discharg-
ing formation water to evaporation fields without treatment, and some companies have
changed their method of disposal to underground injection into abandoned wells. The
northern region of the Caspian Sea has repeatedly become the site of oil spills at various
stages of oil production—at the stage of drilling wells and oil extraction and the stage of
the conservation of exhausted wells—which has led to significant pollution of the adjacent
territories by oil products. In the areas where petrochemical complexes are located, higher
concentrations of Cd and Pb in the soil are described [34], wastewater is significantly
enriched in Be and Li [18], and formation waters contain high concentrations of Cd and
Pb [35]. In this regard, there is a need to study the level of toxic trace elements in the
biosubstrates of the population of the oil and gas production region in western Kazakhstan.

This study aimed to explore the content of the toxic metals, namely aluminum, arsenic,
beryllium, cadmium, mercury, and lead, in the hair of residents of western Kazakhstan,
depending on the remoteness of their location from oil and gas fields.
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2. Materials and Methods
2.1. Study Area and Participants

A cross-sectional study using a cluster sample was carried out in Aktobe, Mangistau,
and western Kazakhstan provinces (oblasts) of the Republic of Kazakhstan. The study
included 850 permanent residents aged 18–60 years. Detailed description of the settlements
and recruitment procedures have been presented in our earlier publications [36]. Depending
on the distance of residence from oil and gas fields, a comparison was made of the content
of toxic elements Al, As, Be, Hg, Cd, and Pb in three groups: less than 16 km, from
16–110 km, and over 110 km. The activities of an oil and gas enterprise affect the human
body at a distance of up to 16 km [37], and settlements located more than 110 km away
were considered relatively unpolluted [13]. The distance from settlements to deposits was
determined using Google Maps. For each settlement, the coordinates of the centers were
taken from Wikipedia (Figure 1).
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Informed consent was obtained from each participant. The study was approved by
the local ethics committee of the Marat Ospanov West Kazakhstan Medical University
(meeting No. 5 dated 13 May 2020) and performed according to the principles of the
Helsinki Declaration and subsequent amendments.
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2.2. Hair Samples and Analysis

Hair collection was carried out between November 2020 and February 2021. Occipital
hair samples of at least 0.1 g were obtained by cutting with clean stainless steel scissors.
Only proximal parts of the collected hair strands (1–2 cm) were used for analysis. Hair
samples were stored in a paper envelope until analysis.

In the laboratory, hair samples were subject to preparation by washing and microwave
decomposition. The hair strands were washed with acetone, then rinsed three times
with deionized water (18 MΩ cm) from a DVS-M/1HA-1(2)-L electric distiller (Mediana-
Filter, Podolsk, Russia). The use of acetone as a washing agent removes dirt and dust
from hair samples without influencing endogenously bound trace elements, as shown in
earlier studies [38,39]. Washed hair samples were dried on air at 60 ◦C to a stable weight.
A total of 50 mg dry washed hair samples were introduced into nitric-acid-precleaned
Teflon containers containing 5 mL of concentrated (65%) nitric acid (Sigma-Aldrich Co.,
St. Louis, MO, USA). Microwave digestion was carried out for 20 min at a temperature of
170–180 ◦C in a “Berghof Speedwave 4 system” (Berghof Products + Instruments, GmbH,
72800 Eningen, Germany). After cooling and equalizing the pressure in the system, the
solutions obtained during decomposition were transferred into tubes, and the volume was
adjusted to 15 mL with distilled deionized water (18 MΩ cm). The final solution was used
for chemical analysis.

The concentration of toxic chemical elements, Al, As, Be, Hg, Cd, and Pb, was deter-
mined by inductively coupled plasma mass spectrometry (ICP MS) using a NexION 300D
mass spectrometer (PerkinElmer Inc., Shelton, CT, USA) equipped with 7-port FASTvalve
and ESI SC-2 DX4 autosampler (Elemental Scientific Inc., Omaha, NE, USA). The ICP-MS
system was conditioned and calibrated in accordance with the manufacturer’s manual via
external calibration. The external calibration solutions containing 0.5, 5, 10, and 50 µg/L of
the studied elements were freshly prepared from the Universal Data Acquisition Standards
Kits (PerkinElmer Inc., Shelton, CT, USA) by dilution with distilled deionized water and
subsequent acidification with 1% HNO3 (Sigma-Aldrich Co., St. Louis, MO, USA). Inter-
nal online standardization using 10 µg/L solutions of yttrium-89 and rhodium-103 was
performed. The solutions were prepared from Yttrium (Y) and Rhodium (Rh) Pure Single-
Element Standard (PerkinElmer Inc. Shelton, CT, USA) on a matrix containing 8% 1-butanol
(Merck KGaA, Gernsheim, Germany), 0.8% Triton X-100 (Sigma-Aldrich Co., St. Louis, MO,
USA), 0.02% tetramethylammonium hydroxide (Alfa Aesar, Ward Hill, MA, USA), and
0.02% ethylenediaminetetraacetic acid (Sigma-Aldrich Co., St. Louis, MO, USA).

Certified reference material of human hair GBW09101 (Shanghai Institute of Nuclear
Research, Shanghai, China) was used for laboratory quality control (Table 1). The recovery
rates for all studied toxic chemical elements were within the range of 90–110%.

Table 1. Laboratory quality control with certified reference material of human hair GBW09101.

Element Certified
Value, µg/g

Obtained
Value, µg/g

Recovery
Rate, % LoD, ppb BEC, ppb

Al 23.2 23.3 ± 2.48 101 0.13 0.26
As 0.198 0.194 ± 0.014 97 0.001 0.001
Be n.s. 0.0015 ± 0.0008 - n.s. n.s.
Cd 0.072 0.066 ± 0.006 92 0.0016 0.0006
Hg 1.06 1.15 ± 0.29 108 0.012 0.034
Pb 3.83 4.13 ± 0.28 108 0.0006 0.0007

LoD—limit of detection, BEC—background equivalent concentration, ppb—part per billion, n.s.—not specified.

2.3. Statistical Analysis

The distributions of the data concentrations of the toxic trace elements (Al, As, Be,
Cd, Hg, Pb) in hair samples was non-Gaussian. The content of toxic trace elements in
hair is presented with the geometric means (GM), arithmetic means (AM), median (Me),
percentiles (P2.5%; P97.5%), maximum (Max), and minimum (Min) values. We analyzed
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the differences in the content of toxic trace elements in three groups depending on the
place of residence (<16 km, 16–110 km and >110 km) using the Kruskal–Wallis H-test. For a
posteriori comparisons for these 3 groups, a new critical level p < 0.017 was used [40].

Linear regression analysis was used to assess the relationship between concentrations
of toxic trace elements in the hair and the settlement’s remoteness from the oil and gas
production site (model 0). To perform linear regression analysis, we transformed the data
using the natural logarithm Ln(X). In the multiple linear regression analysis, important
factors, such as age, gender, body mass index (BMI), and tobacco smoking (model A,B,C),
were included. For testing statistical hypotheses, the critical significance level, p, was taken
as equal to 0.05. SPPS.v.25 Modeler (IBM) and Statistica.v.10 (StatSoft, Tulsa, OK, USA)
software were used for statistical analysis.

3. Results
3.1. Toxic Trace Element Content in Hair of Residents of Western Kazakhstan

The study included n = 850 representatives of the adult population from 32 settlements
in western Kazakhstan. The distance of settlements from the oil and gas production area
ranged from 2.3 to 475 km. The average age of the participants was 42 (31.0; 53.0) years.
Among participants were 350 (41.2%) men, and 239 (28.1%) of the surveyed population
lived in the city [36].

Table 2 shows the concentration of Al, As, Be, Cd, Hg, and Pb in the hair of residents
of western Kazakhstan. Data are presented in three groups depending on the remoteness
of oil and gas fields from the place of permanent residence of the participants. There were
significant differences in the content of Al, As, and Hg in the hair between the three groups.
The lowest concentration of Al and As was found in the hair of study participants from
the most remote settlements (more than 110 km from oil and gas fields). The content of
Hg in the hair of residents living near oil and gas fields (0–16 km) was 2.5 times higher
than that of residents from the settlements furthest from the fields (more than 110 km). The
concentration of Be, Cd, and Pb in the hair of representatives of the three studied groups
living at different distances from oil and gas fields showed no significant differences.

Table 2. Comparative analysis of the concentration of toxic trace elements (µg/g) in the hair of residents
of western Kazakhstan in 3 groups living at different distances from oil and gas production fields.

Element

Remoteness < 16 km (n = 79) Remoteness 16–110 km (n = 422) Remoteness > 110 km (n = 349)
p

K-W
AM GM Me

(Q1; Q3) P2.5; P97.5 AM GM Me
(Q1; Q3), P2.5; P97.5 AM GM Me

(Q1; Q3), P2.5; P97.5

Al 7.158 5.240 4.795
(3.058; 8.601) c (1.447; 29.345) 8.509 5.373 4.935

(2.905; 8.896) c (1.214; 39.451) 5.163 3.463 3.127
(1.868; 5.778) a,b (0.877; 22.346) <0.001

As 0.034 0.026 0.030
(0.017; 0.047) (0.004; 0.102) 0.041 0.031 0.034

(0.020; 0.052) c (0.004; 0.141) 0.033 0.023 0.028
(0.013; 0.043) b (0.003; 0.097) <0.001

Be 0.0006 0.0004 0.0004
(0.0001; 0.0008) (0.0001; 0.0025) 0.0006 0.0004 0.0003

(0.0001; 0.0009) (0.0001; 0.0027) 0.001 0.0004 0.0004
(0.0001; 0.0009) (0.0001; 0.0026) 0.605

Cd 0.028 0.012 0.010
(0.005; 0.020) (0.001; 0.235) 0.026 0.010 0.009

(0.005; 0.019) (0.001; 0.121) 0.025 0.011 0.011
(0.005; 0.026) (0.001; 0.127) 0.107

Hg 0.552 0.335 0.338
(0.150; 0.799) b,c (0.057; 2.529) 0.185 0.121 0.132

(0.062; 0.240) a,c* (0.017; 0.715) 0.219 0.147 0.139
(0.083; 0.262) a,b* (0.026; 0.928) <0.001

Pb 0.574 0.206 0.178
(0.073; 0.417) (0.028; 4.387) 0.348 0.180 0.161

(0.077; 0.356) (0.029; 2.126) 0.520 0.217 0.190
(0.099; 0.404) (0.039; 4.025) 0.140

AM—arithmetic mean; GM—geometric mean. Post hoc comparisons: differences at the level of p < 0.001 for
a,b, and c; p = 0.013 for b* and c*; a—<16 km; b—16–110 km; c—>110 km.

3.2. Effects of the Remoteness of the Oil and Gas Production/Processing Sites on Levels of Toxic
Trace Elements in Hair

Using multiple linear regression analysis, we examined how the relationship between
toxic trace element concentrations in hair and distance changes when the effect of variables,
such as age, gender, BMI, and smoking, is taken into account. The results are presented
in Table 3. To demonstrate how this table should be understood, we use the example of
Pb. In Model 0, the regression coefficient of Pb, 0.084 (95% CI 0.010; 0.159), means that the
natural logarithm of the concentration of Pb in the hair of residents of western Kazakhstan
increases by the indicated value with each additional 100 km. A distance of 100 km was
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chosen in all models to obtain more significant linear regression coefficients. Adjusted
regression coefficients represent the change in hair Pb concentration due to distance after
age and sex were taken into account in Model A; age, sex, and BMI in Model B; and age,
sex, BMI, and smoking in Model C (Table 3).

Table 3. Assessment of crude and adjusted differences in the hair content of toxic trace elements:
results of multiple regression analysis.

Element Model 0 95% CI p Model A 95% CI p Model B 95% CI p Model C 95% CI p

Al −0.160 −0.216;
−0.103 <0.001 −0.127 −0.176;

−0.079 <0.000 −0.125 −0.174;
−0.077 <0.000 −0.126 −0.174;

−0.077 <0.000

As −0.069 −0.126;
−0.012 0.018 −0.024 −0.073;

0.026 0.346 −0.021 −0.071;
0.028 0.397 −0.021 −0.071;

0.028 0.400

Be 0.031 −0.037;
0.099 0.373 0.047 −0.020;

0.114 0.170 0.049 −0.019;
0.116 0.157 0.047 −0.020;

0.115 0.169

Cd 0.040 −0.039;
0.118 0.323 0.059 −0.013;

0.131 0.107 0.063 −0.010;
0.135 0.089 0.064 −0.009;

0.136 0.084

Hg −0.064 −0.128;
0.000 0.050 −0.076 −0.140;

−0.011, 0.021 −0.068 −0.132;
−0.004 0.038 −0.065 −0.129;

−0.001 0.047

Pb 0.084 0.010;
0.159 0.026 0.107 0.041;

0.172 0.002 0.111 0.046;
0.177 0.001 0.111 0.045;

0.177 0.001

Model 0: Adjusted for distance; Model A: Adjusted for age and gender; Model B: As in Model A, with the addition
of BMI; Model C: As in Model B, with the addition of smoking.

Using multiple linear regression analysis, distance was found to be significantly
associated with hair concentrations of Al and Hg (−0.126 (95% CI: −0.174; −0.077) and
−0.065 (95% CI: −0.129; −0.001), respectively). The regression coefficients indicated a lower
concentration of these trace elements in the hair of residents living at a greater distance
from oil and gas production and processing sites.

4. Discussion

We determined the content of toxic trace elements such as Al, As, Be, Cd, Hg, and Pb
in the hair of residents of the Caspian region in Kazakhstan, living at different distances
from oil and gas production fields (0–16 km, 16–110 km, and more than 110 km). The
examined groups had the greatest differences in the content of Al, As, and Hg in their hair,
wherein the lowest concentration of these trace elements was in the study participants
living at a great distance (more than 110 km) from oil and gas field settlements (Table 2).

Among the toxic trace elements, Al is rarely the focus of attention during the biomoni-
toring of human populations in regions of oil and gas pollution. Moon et al. indicated that
no difference was found in the content of Al in the hair of children from a region close to
an oil field and their peers from control areas [41]. On the contrary, Saleh et al. claimed
that there is an increased level of Al in hair and blood [42] in residents of regions of oil and
gas production, which is similar to the results from this study. Moreover, Caron-Beaudoin
et al. report a significant (three-fold) increase in the Al concentration in the hair of pregnant
women living in an oil production area compared with the control group [20].

Gonzalez et al. and Yuan et al. found that residents of oil provinces have a higher
concentration of As not only in hair, but also in other biosubstrates [16,17]. The authors,
as is also the case in this study, established a tendency for the As concentration in biosub-
strates, including the hair of residents, to change depending on the distance to oil and
gas fields [16,17]. However, an increase in the As level in the hair of residents was noted
not only in oil- and gas-producing regions, but also in agricultural regions [11]. At the
same time, Skalny et al. obtained opposing results by comparing the As content in the
hair samples of petrochemical plant workers (0.033 µg/g) and a control group living at a
distance of 16 km from the plant (0.053 µg/g), as well as office workers (0.062 µg/g) [43].

According to Relic et al., one of the hazardous soil pollutants in areas close to the
petrochemical industry is Hg [14]. O’Callaghan-Gordo et al. observed high concentrations
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of Hg in the urine of residents living in areas where oil spills occurred [12]. Webb et al.
showed that indigenous Peruvians and Ecuadorian Amazonians from oil extraction sites
often had urine Hg levels within the World Health Organization’s global background
standard. However, the level of Hg in the urine was increased in men who worked in
the liquidation of oil spills and in women who used surface water for household use [44].
In addition, a significant increase in the concentration of Hg in the blood of residents of
the oil and gas region is also reported by Saleh et al. [42]. Similarly, this study found a
significant increase in Hg concentration in the hair of residents living near oil and gas
fields (0–16 km), exceeding the same indicator in residents of areas far from the fields by
more than 2.5 times (Table 2). According to some researchers, hair is a suitable biomarker
specifically for assessing the concentration of toxic trace elements in the body [45].

In our study, there were no differences in the concentrations of Be, Cd, and Pb in the
hair of examined residents living in territories of varying degrees of remoteness from oil
and gas fields (Table 2). This is only partially consistent with the results of similar studies
conducted in populations living in areas contaminated by oil and gas products. An increase
in the concentration of Cd in the biosubstrates of residents of territories contaminated with
oil products after oil spills was reported by O’Callaghan-Gordo et al. [12]. The difference
in the obtained results may be due to the use of different biosubstrates for analysis. In a
study by O’Callaghan-Gordo et al., urine was used as a biosubstrate for the analysis of trace
element contents. Levels of toxic trace elements in hair do not correlate with levels found
in urine [12]. Hair deposits of trace elements reflect quantitative changes in trace elements
and related metabolic processes over a long period, whereas the content of trace elements
in urine, saliva, lacrimal fluid, and blood reflects the short-term trace element status of the
organism. Hair samples are widely used to assess human exposure to various pollutants
due to their many advantages. A number of authors have questioned the reliability of
this biomarker for assessing the level of trace elements in the human body. For example,
Rodrigues et al. do not consider hair to be an appropriate biomarker to assess Cu, Mn,
and Sr deficiency or Pb exposure [29]. The data obtained in our study to determine the
concentration of Pb in the hair of the population are similar to the results of the study
by Anticona et al., who reported no increase in the level of Pb in the biosubstrates of an
Amazonian population living in a region affected by the oil industry [46].

Changes in the concentration of Be in the biosubstrates of residents of oil and gas
production regions remain poorly understood. According to Vethanayagam et al., working
in the oil industry is associated with the risk of intoxication with Be [47]. A study performed
by Skalny et al. showed that the level of Be in the hair of employees of a petrochemical plant
was significantly lower than in the control group, who did not work in oil refining [43].
Our study did not establish a difference in the accumulation of Be in the hair of residents of
regions with different degrees of remoteness from oil and gas fields (Table 2).

The results of a comparative analysis of the content of toxic trace elements Al, As, Be,
Cd, Hg, and Pb in the hair of residents of western Kazakhstan living in three zones with
varying degrees of remoteness from oil and gas production and processing sources were
confirmed by multiple linear regression analysis. In this analysis, with increasing distance
from the place of residence to oil and gas fields, the concentrations of Al, As, and Hg in
the hair of the study participants decreased. The models developed for Pb describe the
opposite relationship, indicating an increase in the concentration of Pb in the hair with
distance from the alleged source of contamination. For As, only the unadjusted model
(Model 0) was significant, in which the distance from the place of residence to the point of
oil and gas production was used as a predictor variable (Table 3). In constructing Models
A, B, and C, age, gender, BMI, and smoking were introduced as confounders. Perhaps
the distribution of As in hair associated with the influence of these factors can explain the
statistical significance of Model 0 for As, and its disappearance when the above corrections
are introduced. The concentration of toxic trace elements in hair depends not only on their
intake with food and from the environment, but also on many additional endogenous and
exogenous factors.
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Table 4 shows the results of determining the concentration of the toxic trace elements
Al, As, Be, Cd, Hg, and Pb in the hair of residents of different countries. These data indicate
the existence of a significant difference between the populations in the distribution of toxic
trace elements. This may be due not only to differences in the level and characteristics of
anthropogenic factors (industrial, agricultural, and urban pollution) acting in these territo-
ries, but also to the natural intake of toxic trace elements from the environment. A decrease
or increase in the concentration of toxic trace elements in the body may be associated with
living in biogeochemical provinces characterized by an excess or deficiency of certain trace
elements. Volcanic activity, the weathering of rocks, geothermal waters, and forest fires are
some of the natural sources of toxic trace elements entering the human body [23].

Table 4. Summary of published data on concentrations of toxic trace elements (µg/g) in hair in
different populations.

Sample Type and
Location

Al
Median (Range)

As
Median (Range)

Be
Median (Range)

Cd
Median (Range)

Hg
Median (Range)

Pb
Median (Range) References

Present study,
n = 850

4.080
(1.007; 33.586)

0.030
(0.004; 0.116)

0.0004
(0.0001; 0.0026)

0.010
(0.001; 0.141)

0.145
(0.019; 1.035)

0.181
(0.032; 2.651)

Occupationally
non-exposed
Russian adult

population, n = 5908

6.936
(1.785; 16.958)

0.045
(0.007; 0.135)

0.003
(0.000; 0.011)

0.034
(0.003; 0.090)

0.775
(0.106; 2.212)

1.046
(0.088; 2.142)

Skalny et al.,
2015 [48]

Children aged
7–11 years from

Kazakhstan, n = 836

12.4
(7.4; 19)

0.081
(0.047; 0.13)

0.0015
(0.0009; 0.0037)

0.063
(0.033; 0.13)

0.145
(0.069; 0.297)

1.72
(0.82; 3.36)

Grabeklis et al.,
2018 [49]

Children and adults
selected from

various countries
(39; 250) (0.2; 36) - (0.7; 4.6) (0.2; 13) (2; 30) Caroli et al.,

1994 [50]

Adult population
selected from various

countries: nearly
100,000 individuals
from 55 countries

- 0.26
(0.085; 0.5) - 1.15

(0.35; 2.43)
3.25

(0.5; 12.2)
11

(4.2; 52)

Iyengar and
Woittiez,
1988 [51]

Canada, adults 1.63
(0.26; 5.30)

0.05
(0.03; 0.08)

0.007
(0.003; 0.012)

0.011
(0.004; 0.17)

0.66
(0.31; 1.66)

0.41
(0.13; 4.57)

Gulle et al.,
2005 [52]

South Brazil,
teenagers 12–18 y.o,

n = 126
- 0.006

(0.001; 0.02) - 0.003
(0.000; 0.02) - 0.1

(0.009; 0.4)
Carneiro et al.,

2011 [53]

Italy, schoolchildren,
n = 412

8.45
(2.4; 20.0)

0.06
(0.14; 0.24) - 0.14

(0.04; 0.61) - 6.36
(1.0; 19.8)

Senofonte et al.,
2000 [54]

South Korea,
children 3–6 y.o,

n = 655

8.08
(3; 16)

0.11
(0.05–0.20) - 0.07

(0.01–0.20) 0.43 (0–1) 1.43 (<3) Park et al.,
2007 [55]

Sweden, children +
adults, from 1 year

old up to 76, n = 114

6.4
(2.7; 25.6)

0.067
(0.034; 0.319)

0.0010
(0.0004; 0.0042)

0.034
(0.010; 0.356)

0.249
(0.053; 0.927)

0.660
(0.22; 7.26)

Rodushkin et al.,
2000 [56]

Brazil, adult healthy
population

n = 280
- - - - - 1.5

(0.02–31)
Rodrigues et al.,

2008 [29]

Poland, Wroclaw,
students aged 20,

n = 117

6.73
(3.60; 14.69)

0.760
(0.686; 1.025) - 0.072

(0.058; 0.124)
0.164

(0.063; 0.437)
2.91

(1.24; 5.25)
Chojnacka et al.,

2010 [57]

Sicily, children
11–14 years old,

n = 943

5.0
(0.01; 10.6)

0.03
(0.0003; 0.17) - 0.01

(0.0003; 0.18) - 0.63
(0.03; 4.0)

Tamburo et al.,
2016 [58]

South Sudan, adults,
n = 96

150.00
(22; 1500) - - - - 4.20

(1.1; 150)
Pragst et al.,

2016 [13]

In Figure 3, the distribution of concentrations of Al in the hair of the adult population
of western Kazakhstan living in areas of different distances from oil and gas production
and processing enterprises is shown, in comparison with similar data on children of the
same region [49], and populations of Italy [58], Russia [48], Sweden [56], Poland [57],
Canada [52], South Korea [55], and South Sudan [13], as well as the study by Caroli et al.,
which consolidated the results of several studies [50]. In the presented populations, children
from Italy living in the region of industrial pollution and adults of South Sudan should
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be considered exposed populations, while the rest of the populations are not exposed
or include both exposed and unexposed populations (Caroli et al.) [50]. Noteworthy
is the lower median Al content in our study (4.08 µg/g) compared with the rest of the
populations, with the exception of the study by Gulle et al. (1.63 µg/g). The increase in
the level of Al in the hair of the adult population of western Kazakhstan is expressed both
in the zone of oil and gas production (0–16 km) and in the more remote zone (16–110 km).
Despite the low median of the concentration of Al in the hair of the population of western
Kazakhstan, the upper limit of the ranks is significantly higher than in other studies, with
the exception of studies by Pragst et al. and Caroli et al. [13,50]. The study by Pragst et al.
was conducted in an extremely oil-polluted region of South Sudan [13], and the study by
Caroli et al. consolidated a number of studies, including results from both uncontaminated
and polluted regions [50].

The median distribution of Hg concentration in the hair of the adults of western Kaza-
khstan does not differ from that previously described in children of the same region [49].
However, it is significantly lower than that of a similar indicator in the populations of
Russia [48], Sweden [56], Poland [57], South Korea [55], and Canada [52], and data pre-
sented by Iyengar and Woittiez, 1988 [51] (Figure 4). The difference in the level of Hg in
the hair of residents between the zones of western Kazakhstan, which differ in distance
from oil and gas production enterprises, is very significant. In the zone of oil and gas
production (0–16 km), the maximum concentration of Hg in hair in the region of western
Kazakhstan was noted (0.338 µg/g), which makes it possible to assume that the change in
the concentration of Hg in hair is related to the oil industry.

The distribution of Pb concentration in the hair of the residents of western Kazakhstan,
as shown in Figure 2, demonstrates a pronounced decrease in comparison with similar data
of other populations, with the exception of that described for adolescents in Brazil [53].
It should be noted that a relatively low level of Pb in the hair of residents of western
Kazakhstan was noted in all the zones identified in this study, including the zone of
active oil and gas production (0–16 km). Most of the populations compared in Figure 2
are unexposed, not associated with oil and gas production, which, together with the
results of regression analysis for Pb, suggests that the increase in the concentration of Pb
in the hair of residents is associated with the action of some other factors and requires
further investigation.
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This study has some limitations. First, there was a diverse heterogeneity of age and
gender in the sample. This is due to men mostly refusing to participate in the study because
of having short hair or being bald. On the contrary, women were more willing to consent
to participate in the study. Second, complete information about the concentration of the
chemical elements in the air, soil, and water of western Kazakhstan was not obtained. Third,
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we did not take into account dietary habits, which is an important factor as trace element
status is also influenced by dietary intake. Finally, residents of the Atyrau oblast, which is
also an oil-producing region, were not included in the study. The use of milli-Q quality
water and high-purity acid solution would provide better sample clearance. Consequently,
further studies are required to investigate the influence of environmental factors and dietary
intake on trace elements in hair, with good representation across all age and gender groups.
Despite these limitations, this is the first study to have evaluated the correlation between
the distance to oil and gas production enterprises and the concentration of toxic trace
elements in the hair of people in the Caspian region of western Kazakhstan.

5. Conclusions

To conclude, the obtained data indicate a change in the toxic trace element contents
in the hair of residents in the Caspian region of western Kazakhstan, a change that is
most pronounced in residents living in the zone of oil and gas pollution. The distance
to the oil and gas fields affects the content of toxic elements in scalp hair. In particular,
the concentration of Al and Hg is associated with a decrease in the distance to oil and
gas fields, while the concentration of Pb is associated with an increase in the distance to
these fields. The lowest content of Al and As was found in the hair of study participants
living in the most remote settlements (more than 110 km from oil and gas fields). Our
results demonstrate the need for the biomonitoring of toxic elements to determine long-
term temporal trends in the impact of chemicals on public health in the Caspian region of
western Kazakhstan.
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