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Practice points

• Clinical features
◦ Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disease with features outside the nervous system;
◦ Cardiac disease is the most common cause of death in FRDA;
◦ Bone health including osteopenia is a new area of clinical care in FRDA.

• Clinical care requires the integration of care across many pathophysiological systems.
◦ Clinical guidelines exist for essentially all aspects of medical care in FRDA;
◦ Such guidelines generally do not reveal FRDA-specific treatments, but instead reinforce the need for

high-quality standard medical care in FRDA.
• Clinical trials are investigating agents that ameliorate mitochondrial dysfunction in FRDA or raise frataxin levels.

◦ Two new areas of treatment include the enhancement of the NRF2 pathway, which mediates the mitochondrial
reaction to oxidant damage;

◦ and restoration of deficient frataxin, which potentially reverses the primary cause of FRDA.
• New scientific advances continue to influence clinical understanding of FRDA.

◦ A new explanation of epigenetic silencing in FRDA stresses a variegated silencing mechanism, which explains
many clinical phenomena in FRDA such as the overlap in frataxin levels between carriers and patients;

◦ Assessment of the neuroanatomic features of FRDA clarifies the targets of new therapies and helps understand
the new perspectives on the developmental aspects of the disease.

Friedreich’s ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological
features, affects 1 in 50,000–100,000 individuals in the USA. However, FRDA also includes cardiac,
orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The
multifaceted approach for clinical care has necessitated the development of disease-specific clinical
care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting
the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in
FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic
interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will
refine the time course and anatomical targeting of novel approaches.

Plain language summary: Friedreich’s ataxia (FRDA), mainly referred to as a disorder of balance, is
characterized by loss of coordination (ataxia) in the arms and legs and other neurological features,
affecting about 1 in 50,000 people in the USA. FRDA also includes serious heart disease, aggressive scoliosis,
diabetes and many other disease characteristics. Due to various clinical care needs, disease-specific clinical
care guidelines have been created. New developments in FRDA include the advancement of clinical drug
trials targeting cell signaling pathways and restoration of the deficient protein found in individuals with
FRDA. Additionally, a new understanding of the role of the various genetic factors that contribute to the
development of FRDA could affect current and future therapies. Finally, new perspectives on the early
developmental features of FRDA will help refine the time course and accelerate new treatments.
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Table 1. Comparison of the frequency of clinical features of Friedreich’s ataxia between two major natural history
studies, the Friedreich Ataxia Clinical Outcome Measure Study and the European Friedreich Ataxia Consortium for
Translational Studies.
Feature FACOMS EFACTS

Neurologic dysfunction 100 100

Cardiomyopathy 51 40

Scoliosis 76 74

Diabetes 5-8 7.1

Visual loss 50 37

Hearing loss 16 NA

Depression NA 14

Age at onset (years) 13.1 15.7

Age at baseline (years) 25.1 33.9

EFACTS: European Friedreich Ataxia Consortium for Translational Studies; FACOMS: Friedreich Ataxia Clinical Outcome Measure Study; NA: Not applicable.

Background
Friedreich’s ataxia (FRDA), a progressive neurodegenerative disease, affects 1 in every 50,000-100,000 individuals
in the USA, making FRDA the most commonly inherited autosomal recessive ataxia [1–5]. Typically, onset of FRDA
occurs between the ages of 5 and 20 years of age but it can present outside this range with some patients presenting
as late as their 60s [6,7]. FRDA most commonly results from homozygous inheritance of FXN alleles that contain
a trinucleotide GAA repeat expansion in intron 1 [1–5]. Normal alleles have fewer than 33 GAA repeats; 96% of
patients with FRDA are homozygous for abnormal GAA expansions of 66–1500 repeats. The remaining 4% of
patients carry a point mutation or deletion in one FXN allele and an expanded GAA repeat on the other [1–5]. The
trinucleotide expansion disrupts transcription of FXN leading to deficiency of the protein frataxin in those with
FRDA. The clinical severity of FRDA correlates with the length of the GAA expansion (particularly on the shorter
of the two alleles) as assessed by age of onset, rate of progression, or amount of residual frataxin [1–5,8–10].

Frataxin, a nuclear-encoded mitochondrial protein, plays a crucial role in mitochondrial iron metabolism and
iron homeostasis [1–5], particularly in the maintenance of iron-sulfur clusters for enzymes involved in oxidative
phosphorylation, the Krebs Cycle, and other cellular events [11–13]. Frataxin deficient cells exhibit oxidative stress
in vitro, mitochondrial iron accumulation, decreased ATP production, and cellular dysfunction [14]. While frataxin
deficiency is ubiquitous across tissues in FRDA, cells most affected clinically in FRDA include large sensory
neurons of dorsal root ganglia (DRG), the dentate nucleus of the cerebellum, upper motor neurons giving rise to
the corticospinal tract, cardiomyocytes, pancreatic islet cells and other selected cells of the brain and retina [15].
In the present review, we briefly summarize the clinical features of the disorder (including novel aspects such as
bone health) and the availability and rationale behind clinical care guidelines. We subsequently update the status
of clinical trials and discuss the details of the present approaches as well as novel basic science understanding that
shapes future investigation of FRDA.

Clinical features & care
Multisystem nature of FRDA
Traditionally classified as a neurodegenerative disease with ataxia as the most common presentation, modern
viewpoints approach FRDA as a multisystem disorder with diverse manifestations that require a variety of clinical
therapies and comprehensive care distinct from other neurological disorders [5]. In addition to ataxia and neurological
dysfunction, patients with FRDA often develop cardiomyopathy, diabetes, scoliosis and hearing and vision loss [1–

5,10,16] (Table 1)

Neurological
Limb and gait ataxia is the most common presentation in FRDA patients [10,16]. Other neurological features
include dysarthria, absent reflexes, and loss of vibration and proprioception sensation [17]. The three major neu-
roanatomical systems affected by FRDA include the proprioceptive system, the dentate nucleus of the cerebellum
and the corticospinal tracts [15]. Degeneration of these systems accounts for limb ataxia, spasticity, dysarthria, lower
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Figure 1. Retinal nerve fiber layer pathology in Friedreich’s ataxia. Optical coherence tomography scans of the
retina in (A) a healthy control subject (age and sex matched) and (B) a subject with FRDA. The RNFL (white arrows) is
outlined in red. Overlay of RNFL thickness deviation map on fundus images of the optic disk in (C)the same healthy
control and (D) the same subject with FRDA. Red and yellow regions reveal areas of the retina that deviate in
thickness compared with the normal distribution. Yellow: <5th percentile, red: <1st percentile.
FRDA: Friedreich’s ataxia; RNFL: Retinal nerve fiber layer.

extremity weakness and loss of proprioceptive sensation and deep tendon reflexes [15]. There is no symptomatic
pharmacological treatment for the ataxia.

Visual, auditory and nonproprioceptive sensory systems are also affected in FRDA, giving rise to other neuro-
logical characteristics. These include vision loss (caused largely by optic atrophy and reduced retinal nerve fiber
layer thickness related to retinal ganglion cell death), hearing loss (without loss of primary tone, reflecting auditory
neuropathy), urinary urgency and neuropathic pain (reflecting sensory nerve loss). Neuropathy and spasticity can
be treated symptomatically with agents for neuropathic pain (gabapentin, duloxetine, etc.) or spasticity (baclofen,
tizanidine), though dosing changes over the course of FRDA as the disease evolves.

Vision
While most FRDA patients have some neuroophthalmological findings, significant afferent visual impairment is
rare until later in the disease [18,19]. Early findings are diverse in FRDA including efferent abnormalities such
as saccadic movements and fixation instability, abnormal neurophysiological findings in visual evoked potential
tests, progressively decreasing low contrast visual acuity, impaired spatial perception, visual field abnormalities and
reduced retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT) scans [18–26]. Severity in all of
these findings ranges from minimally abnormal to severe and typically correlates with GAA repeat length and age.

The most common cause of afferent visual dysfunction in FRDA is progressive optic neuropathy, beginning
early in disease and continuing through the course of FRDA. This can either present as a slowly progressive event
or as a rapid decline in vision similar to what is seen in Leber’s hereditary optic neuropathy [20]. Optic neuropathy
is most severe in patients with a presentation before age 10, with long GAA repeats or with point mutations
including G130V [25]. The optic neuropathy of FRDA is characterized by loss of peripheral fields with later loss of
central fields. Contrast letter acuity is also lost early. In the most severely affected patients vision progresses to levels
worse than 20/800, a highly disabling situation. The optic neuropathy can be assessed using optical coherence
tomography (OCT) which reveals moderate to severe thinning of the retinal nerve fiber layer RNFL (Figure 1) [18].
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Surprisingly, when compared with MS patients with similar visual acuity, FRDA patients have thinner RNFLs,
suggesting a slower progression with greater compensatory abilities of the visual system in FRDA [18].

Hearing
There is a wide phenotypic spectrum of auditory sensitivity and processing impairment among individuals with
FRDA. The severity of auditory impairment shows a correlation, with GAA1 repeat length >500 increasing the
likelihood of auditory and spatial processing difficulty in an individual [27,28]. Only 8–13% of individuals with
FRDA develop with sensorineural hearing loss based on pure tone audiometry [27]. However, 90% manifest other
types of hearing impairment associated with difficulty understanding speech when background noise is present and
impairments in selective attention on a singular voice based on location. This type of hearing loss has been termed
‘auditory neuropathy’, showing preserved cochlear structures with axonopathy of the eighth nerve and auditory
brainstem [28,29]. Abnormal brainstem auditory evoked responses (BAERs) have been identified in FRDA, associated
with significant hearing loss [30]. Speech perception is greatly affected in FRDA, particularly when presented with a
competing signal. Typically, FRDA individuals are only able to access about 50% of information available compared
with their peers [31,32 ]. Because pure tones are affected to a minor degree, typical hearing aids are of little value.
More sophisticated directional aids can help, though they are usually expensive [32].

Cardiac
Cardiac dysfunction is the leading cause of death for individuals with FRDA, accounting for about 60% of
mortality [33]. Most people with FRDA show some form of cardiac abnormality on ECG or echocardiograms,
including T-wave repolarization abnormalities seen in about 85% of individuals with FRDA [34–37]. FRDA patients
also develop concentric left ventricular hypertrophy, with later appearance of fibrosis [38–40]. Whether hypertrophy
and later fibrosis are obligately connected is unclear. Arrhythmias are also common in patients with FRDA,
particularly atrial arrhythmias. Though atrial arrhythmias are not usually fatal in isolation, they can contribute to
overall mortality in combination with other cardiac issues [38]. About 30% of FRDA patients die from heart failure,
the most common cause of death for FRDA patients [34,38].

The direct clinical implications of structural heart disease are difficult to evaluate in individuals with FRDA.
Due to progressive ataxia, individuals are often limited in their physical activity, making the assessment of cardiac
dysfunction difficult to quantify [38,39]. However, clinically significant cardiac dysfunction can appear late in the
disease as well as earlier, particularly during times of physiological stress. Diastolic dysfunction becomes discernable
during times of volume overload or volume depletion, such as in the context of excess administration of i.v.
fluids or during gastrointestinal illnesses associated with diarrhea or vomiting, respectively [39]. Monitoring FRDA
cardiomyopathy is also complicated. Echocardiograms change slowly over time, and most parameters identified
on echo have little prognostic significance. Assessment of cardiac strain has been useful in cross-sectional studies,
but longitudinal analysis has not been useful [40–43]. Few FRDA-specific biomarkers exist, and assessment of
classical cardiac biomarkers can be paradoxical. For example, serum troponin I values, usually a marker of cardiac
damage in the setting of myocardial infarction, are elevated in individuals with FRDA even in the absence of
symptomatology or structural heart disease [43,44]. While this may track with hypertrophy to some degree, the
correlation is insufficient to connect troponin levels with cardiac changes in acute situations, and cardiac troponin
I levels in FRDA individuals always require comparison to a baseline value for any interpretation.

Orthopedic – scoliosis & pes cavus
Scoliosis occurs in most patients with FRDA. Ninety percent of individuals with early onset of FRDA symptoms
develop intermediate to severe scoliosis, while those who present later (>14 years old) are more likely to develop mild
scoliosis or no scoliosis at all [45]. In FRDA, scoliosis is not always progressive. The main predictors of progression
are symptom onset before the age of 10 years and presence of scoliosis before the age of 15 years [46–49]. In most
cases, bracing appears to provide some slowing of progression, but curvature angles greater than approximately 45
degrees normally require surgery (spinal fusion).

Pes cavus is also common in individuals with FRDA. Occurring in 55–75% of FRDA patients, pes cavus results
in an abnormally high foot arch that does not flatten with pressure [14]. Although pes cavus does not commonly
contribute to morbidity, it may play a role in decreased functionality of the foot [1–5].
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Endocrine – diabetes mellitus I (type 1) & II (type 2)
Around 10% of FRDA patients develop diabetes. Diabetes has a wide range of features among individuals with
FRDA with the greatest determinant of prevalence and pathogenic mechanism being age [50–54]. Diabetes in FRDA
can present as nonimmune ‘type 1’ (insulin-requiring) or insulin-resistant ‘type 2’, but more commonly presents
as an intermediate between the two types [55,56]. Those FRDA patients who present with diabetes at an early age
more closely resemble type 1 diabetes requiring insulin to prevent diabetic ketoacidosis [56], while individuals with
later-onset FRDA can develop type 2 diabetes, with age and increasing adiposity being cofounding factors in the
disease [54]. Early-onset diabetes is also associated with a greater genetic severity, and presence of diabetes is an
independent risk factor for more affected neurological function in FRDA.

Other features of FRDA
Sleep apnea

Obstructive sleep apnea (OSS) has been documented in FRDA, though it remains understudied [57]. Posture,
duration of disease and reduced strength in respiratory muscles have all been linked to OSS in FRDA, and the
prevalence correlates with disease duration [57]. Scoliosis and deficits in chest wall mechanics are linked to the
impaired airways that cause OSS, perhaps providing an explanation for its occurrence in FRDA [58]. In later disease,
atrophy can appear in the brainstem in FRDA where the major respiratory neurons are localized, suggesting a
neuroanatomical basis for OSS [58]. When severe, sleep apnea is generally treated through continuous positive
airway pressure to prevent further cardiopulmonary and neurologic complications [5].

Bone density

Bone density in individuals with FRDA can become compromised as a result of multiple risk factors. Firstly, bone
density in adults with FRDA is below the expected range, with 20% of adults with FRDA presenting with low
areal bone mineral density (BMD) by dual-energy x-ray absorptiometry scanning [59]. Additionally, early onset of
FRDA can diminish peak bone mass in children leading to later development of adult osteoporosis [60]. While
there is no significant difference between the blood calcium levels of FRDA individuals and healthy controls, other
pathophysiological reasonings for overall decreased BMD have been proposed. Early difficulty with ambulation
and mobility may play a role in bone health and density, with less ambulatory individuals bearing little to no
weight on their bones. Weight bearing exercises promote an increase and maintenance of BMD in children to
accelerate bone growth. The use of wheelchairs at a young age creates effects on the BMD of children and young
adults [61]. Additionally, FRDA may have implications in developmental or acquired deficits in skeletal muscle
leading to a decreased BMD [62,63]. Despite these increased risks of decreased bone health, recommended dietary
allowance values for bone health important nutrients are currently being met by less than 50% of adult individuals
with FRDA [61]. However, 60.5% of individuals reported supplementation of either calcium, vitamin D3 or a
multivitamin for bone health purposes [61].

Urination

A large number of people with FRDA report urinary dysfunction, usually a sense of urgency rather than true
incontinence. This presumptively reflects abnormalities related to neuronal innervation of the bladder and other
components of the parasympathetic nervous system, anticholinergic therapy can minimize symptomatology but is
not curative.

Depression & mental illness

Another distinct under-recognized and understudied feature of FRDA is depression [64–70], with 92% of FRDA
patients reporting symptoms of depression in some series. Depression uniformly affects quality-of-life, whether
such depression is an endogenous disease-related feature or a reaction to disease-specific events [5]. The exact pattern
of symptomatology can also vary between case series. In either case, no singular disease-specific therapy has been
identified for treatment of depression in FRDA, though pharmacological interventions including selective serotonin
uptake inhibitors are generally useful [5].

Care guidelines
The field of clinical FRDA research has seen a proliferation in studies aimed at exploring such factors as frataxin levels,
disease progression, and disease-modifying agents, all of which potentially impact clinical care [71]. Unfortunately,

future science group www.futuremedicine.com 271



Review Keita, McIntyre, Rodden, Schadt & Lynch

tangible improvements in clinical care in recent years are less well defined. There is at present no approved
therapy that significantly alters disease symptomatology or progression; thus, providing care in FRDA remains
challenging [71]. The multisystem nature of FRDA creates the necessity for both disease-specific guidelines for
clinician care and a multidisciplinary approach to care treatment. In addition, the complexity and variation of
FRDA symptoms onset create clinical challenges that are specific to FRDA [5,71]. In particular, the broad age
differential (ages 5–90) of FRDA patients requires clinical approaches over the lifetime of patients.

The creation of clinical management guidelines has aided in resolving such challenges in several ways. Such
guidelines provide a consistent framework to aid in healthcare decisions between patient and practitioner [71],
particularly in situations in which the clinician is not well versed in FRDA. Clinical care guidelines simultaneously
highlight the breaches in the evidence while providing a roadmap for the ongoing research that will one day
underscore future revisions, which are expected in the upcoming year [71].

The current guidelines on clinical care management in patients with FRDA were developed by thirty-nine expert
clinicians in the disease field from across the globe, with representation from the USA, Australia, Europe and
Canada [71]. Each recommendation was assigned a grading (A–D) to specify the strength of evidence underlying
the recommendation and to discern whether improved health outcomes were likely to arise through its application
(consensus clin care guidelines). Those recommendations designated grade A were defined by evidence that could
reliably guide practice [71], while assignments of grade D signified weak evidence backing the recommendation
and that caution should be taken in its application [71]. In cases where no definitive grading level evidence was
obtainable, good practice points were appointed, each formulated upon clinical experience and expert opinion [71].

Unfortunately, few controlled studies have at present identified guidelines or treatments with grade A or B
evidence, highlighting the inherent gaps and difficulty in identifying effective interventions for FRDA patients.
Consequently, most approaches to treatment of FRDA rely on good practice or expert observations [71]; thus, the
major impetus of present guidelines is not directing clinicians toward novel therapies, but instead overcoming the
hesitancy in prescribing standard of care symptomatic therapies to patients with FRDA. Essentially all pharmaco-
logical guidelines in FRDA reflect interventions based on symptoms or structural abnormalities (i.e., heart failure
or hypertrophy) rather than disease-specific pathophysiology (such as frataxin deficiency mediated cardiac biology).
Thus, all of the medications discussed in the present guidelines are derived from approaches to analogous situations
in other diseases, including medications for neuropathic pain, spasticity or heart failure. Thus, as there are many
manners to treat syndromes such as these, the guidelines put forward are truly guidelines, to be interpreted in
the context of comorbidities, therapeutic urgency, patient preferences and abilities, and practicalities of healthcare
systems including accessibility to treatments and health insurance. Judgement and medical art remain important
aspects of the treatment of FRDA.

Interestingly, there are no identified medicines that are relatively contraindicated (even in chemotherapy) in a
manner specific to FRDA, contrasting with disorders like type I Charcot Marie tooth [72–74]. One could argue that
varenicline should be contraindicated based on its clinical trial being stopped due to progression of ataxia in some
subjects, but the absence of discoveries of available medications specifically altering FRDA in a negative manner
remains surprising. One possibility is that such discoveries would most likely be made during the presymptomatic
period, as after diagnosis individuals become more reluctant to try novel approaches. Even new agents like SGLT2
inhibitors for low ejection frataxin heart failure have acquired little data in FRDA. These deficiencies illustrate that
further studies of existing drugs through studies like large case series, and systematic trials of new agents (either
through formal clinical trials or off-label use in justifiable situations) are needed to advance treatment, even as
other research investigates the disease-specific pathophysiology of FRDA and gives rise to clinical trials of novel
approaches.

Clinical trials
While FRDA currently has no approved treatment, widespread use of non-prescription antioxidants such as
Vitamin E and coenzyme Q10 remains common among FRDA patients (Supplementary Table 1). While there
may be suggested benefits in cardiac and skeletal energy metabolism from these supplements [75,76], they have
not succeeded in blinded clinical trials for efficacy [75,76]. In those situations where supplements or antioxidants
have been tested and shown modest benefit in open label studies (such as idebenone), they have failed to reach a
registration level end points [77–85]. The recent failure of RT001 even suggests that reactive oxygen species (ROS)
production, which provides the rationale for antioxidant use, may not be a large part of the pathophysiology of
FRDA in vivo [86,87]. A variety of repurposed agents that raise frataxin levels to some degree (such as erythropoietin
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and gamma interferon) have also shown no clear benefit in systematic trials [88–103]. Finally, with the exception
of omaveloxolone, downstream modulators have not reached end points in registration level trials, though some
open-label or biomarker-based studies have suggested the potential for benefit. Further work is needed on these
agents such as deferiprone, PTC743, steroid therapy, letiriglitozone and related compounds [104–116].

New developments in FRDA
Omaveloxolone: NRF2 as a downstream target
FRDA can be treated in two ways: reversal of frataxin deficiency (gene therapy, protein replacement, epigenetic
therapy, reversal of FXN silencing) or amelioration of pathogenic downstream events. While initial approaches
were directed at downstream ROS production, such ROS production may be less important in FRDA than other
downstream events. In particular, the lack of antioxidant reserve associated with abnormalities of activation of the
transcription factor NRF2 appears to play a more important role than direct ROS production in vivo [116–118].
NRF2 binds to antioxidant response elements in DNA to activate genes protecting cells from oxidative damage.
NRF2 is tonically degraded by the ubiquitin ligase Keap1. Cells and tissue from FRDA patients show deficiencies in
NRF2 activation in response to oxidants, with low basal levels of enzymes (particularly heme oxygenase-1 [HO-1],
NAD(P)H quinone oxidoreductase 1 [NQO1], Cu/Zn and Mn-superoxide dismutases) induced in response to
oxidant stress. Specifically, in FRDA, NRF2 appears mislocalized and fails to enter the nucleus in FRDA cells;
consequently, little activation of these enzymes occurs even in the presence of oxidant stress. Elevated levels of
KEAP1 have also been found in FRDA models, which would shut off NRF2 [116–123]. Augmentation of NRF2
levels and activation should reverse these events. Restoration of NRF2 with EPI743 or sulforaphane in FRDA cells
models has also been shown to block ferroptosis, an iron-based cell death mechanism in FRDA [124].

NRF2 activation thus offers a target for downstream pharmacological intervention in FRDA. Several agents such
as omaveloxolone and dimethyl fumarate can increase levels of NRF2 by blocking its binding to Keap1 and thus
preventing its degradation [125–128]. DMF and omaveloxolone appear beneficial in cell models, while omaveloxolone
has proceeded to clinical trials. A phase II dose-finding study in FRDA reveals a benefit on neurological exam
scores in FRDA as well as benefit in correcting abnormal lipid metabolism; it also reverses intrinsic biomarkers of
FRDA such as decreased ferritin levels [125]. In a pivotal study at 160 mg per day, omaveloxolone led to a clinically
significant improvement in neurological exam scores and a tendency toward improvement in activities of daily
living and a variety of secondary outcome measures [127]. Benefit was maintained over 2–3 years as revealed by
analysis of open-label extension data showing that the rate of progression over 2–3 years dropped substantially from
natural history controls. Adverse events were relatively limited, suggesting that omaveloxolone may provide a safe,
efficacious therapy for FRDA.

Frataxin restoration
A second major therapeutic advance in FRDA may arise from a set of interventions referred to as frataxin restoration.
The primary cause of FRDA is congenital deficiency of active frataxin leading to mitochondrial dysfunction and
other downstream events [1–5]. In theory, sustained restoration of frataxin, if done to a sufficient degree and at
an early enough time and in sufficient numbers of cells, should provide an ideal treatment if it is free of adverse
events. Experimental data supports this as removal of the GAA repeat or transfection of frataxin cDNA in cell
culture restores cellular properties [129]. One way to restore frataxin is via epigenetic approaches to reactivate
the gene. In FRDA mouse models, epigenetic activation of FXN with HDAC inhibitors increases frataxin levels
and reverses behavioral deficits [130–134]. A separate approach is to restore frataxin directly with protein or gene
replacement therapy. Protein replacement therapy restores cellular function in vitro and reverses cardiomyopathy in
FRDA mouse models [135–137]. Gene therapy ameliorates disease in virtually all tissues it reaches in FRDA mouse
models [138–141]. At a scientific level, the concept that frataxin restoration may be highly efficacious certainly holds;
frataxin replacement appears to be ideal for treatment of FRDA subject to the constraints of finding the correct
dosage, determining when to intervene, maintaining a critical duration of efficacy and providing ability to penetrate
affected tissues.

The difficulties in frataxin replacement via protein replacement or gene therapy are mainly pragmatic issues.
For protein replacement specifically, the large size and need for broad distribution of frataxin make it difficult
for administration of cell-permeable forms of frataxin to reach all relevant cells. In a phase I study, CT1601(tat
frataxin), increased functional frataxin in skin, buccal cells and blood [142]. However, its ability to alter downstream
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targets and disease related tissues is unknown, and its potential to readily cross the blood–brain barrier may be
incomplete. At present, CT1601 is on hold reflecting preclinical issues in primates.

Frataxin gene therapy in humans also may be limited by distribution issues. Most gene therapy paradigms at
present utilize different serotypes of AAV vector to deliver the FXN gene, each targeting different cells, and few
readily target brain without intraparenchymal administration [143,144]. This leaves cardiac tissue as an achievable
target with little penetration into brain. Another challenge is that the development of immunity to AAVs associated
with initial treatment likely prevents repeat administration [145]. The need to transduce large numbers of cells leads
to a different problem: overexpression of frataxin in some cells, leading to toxicity [146]. The interplay between
transduction of insufficient numbers of cells and excessive levels of frataxin can be difficult to navigate. Conceptually,
gene therapy should couple a vector and delivery mechanism that transduces a large number of cells but produces
only the minimum necessary amount of frataxin once introduced. This can be difficult to achieve and may require
more optimization. Although use of gene editing methods may alleviate the toxicity from overexpression, the
difficulty in delivery of these agents is more pronounced. Although scientifically sound, gene therapy and gene
editing as treatments for FRDA may await improved delivery approaches.

Attempts to reactivate FXN expression have shown some promise in trials, but also have encountered obstacles.
HDAC inhibition with RPG-2833 reached clinical trials and showed evidence of reactivation in short phase I
study, but the potential for toxic metabolites appeared [134]. In addition, tissue selectivity in penetration and/or
efficacy confound this therapeutic approach. Novel agents such as GeneTac may overcome many of these issues [147].
GeneTac, (DT216) designed as a selective agent to overcome FXN silencing by binding to the GAA repeat and
recruiting transcription factors, shows wide tissue distributed in animals, making it an excellent candidate if no
unexpected adverse events appear.

Still, the approaches of frataxin restoration so far have not truly had to address some of the limits of this type
of therapy, in particular the questions of when must frataxin be restored, where must it be restored and how much
is the minimum amount of restoration needed for efficacy. Knowing these answers may be needed to optimize
therapy. New understanding of the mechanism of FXN silencing and of the exact neuroanatomical locations of
neurodegeneration and its exact timing are now beginning to answer such questions.

Advancements in the understanding of FRDA: application to therapeutic interventions
It is widely agreed upon that the GAA repeat expansion leads to epigenetic silencing of the FXN gene in FRDA [148–

159]. Because the GAA repeat expansion is present in every cell in FRDA, it has been historically presumed that the
FXN gene is silenced to the same degree in every cell, resulting in all cells equally expressing 5–30% of non-FRDA
frataxin levels based on GAA repeat expansion length. The first indication that an alternative model of gene silencing
in FRDA should be considered emerged from studying an FRDA cell model that contained a transgene with ∼200
GAA triplets upstream of a fluorescent reporter [151]. The GAA expansion acted as a source of spreading repressive
chromatin that resulted in epigenetic silencing of the transgene, but not in every cell. The resulting phenotype was
a stochastic pattern of gene silencing within a population of cells where some cells, although they too contained
the GAA repeat expansion, escaped silencing. This variegated pattern of expression is analogous to position effect
variegation (PEV), a phenomenon that was originally described in Drosophila [160]. In PEV, a gene is located
abnormally close to a source of repressive chromatin, perhaps due to an inversion, resulting in epigenetic silencing
of the gene, but only in a proportion of cells. The subsequent phenotype in Drosophila is a mosaic compound
eye. Two recent studies, one in patient-derived cells and the other in a large clinical dataset, further support that
the mechanism of FXN silencing in FRDA is analogous to PEV [148,161]. These studies showed that patients with
shorter GAA repeat expansions retain a population of cells that escapes FXN silencing even while containing a
GAA repeat expansion. The proportion of escaped cells reaches a minimum when GAA repeat length approaches
500–700 triplets, producing a ceiling effect on everything downstream (including clinical severity; Figure 2)

Shifting the view of FXN gene silencing to the PEV model has revealed a subpopulation of patients, those with
>700 GAA triplets, that is relatively homogenous in their disease progression. This has important implications
for pre-clinical and clinical data analysis and reveals that the severity (or presence) of disease features in FRDA is
not dictated by relative frataxin deficiency alone, but rather the relative proportion of cells/FXN genes that escape
GAA repeat-mediated silencing. Refinement of this model will allow better understanding of the selection and
stratification of subjects for clinical trials as well as interpretation of the results of such trials.

Perhaps more importantly, the concept of variegated silencing leads to a reevaluation of the quantification
of frataxin levels and their restoration in disease. Disease severity reflects the number of cells that are maximally
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Figure 2. A model of variegated silencing in
Friedreich’s ataxia. Each cluster of 10 cells
represents a theoretical person who does not
have FRDA (non-FRDA), is a carrier of one GAA
repeat expansion (carrier) or is one of three
people who have FRDA with various GAA repeat
lengths. Parentheses indicate the GAA repeat
lengths: N = normal length GAA; >700 = more
than 700 triplets; <700 = fewer than 700 triplets.
The relative color saturation of cells represents
the relative amount of frataxin (darker
color = more frataxin). Homogenous silencing
(top set of FRDA subjects) shows the same
amount of frataxin in every cell, and less
frataxin in each cell as the GAA repeat length
increases. Variegated silencing (bottom set of
FRDA subjects) shows how most cells in people
with FRDA have very little frataxin (gray/no
color), and few cells have escaped silencing, a
proportion that increases with decreasing GAA
repeat length. Protein/RNA assays would give
the same result in either silencing model for a
given repeat length i.e. shorter repeat patients
would have ∼30% residual frataxin. Recent
studies however support the variegated
silencing model in FRDA.
FRDA: Friedreich’s ataxia.

silenced, not the absolute frataxin level. This explains why carriers who have the lowest levels manifest no symptoms:
they still have one functioning FXN allele in almost all cells. This also suggests why the carriers with lower levels of
frataxin differ from the patients with a short, expanded allele. They have similar frataxin levels, but the mechanism
by which they got such levels differs. Thus, the benchmark of restoring levels of frataxin to carrier levels is flawed.
In terms of restoration of frataxin level, variegated silencing emphasizes the importance of reaching many cells
(particularly affected ones) more than raising the level astronomically in a few cells. In other recessive diseases, the
amount of protein needed to prevent the appearance of a phenotype is frequently less than 10% of normal. New
studies will need to determine the amount of frataxin needed at an individual cell level in order to better inform
future approaches.

The developmental component & neuroanatomy of FRDA
Although classically viewed as a neurodegenerative disorder, many clues suggest a major developmental component
to FRDA, particularly in the loss of peripheral nerve components [162]. Deep tendon reflexes are lost before clinical
presentation in most individuals, and many patients recall never having reflexes even from young age. Intrinsic
hand muscle atrophy and pes cavus also develop before presentation, suggesting long-standing loss. In addition,
spine size is small in FRDA and MRI scans reveal dorsal column atrophy at the earliest scans [163].

In recent years, systematic scientific examination reveals the loss of proprioceptive input and dorsal column
function may be near-complete by presentation. First, autopsy studies suggest that many of the dorsal roots fail
to enter the spinal cord, consistent with a longstanding developmental injury [163]. In addition, somatosensory
evoked potentials and sensory nerve action potentials are absent at presentation and, if retained, fail to progress
over time [164–166]. Using MEG, a more sensitive manner to detect such potentials, somatosensory response can be
identified at presentation but are of extremely low amplitude and are delayed in reaching the cortex. In addition,
the size of such potentials correlates with genetic severity (GAA repeat length) but not disease duration [167–170].
All of these suggest an early origin to somatosensory dysfunction, with significant CNS remodeling before clinical
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presentation. Such dysfunction depends on early genetic events rather than disease duration and changes the
‘textbook’ anatomy of FRDA, suggesting that while proprioceptive loss provides an early mechanism in disease
causation, it does not contribute to progressive disease and may not represent a target for restorative therapies.

Where are the appropriate sites of active neurodegeneration during the progression of FRDA? Most likely the
dentate nucleus of the cerebellum and the motor cortex provide the major, specific sites of degeneration, with other
areas such as the retina playing roles in specific disease features [3]. In addition, sites such as the Purkinje cells may not
die but appear to remodel or repair over the course of time, suggesting pathological involvement [171]. Understanding
this issue is crucial to the advancement in new therapies that require specific neuroanatomic targeting, such as gene
therapy. Even still, many of the neurophysiological features of FRDA may reflect age of onset more than disease
duration [66–164,172], emphasizing the degree of abnormality that precedes symptomatic presentation.

The importance of developmental influences also provides a rationale for questioning the detailed relevance
of animal models in FRDA. Models in which frataxin levels are knocked down after birth or later may not
provide evidence of developmental events. Consequently, results from such models may not readily extrapolate to
predictions on drug response in human diseases. Thus, interpretation of the role of animals and their utility is
important for consideration in therapeutic development programs. This will require understanding of the specific
ways that animal models match neuroanatomically selective biomarkers in human FRDA.

Conclusion
FRDA is a progressive, neurodegenerative disease that affects both children and adults. Disease specific clinical care
guidelines have been adapted to urge physicians to treat each FRDA symptom individually using standard of care
therapies. There have been advances in areas of drug development such as NRF2 activation and frataxin restoration,
which could have implications on novel, effective therapies in the future. Likewise, new perspectives on variegated
gene silencing in FRDA could have implications on how future therapies approach the application of frataxin
restoration, as well as lead to better stratification of subjects in clinical trials and improve pre-clinical/clinical trial
data analysis. Lastly, evidence suggested a developmental component of FRDA could play a large role in determining
target areas for novel therapies.

Future perspective
The past 25 years have seen enormous growth in research on FRDA leading to a better understanding of the disease
at all levels. This includes refinement of the clinical phenotype, improved clinical care through collaboration and
systematic observation, and Basic and clinical research leading to clinical trials delivering at least one agent to the
doorstep of approval. Still, further work is needed to translate the present findings to optimal clinical response in
patients, particularly in regard to crucial questions:

• How long can the benefits of downstream agents like omaveloxolone last? While present data does not show any
wearing off, homeostatic mechanisms at some point will likely blunt the effect of drug acting downstream from
frataxin deficiency. At that point new agents will certainly be necessary acting either on other components of the
pathophysiology or on frataxin deficiency itself;

• How much do deficiencies in understating of the detail of frataxin restoration prevent success in clinical trials?
New information from concepts like variegated silencing and new findings on the developmental pathology
and anatomy in FRDA can refine approaches to restoration of frataxin. That may be enough for success, but
developments outside the FRDA field such as development of new delivery systems and understanding of general
toxicities of gene therapy and protein restoration may also prove important.

Overall, such questions lead to a situation in which further knowledge is still needed for optimization of therapy
in FRDA.
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