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Abstract: Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation
and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as
gradual and permanent physical impairments. It has affected millions of workers in hazardous
industries throughout the world, and it is a leading cause of occupational death. It is difficult
to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide
variation in interpretation between and among readers, and the scarcity of B-readers, which all add
to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning
algorithms have been extremely successful at classifying and localising abnormality of medical
images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis
detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep
features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for
each high-level feature set of the associated cross-validation datasets in order to compare the ensemble
performance and state-of-the-art techniques from the literature that used the same cross-validation
datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy,
85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision–recall (PR)
curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-
CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121
and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated
ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP)
values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within
the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest
radiographs.

Keywords: pneumoconiosis; coal worker pneumoconiosis; occupational lung diseases; computer-
aided diagnosis; ensemble learning; machine learning classifiers; deep learning; CheXNet; chest X-ray
radiographs; Grad-CAM

1. Introduction

Clinical expertise and observer variability are reduced by computer-aided diagnosis
(CADx) systems, which have become increasingly popular in medical imaging. The last
few de-convolutional neural networks (CNNs)-based data-driven deep learning (DL)
algorithms have performed well for chest X-ray (CXR) screening. However, due to the
low prevalence of some diseases and restrictions on sharing patient data, transfer learning
of CNN models became a popular technique, in which pre-trained CNN models from
one application domain were used to provide a foundation for new CNN models in a
different application domain. Transfer learning improves a model’s performance if it has
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been trained on datasets of a related domain to those of the problem being solved [1].
Therefore, if the goal is to detect any disease from medical images, then a model that has
already gained knowledge from a similar domain should be selected. This can reduce
learning time and improve the performance with a small training dataset of a CNN in the
new application domain [2]. To combat the issue of limited data, feature extraction could
be performed via transfer learning of deep learning models, with the resulting features
being fed into new classifiers. In many medical image classifications [3–7], deep learning
models were used as a feature extractor, where the extracted features were fed to different
machine learning classifiers, such as Naive Bayes [8], Multilayer Perceptron (MLP) [9],
Support Vector Machines (SVM) [10], K-Nearest Neighbours (KNN) [11], Random Forest
(RF) [12], and Decision Trees (DT) [13].

Deep learning models are critical for establishing trust and demonstrating their ability
to integrate with computer-aided detection. Over the last year, the interpretation and
visualisation of deep CNN features has grown in popularity for understanding the mod-
elling and behaviour of the features learned across the trained model’s convolutional
layers [14,15]. It was observed that the convolutional layers of CNN retain all spatial
information depending on the increased variance of the input image. This spatial infor-
mation may differ on the depth of the convolutional layer or block within CNN structure,
which is lost in fully-connected layers. As a result, the final convolutional layers or blocks
represent the best understanding of the information between all layers. The neurons in
the layer search for pertinent information on the specific classes of the image. In [15], a
visualisation strategy was presented called class-activation-map (CAM) to locate image
regions of interest (ROIs), which are relevant to an image category. However, the use of this
strategy is limited because it only works with deep learning architecture. Subsequently, a
common CAM technique was proposed based on the gradient-weighted CNN input class
activation mapping, referred to as Grad-CAM with universal tuning form [16], which the
information based on the convolutional layer gradient uses to assign significance values to
each neuron in the ROI. Medical image processing researchers also applied Grad-CAM to
explain the disease predictions of the CNN model and interpreted the depictions learned
with CXR [17–22]. The concept behind Grad-CAM is to compute the gradient of the ranking
score in relation to the CNN characteristics map. It highlights the specific ROIs based on
the greatest gradient score.

In this paper, we have proposed an ensemble technique of multidimensional features
learned from CNN to detect and visualise pneumoconiosis disease in CXRs. Our list of
contributions is summarised below:

I. We have utilised posterior–anterior (PA) CXRs databases compiled by Coal Services
Health NSW, St. Vincent’s Hospital Sydney, Wesley Medical Imaging Queensland,
and the International Labour Organization (ILO).

II. We have applied an efficient CNN architecture, CheXNet-121 to learn and extract
multidimensional features from three different folds of database.

III. Individually for each fold, four different sets of multidimensional features (F1024,
F512, F256, and F128) were extracted by using the supreme dense block functionality
of the CheXNet-121 architecture.

IV. In order to detect pneumoconiosis, extracted features were used as input for nine
traditional machine learning classifiers, such as SVM-SF (SVM with SF kernel), SVM-
RBF (SVM with RBF kernel), SVM-PF (SVM with PF kernel), Gaussian Naive Bayes
(GNB), Multi-layer Perceptron (MLP), Radius Neighbours (NB), K-Nearest neighbours
(KNN), Decision Trees (DTs), and Extra Decision Trees (EDTs)

V. To determine the optimal prediction label, an ensemble of nine decisions was made
using the majority voting (MVOT) system.

VI. Ensemble learning performance on each dataset associated with four feature sets was
assessed using eight metrics: TPR (true positive rate or recall or sensitivity), TNR (true
negative rate or specificity), precision, FPR (false positive rate), FNR (false negative
rate), F1-Score, ACC (accuracy), and MCC (Matthews correlation coefficient).
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VII. To compare the efficiency of the classifiers, AUC-PR (area under the precision–recall
curve) and AP (average precision) values were calculated.

VIII. Grad-CAM was applied to produce a coarse localised map highlighting the most
important ROIs in the lung to predict the disease of coal workers

IX. Additionally, the Grad-CAM localisation outputs on the RGB image were split into
red, green, and blue channels, where each colour specified clearer discriminative
ROIs.

X. Finally, we have compared the ROI highlighted by Grad-CAM with the ground-truth
ROI based on the intersection of the union (IOU) and average-precision (AP) values
of each classifier and their ensemble.

2. Research Background

This section provides context for this study, including previous studies and findings
for pneumoconiosis classification on the same dataset using various classical, traditional
machine, and deep learning methods. Furthermore, Section 2.2 summarises the various
machine learning classifiers used in this study.

2.1. Previous Study

Radiology shows an increase or decrease in lung density on chest X-rays. Pulmonary
opacities are dense abnormalities on chest X-rays. Pulmonary opacities include consoli-
dation, interstitial, and atelectasis. Interstitial pulmonary opacities cause pneumoconio-
sis [23]. The international labour organisation (ILO) divides pneumoconiosis into two types:
parenchymal and pleural. Small opacities (round or irregular) of 1.5 mm diameter (round)
or 1.5 mm width (irregular) or less than or equal to 50 mm in size indicate parenchymal
abnormalities [24]. An abnormal CXR wall shows angle obliteration and thickness diffusion
in pleural abnormalities [25]. Previously, pneumoconiosis was classified using classical,
traditional machine learning, and deep learning methods.

In classical methods, the abundance of small round opacities and ILO extent prop-
erties indicated normal and abnormal lungs [26–35]. Backpropagation neural networks
were used to determine the shape and size of round opacities in region of interest (ROI)
images [36–38], and the abnormalities were classified and compared to the standard ILO
opacity measurement. Using the same data set that was used in this study, this method
worked 83.0% of the time to find pneumoconiosis [39].

Handcrafted feature extraction or selection were used in traditional machine learning
for pneumoconiosis detection. Handcrafted features like texture [30,32] were extracted from
the left–right lung zones [40–43]. Following feature selection, they were fed into various ma-
chine learning classifiers, including support vector machines (SVM) [40,41,43–51], decision
trees (DT) [47,48], random trees (RT) [44,49–51], artificial neural networks (ANNs) [52–54],
K-nearest neighbours (KNN) [55], self-organizing map (SOM) [55], backpropagation (BP),
the radial basis function (RBF) neural networks (NN) [44,49–51,55,56], and Ensemble classi-
fier [41,43,48]. Among the classifiers, SVM had the best overall detection accuracy, with a
73.17 percent success rate when using the same dataset as this study.

Recent advances in deep learning have been made possible by high-dimensional data
representation [57,58]. In medical image processing [59], deep CNNs outperform humans
in detecting cancer markers in blood and skin [60–62], malaria in blood cells [63], and
respiratory diseases in chest X-rays [39,64–72].

On the same dataset, we have used different deep learning approaches. We first
implemented convolutional neural networks (CNN) with and without transfer learning,
using the base models, DenseNet-121 [19] and CheXNet-121 [18]. Furthermore, with an
overall accuracy of 90.24 percent, we were able to develop a cascade model that out-
performed others in detecting pneumoconiosis. Prior research using the same dataset
revealed that the pre-trained deep learning model, CheXNet-121, outperformed classical
and traditional approaches.
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2.2. Machine Learning Classifiers

In machine learning, support vector machine (SVM) networks can be used as either
a linear or a non-linear classifier. In the non-linear case, SVM can be utilized to address
binary classification problems with different kernel functions which maximize the marginal
distances between two classes. Sigmoid, radial basis, and polynomial are three popular
kernel functions for SVM. One of the activation functions of SVM-SF (sigmoid function) is
hyperbolic tangent function; SVM-RBF (radial basis function) uses exponential functions as
its activation function, which measures the Euclidean distance between the classes; SVM-PF
(polynomial function) reduces the similarity of vectors that optimize the network’s learning
capacities [73,74].

In supervised learning, a simple classification algorithm called Gaussian Naïve-Bayes
(GNB), which is based on Bayes probability theorem, can be trained to work for small sets of
features vectors [74]. Each output feature vector from a multi-layer perceptron (MLP) is an
input to the following layer, and a non-linear activation function forecasts the probabilities
of unknown vectors [73]. MLP can classify the datasets which are not linearly separable.
Both the radius neighbours (RN) and the k-nearest neighbours (KNN) classifiers operate
in a specific vector space where each feature vector maintains a constant separation from
a random vector point. The term “radius of neighbours” refers to the fixed distance. The
KNN displays the vectors that would connect the top k nearest neighbours’ features in the
same vector space [75]. In a complex variable problem, classification becomes more difficult
due to the complexity of feature patterns. In this case, a model randomly selects some
target feature sets that are called decision trees (DTs), where the leaves and branches of DTs
represent the class labels and features of these labels. For the complicity of features a single
DT sometimes over-fits the training dataset, while the extra decision trees (EDTs) reduce
the overfitting of the training model that can optimize the prediction probabilities [76]. A
wide range of real-world applications, including medical image analysis, have shown that
machine learning classifiers are extremely effective in a variety of situations [77–80]. In
recent years, due to the low prevalence of some diseases and restrictions on the sharing
of patient data, the machine learning classifiers summarised above have merged CNN
features to great effect as well [3–7].

3. Datasets and Methods

The first part of this section discusses our dataset and how it was processed using ran-
domised cross-validation to perform proposed ensemble technique. In contrast, the rest of
the section describes the details of the detection and visualisation techniques implemented
in this research.

3.1. Datasets

We have made use of the posterior–anterior (PA) CXRs databases that were accu-
mulated by the Coal Services Health NSW, St. Vincent’s Hospital Sydney, Wesley Med-
ical Imaging Queensland, and ILO. The database contained total 153 images, including
71 pneumoconiosis CXRs. To keep the training data balanced, 112 X-rays (56 normal and
56 pneumoconiosis) were used for training and 41 X-rays (26 normal and 15 pneumoco-
niosis) were used for testing. 25% of the training data was kept as a validation data set in
order to select the best model weights based on validation performance. We repeated the
randomised selection three times before dividing our total dataset into three folds, namely
randomised 3 cross-fold Dataset 1, Dataset 2, and Dataset 3, as shown in Figure 1.
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Figure 1. Three randomized cross-fold datasets of original database.

3.2. Method

Gao Huang et al. developed DenseNet-121, a CNN with dense connections between
layers that was trained on the ImageNet database of 1000 classes, in 2017 [19]. The
four dense blocks were utilised to make these connections, which consisted of joining
them in such a way that their output sizes were similar. Rajpurkar, P. et al. transferred
DenseNet-121’s knowledge from the ImageNet domain to the Chest X-ray domain and
released hybrid CheXNet-121 pre-trained model [18]. This CheXNet-121 model was trained
on ChestX-ray14, which contains 112,120 frontal X-ray pictures from 30,805 individuals [81].
This study proposes a subsequent implementation of transfer learning to apply CheXNet-
121’s knowledge to a tiny dataset of X-ray diseases that includes none of those 14 classes.

The CheXNet-121 architecture represents a discriminating level of characteristics
after each convolutional block that is more robust with bigger datasets. The CheXNet-
121 has four convolutional dense blocks followed three transition layers which are fully
connected, as demonstrated in Figure 2. Each of the four dense blocks was made up of 6,
12, 24, and 16 times of the 1 × 1 convolution and 3 × 3 convolution, with features being
multidimensional, as directed by arrows in Figure 2. On the input feature maps, each layer
adds a few new features in a dense block, which causes the feature size to increase. The
transition layers can do downsampling by using a batch-norm layer, a 1 × 1 convolution
operation, and then a 2 × 2 average pooling outside dense blocks, as shown in Figure 2.
This makes sure that the size of the feature map inside dense blocks stays the same so that
features can be concatenated. The initial dense blocks’ features are regarded as low-level in
comparison to the fourth dense blocks.

In this section, we have proposed an ensemble learning using nine machine learning
algorithms to classify multidimensional high-level CheXNet-121 features learned from
chest X-rays. The CheXNet-121 model was used as a feature extractor by removing the
last layer close to the output layer. Next, a global average pooling layer was added which
converted the output of the model into one-dimensional vectors. The resolution of input
X-ray images is 512 × 512 pixels with three channels. Before use of the model, we compiled
it using an Adam optimizer with low learning rate (0.0001) and binary cross entropy as a
loss function. The main contribution of this section is summarized as follows:
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Figure 2. The details of our proposed ensemble learning of pneumoconiosis detection.

Firstly, we extracted four sets of multidimensional high-level CheXNet-121 features
(F1024, F512, F256 and F128) independently from the three randomized cross-fold datasets
as discussed in Figure 1. Here, each feature set indicates the number of features extracted
from each image. Secondly, extracted features were used as the input of nine classifiers,
including SVM-SF (support vector machine with sigmoid function kernel), SVM-RBF
(support vector machine with radial basis function kernel), SVM-PF (SVM with polynomial
function kernel), Gaussian Naive Bayes (GNB), multi-layer perceptron (MLP), radius
neighbours (NB), k-nearest neighbours (KNN), decision trees (DTs), and extra decision
tree (EDTs), as clearly mentioned in Figure 2. Thirdly, the optimal prediction label was
calculated using the strategies of a majority voting (MVOT) system. Finally, the ensemble
learning performances among three randomized cross-fold datasets were computed using
eight metrics: TPR (true positive rate or recall or sensitivity), TNR (true negative rate or
specificity), precision, FPR (false positive rate), FNR (false negative rate), F1-Score, ACC
(accuracy), and MCC (Matthews correlation coefficient). Here, the MCC provides a more
accurate statistical measure based on the four confusion matrix values of true positives,
false negatives, true negatives, and false positives. Therefore, a model will achieve a higher
MCC score if and only if it achieves a good return in the four matrix values.

The hyper parameters of all classification algorithms were chosen based on experi-
ments aiming to achieve the best performance of each model on validation features. For
SVM, we tested different values for each parameter; for example, five values (0.00001, 0.0001,
0.001, 0.01, and 0.1) are assessed for the penalty C, and the parameter gamma, γ was as-
signed a set of values as 2−9, 2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29. For GNB we set only the variance smoothing parameters 10−10, 10−9, 10−8, 10−7,
10−6, 10−5, 10−4, 10−3, 10−2, 10−1 which were stable despite the features variances. For



Int. J. Environ. Res. Public Health 2022, 19, 11193 7 of 21

MLP, we used the default hidden layer size 100, rectifier linear units (relu) as its activa-
tion function, L2 penalty weights regularization, Adam optimizer, and initial learning
rates (0.00001, 0.0001, 0.001, 0.01, and 0.1) with maximum iteration 10,000. The range of k
neighbours was tuned odd number from (1 to 84) in KNN, and fractional radius neighbour
parameters from (1.5 to 5.00), which may vary depending on the training feature sets used
in RN. For the maximum depth of trees, it was tuned with odd integer numbers from 1 to 30.
The other parameters of all classifiers were chosen as default values of the algorithms. The
best tuned parameters were used for training and testing, which gave optimal performance
on the extracted feature sets, F1024, F512, F256, and F128.

The recall and precision values for each test CXR utilising the feature set of its asso-
ciated dataset were presented in Figures 3–14 to demonstrate how well a single classifier
performed in an ensemble. As a result, using their AUC-PR (area under the precision-recall
curve) and AP (average precision) values made comparing efficiency easier. Trapezoidal
numerical integration of the precision–recall curve yields the AUC value. The weighted
average of the precision obtained at each threshold, with the recall increase being the
preceding threshold used as weight, is how AP summarises a graph. This implementa-
tion is not interpolated, as opposed to the PR curve AUC calculation, which uses linear
interpolation and can be overly optimistic.
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Additionally, we applied the Grad-CAM (gradient-weighted class activation mapping)
technique to interpret the most important ROIs that contributed to the classification of
pneumoconiosis disease. Finally, we have interpreted the localisation performance of
Grad-CAM through four convolutional blocks within the CheXNet-121 architecture, as
demonstrated in Figure 2. Next, we split the Grad-CAM image of the high-level feature
block into red, green, and blue, as shown in Figure 15. We compared all predicted ROIs
with ground truth ROIs based on the measurement of the intersecting area over the union
(IOU) between them and best AP values of each classifier and their ensemble. IOU is used
to measure the performance of object detection from the overlapping relationship area
between the ground-truth and predicted bounding box provided for a particular input
image [82,83]. The details proposed Grad-CAM technique of pneumoconiosis detection is
presented in Figure 15.

We implemented our proposed model using the Keras version of CheXNet-121 with
scikit-learn 0.19.1 machine learning classifiers, matplotlib 3.1.3 libraries, and Python 3. The
experiments were conducted on a high-performance computing system at the University
of Newcastle.
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4. Results and Discussions

The ensemble outcomes for the nine traditional machine learning classifiers—SVM-SF,
SVM-RBF, SVM-PF, GNB, MLP, KNN, RN, DTs, and EDTs—based on the majority voting
(MVOT) system are presented in this section. Table 1 displays the results of our investigation
into the ensemble learning performance of nine classifiers using eight evaluations based on
the MVOT confusion matrix. For the randomised cross-fold Datasets 1 and 2, the ensemble
classifiers attained an accuracy of 90.24 percent for the feature sets F1024 and F512, as
discussed in Figure 1.

Table 1. Ensemble results of proposed classifiers among the four feature sets though three datasets
(Dataset 1, Dataset 2 and Dataset 3).

MVOT on Feature Sets Recall
(%)

Specificity
(%)

Precision
(%) FPR (%) FNR (%) F1-Score

(%)
Accuracy

(%) MCC (%)

Ensemble-F1024-Dataset 1 92.31 86.67 92.31 13.33 7.69 92.31 90.24 78.97
Ensemble-F1024-Dataset 2 95.83 82.35 88.46 17.65 4.17 92.00 90.24 79.97
Ensemble-F1024-Dataset 3 88.89 85.71 92.31 14.29 11.11 90.57 87.80 73.45
Ensemble-F512-Dataset 1 95.83 82.35 88.46 17.65 4.17 92.00 90.24 79.97
Ensemble-F512-Dataset 2 92.31 86.67 92.31 13.33 7.69 92.31 90.24 78.97
Ensemble-F512-Dataset 3 83.87 100.00 100.00 00.00 16.13 91.23 87.80 74.78
Ensemble-F256-Dataset 1 96.00 87.50 92.31 12.50 4.00 94.12 92.68 84.56
Ensemble-F256-Dataset 2 95.83 82.35 88.46 17.65 4.17 92.00 90.24 79.97
Ensemble-F256-Dataset 3 83.33 90.91 96.15 09.09 16.67 89.29 85.37 68.29
Ensemble-F128-Dataset 1 100.00 83.33 88.46 16.67 00.00 93.88 92.68 85.86
Ensemble-F128-Dataset 2 92.31 86.67 92.31 13.33 7.69 92.31 90.24 78.97
Ensemble-F128-Dataset 3 85.71 84.62 92.31 15.38 14.29 88.89 85.37 67.94

For the features sets F256 and F128, the ensemble classifiers achieved an accuracy of
92.68% and 90.24% for same Dataset 1 and 2. For features sets F1024 and F512, the ensemble
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classifiers achieved an accuracy of 87.80% for Dataset 3. For the features sets F256 and F128,
the ensemble classifiers achieved an accuracy of 85.37% for Dataset 3. Therefore, average
and maximum accuracies of 90.24% and 92.68% were achieved among the three datasets by
the proposed ensemble learning method. Furthermore, we found that the highest MCC
score, 85.86 percent, was attained on our imbalanced testing dataset. A low false positive
rate (FPR) and false negative rate FNR was also achieved by the ensemble of nine classifiers.
For the purpose of pneumoconiosis disease detection, the proposed integrated method
also fares better than the alternatives on measures such as precision, recall, specificity, and
F1-score.

In our proposed datasets, we used a balanced distribution of two classes during
training and validation, but the test was imbalanced. Therefore, all test datasets contained
36.58 percent (15 out of 41) of pneumoconiosis and 63.42 percent (26 out of 41) of normal
images. The precision–recall (PR) values for each test data set were plotted with the
corresponding feature sets F1014, F512, F256, and F128, respectively. Then, the values
AUC-PR (area under the PR curve) and AP (average accuracy) were computed to provide
a different perspective on the evaluation of the result of the binary classifier. The Lager
AUC-PR value shows better model performance in order for the PR curve to move to the
ideal classifier. Varying according to the imbalanced data, the baseline of the PR curve is
the horizontal line parallel to the x-axis value of the positive rate that would be the lowest
precision value. Almost all real-world examples will be somewhere between ideal and
baseline, which is not perfect but provides better forecasts than the ‘baseline’.

We demonstrate the AUC-PR and AP values for each classifier that has used three
different datasets in the ensemble learning process using four dimensions of CheXNet-121
features in the following figures. All of the PR curves have demonstrated the equilibrium
between the positive prediction values and the true positive rate through the application
of a variety of probability thresholds. The average precision (AP) is a representation
of the mean of the precision values obtained at each recall of a new positive sample.
This indicates whether a classifier is capable of accurately identifying all instances of
pneumoconiosis without mistakenly labelling an excessive number of normal occurrences
as pneumoconiosis. As a consequence of this, the AP is high when the classifier is capable
of accurately detecting pneumoconiosis disease in chest X-ray radiographs.

Figures 3–6 show the PR curves in an ensemble of nine classifier performances using
the corresponding CheXNet-121 feature sets, F1024, F512, F256, and F128 of Dataset 1. The
highest AUC-PR and AP values on F1024 were 0.8966 and 0.9019, respectively, achieved
by the same SVM-SF classifier. The highest AUC-PR and AP in the RP curves on F512
were 0.9007 and 0.9046, respectively, achieved by the two classifiers, SVM-SF and MLP. The
highest AUC-PR and AP pairs obtained by the same RN classifier in the PR curves of F256
and F128, respectively, are (0.9507 and 0.9490) and (0.9302 and 0.9291).

Figures 7–10 show the PR curves in an ensemble of nine classifier performances using
CheXNet-121 feature sets F1024, F512, F256, and F128 from Dataset 2. The highest AUC-PR
and AP pairs in the PR curves of F1024 and F512 are (0.9208 and 0.9234) and (0.8835 and
0.8876), performed by the same MLP classifier. The pairs of AUC-PR and AP (0.9601 and
0.8655) and AP (0.9064 and 0.9088), on the other hand, were produced as the highest on
F256 and F128 with two isolated classifiers, SVMRBF and GNB.

Figures 11–14 show the PR curves in an ensemble of nine classifier performances
using feature sets F1024, F512, F256, and F128 from Dataset 3. With the help of the set
of high-dimension extracted CheXNet-121 features, F1024, KNN, and MLP achieved the
highest AUC-PR and AP values of 0.8385 and 0.7920 out of nine classifiers. By obtaining
the highest AUC-PR and AP, the SVM variant, SVM-RBF, demonstrated effectiveness in the
detection of pneumoconiosis using both F512 and F256. MLP obtained the lowest AUC-PR
and AP values for F128 Dataset 3.

The ensemble technique showed that a set of nine classifiers for Datasets 1–3 performed
average precision and recall values with F128 and F1024 testing sets. In most classifiers,
positive predictive values increased, consistent with higher true positive rates. Most of the
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PR curve is oriented toward the ideal classifier and enclosed by the baseline. Although
the proposed ensemble methods have increased the accuracies of Dataset 2 from 87.80% to
90.24%, and Dataset 3 from 85.37% to 87.80%, they did not improve the accuracy of Dataset
1 from 92.68%. The optimum pneumoconiosis detection accuracy and MCC scores of 92.68%
and 85.86% were obtained with the F128 features. Thus, the higher MCC score indicated that
the ensemble method obtained a good prediction across categories of the confusion matrix,
true positives, false negatives, true negatives, and false positives, respectively. Maximum
AP (average precision) values of 0.9490, 0.9234, and 0.9005 for Datasets 1–3 indicate RN,
MLP, and SVMRBF were more accurate at detecting pneumoconiosis in chest X-rays.

Grad-CAM was used to calculate the automatic differentiation of the selected class
final score with respect to the weights in each CheXNet-121 block’s feature map. The
Grad-CAM is created by averaging multiple CAMs (class activation mapping) generated
by the CheXNet-121 model’s four convolutional blocks. Figure 15 depicts the workflow.

We avoided CAMs before the final block in this study because the deepest convolution
layer of each CNN model generates efficient characteristic maps. To demonstrate the
efficacy of our technique, we separated three colour channels from the proposed Grad-RGB
CAM’s outputs using the CheXNet-121 model and quantitatively compared their visual
ROI localisation performance in terms of IOU and AP values. IOU evaluates the accuracy
of the Grad-CAM highlighted region of interest (ROI) by splitting and combining the test
image’s red, green, and blue channels, as shown in Figure 15.

Grad-CAM demonstrated that the ROI channels’ variance in intensity reflects the
relative importance of each channel to the class. The ground-truth (green-bounding) and
predicted (yellow-bounding) boxes represented the precise coordinates of the suspicious
and Grad-CAM highlighted ROIs within the pneumoconiosis CXRs, respectively, and were
used to calculate the IOU.

In Figure 15, we visualised the Grad-CAM outputs of each convolutional block within
the CheXNet-121 architecture. In Section 3.2, the chemistry of these blocks is described
in detail using Figure 2. The initial two convolutional blocks highlighted the overall
pixels, size and shape of pneumoconiosis using Grad-CAM. The third block highlighted
several suspected areas in the pneumoconiosis images. Our objective was to predict the
most conspicuous suspect ROIs that matched with the most ground-truth ROIs, which we
noticed from the high-level feature block’s outputs. Therefore, we avoided the first three
blocks’ outputs in the measurements of intersection over union (IOU). The formula of IOU
calculation has been attached in Figure 15.

As we know that the lungs of pneumoconiosis patients look black instead of a healthy
pink, we turned our IOU calculation into three channels of input red-green-blue (RGB)
images, as in Figure 15. Consequently, we observed the IOU-RGB differences in the accuracy
of each channel. In Figures 15 and 16, we showed a total of six Grad-CAM applications
using two images from each of the three different test sets, where IOU accuracy has been
demonstrated at each RGB and its separate channels independently. The comparison
of IOU-RGB with each channel focused different accuracy among them, where only the
IOU-BLUE has shown higher accuracy than IOU-RGB with the same bounding boxes.

Table 2 demonstrates the comparison between average-IOU and average positive
prediction value (PPV or precision) through three cross-fold datasets. The average IOU
passed an average of more than 85% of the pneumoconiosis detection in chest radiographs
through the visualisation of the Grad-CAM datasets, where the average maximum was
89.32% for test Dataset 1.

Ensemble learning with the MVOT and the proposed method gave AP accuracy of
100% on test Dataset 3, but only 92.31 percent on the other test datasets. We also made
a list of the highest AP that nine classifiers got from the precision–recall curve in Table 2.
The RN classifier in Dataset 1 got the highest AP, which was 94.90 percent. SVMRBF used
three-fold datasets of pneumoconiosis disease to figure out the overall 90 percent AP. The
proposed ensemble learning achieved 92.68 percent pneumoconiosis detection accuracy in
chest X-ray radiographs, as shown in Table 1.
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conspicuous suspect areas.

Table 2. Comparison of IOU and AP though three different datasets.

Measurements Dataset 1 Dataset 2 Dataset 3

Average-IOU (%) 89.32 87.85 85.31

Maximum
average-precision (AP) (%)

N
in

e
cl

as
si

fie
rs

SVMSF 91.47 89.82 80.72

SVMRBF 90.41 90.45 90.05

SVMPF 91.38 91.40 78.09

GNB 89.22 90.88 84.44

MLP 90.90 92.34 81.19

KNN 89.87 84.48 75.87

RN 94.90 91.22 86.47

DT 68.63 59.81 46.43

EDT 79.99 83.98 80.56

Maximum AP-ensemble learning (%) 92.31 92.31 100.00

In this research, we have presented a deep learning-based method with ensemble
learning. The experimental results show that it performed well for the detection of pneu-
moconiosis and achieved an accuracy of 92.68%. An average precision of 92.31%, 92.31%,
and 100.00% were achieved by the proposed technique. The proposed CheXNet-121 model
visualisation helped to interpret the model’s behaviour, compensated for the error of miss-



Int. J. Environ. Res. Public Health 2022, 19, 11193 18 of 21

ing ROIs using individual CNN models, and demonstrated superior ROI detection and
localisation performance compared to any individual constituent model.

5. Conclusions

We conducted a study to identify pneumoconiosis disease in CXRs using the deep
learning technique. We explored deep learning applications through ensemble learning.
The experimental findings show that the proposed methodology is an encouraging and
better approach than applying a single model individually and other state-of-the-art ap-
proaches. In addition, the Grad-CAM visualisation helped interpret the behaviour of the
model and demonstrated discrimination in detecting and localising ROIs within each RGB
channel when compared to any individual convolutional block in the deep learning model.
The experimental results show that the proposed method can be used for pre-screening of
chest X-rays for the effective detection of pneumoconiosis. Expert radiologists can then
spend more time on those X-rays that were flagged as having pneumoconiosis by the
proposed model. We think the proposed frameworks are useful for the development of
robust models in the classification of medical images and localisation of the superior ROI.
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