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Abstract: The conversion rate between asymptomatic infections and reported/unreported symp-
tomatic infections is a very sensitive parameter for model variables that spread COVID-19. This is
important information for follow-up use in screening, prediction, prognostics, contact tracing, and
drug development for the COVID-19 pandemic. The model described here suggests that there may
not be enough researchers to solve all of these problems thoroughly and effectively, and it requires
careful selection of what we are doing and rapid sharing of results and models and optimizing
modeling simulations with value to reduce the impact of COVID-19. Exploring simulation modeling
will help decision makers make the most informed decisions. In order to fight against the “Delta”
virus, the establishment of a line of defense through all-people testing (APT) is not only an effective
method summarized from past experience but also one of the best means to effectively cut the chain
of epidemic transmission. The effect of large-scale testing has been fully verified in the international
community. We developed a practical dynamic infectious disease model-SETPG (A + I) RD + APT
by considering the effects of the all-people test (APT). The model is useful for studying effects of
screening measures and providing a more realistic modelling with all-people-test strategies, which
require everybody in a population to be tested for infection. In prior work, a total of 370 epidemic
cases were collected. We collected three kinds of known cases: the cumulative number of daily
incidences, daily cumulative recovery, and daily cumulative deaths in Hong Kong and the United
States between 22 January 2020 and 13 November 2020 were simulated. In two essential strategies
of the integrated SETPG (A + I) RD + APT model, comparing the cumulative number of screenings
in derivative experiments based on daily detection capability and tracking system application rate,
we evaluated the performance of the timespan required for the basic regeneration number (R0) and
real-time regeneration number (R0t) to reach 1; the optimal policy of each experiment is available,
and the screening effect is evaluated by screening performance indicators. with the binary encoding
screening method, the number of screenings for the target population is 8667 in HK and 1,803,400 in
the U.S., including 6067 asymptomatic cases in HK and 1,262,380 in the U.S. as well as 2599 cases of
mild symptoms in HK and 541,020 in the U.S.; there were also 8.25 days of screening timespan in HK
and 9.25 days of screening timespan required in the U.S. and a daily detectability of 625,000 cases in
HK and 6,050,000 cases in the U.S. Using precise tracking technology, number of screenings for the
target population is 6060 cases in HK and 1,766,420 cases in the U.S., including 4242 asymptomatic
cases in HK and 1,236,494 cases in the U.S. as well as 1818 cases of mild symptoms in HK and
529,926 cases in the U.S. Total screening timespan (TS) is 8.25~9.25 days. According to the proposed
infectious dynamics model that adapts to the all-people test, all of the epidemic cases were reported
for fitting, and the result seemed more reasonable, and epidemic prediction became more accurate. It
adapted to densely populated metropolises for APT on prevention.
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1. Introduction

The spread of novel coronavirus pneumonia (NCP) is more contagious than SARS.
Although its mortality rate at 2.3% is lower than SARS at 9.6%, the damage that comes
along with the travel quarantine and lockdown are destructive to the world economy. From
bad to worse, by the mutations of coronavirus, many patients with COVID-19 become
asymptomatic or show very mild symptoms. They can bypass basic temperature checks
and are contagious enough to transmit the virus to others [1]. The epidemic currently has
rapidly spread to many countries in the world. There is still a lack of scientific explanation
for (1) super spreaders; (2) the precise incubation period; and (3) characterizing a simulation
model with complex epidemic factors in multiple compartments.

In theoretical research, mathematical models play an extremely important role. They
clearly reveal the main characteristics of infectious diseases through hypotheses, param-
eters, variables, and connections between populations. The results of the mathematical
model can provide many powerful theoretical foundations and concepts. It has become
a consensus to use mathematical models to help discover the spreading mechanism of
infectious diseases and predict the epidemic trend of infectious diseases. It is of great prac-
tical significance to use nonlinear dynamics to establish mathematical models of infectious
diseases to study whether infectious diseases will spread, continue, and whether they will
eventually be eradicated [2] in a city. It can predict the trend of infectious diseases. It
also provides useful information and effective measures for people to prevent and treat
infectious diseases. The work reported in this paper contributes to analyzing and predicting
the development of the epidemic through a compartmental simulation model embracing
the nuclei acid screening factor for all residents. It shall be useful as a reference for the
government’s epidemic-prevention decision-making policy.

The reporting of the local spread of the epidemic in Guangzhou began on 21 May
2021. Guangdong has discovered multiple virus mutants imported from abroad, involving
countries such as the United Kingdom, South Africa, Nigeria, Brazil, and India. The
Shenzhen outbreak in June 2021 was caused by the mutant strain that was first discovered in
the United Kingdom. Recently, as the impact of the spillover of the epidemic in Brazil, India,
and Peru continues to appear, and the number of newly confirmed cases in a single day in
many Southeast Asian countries has rebounded. The hope for endemic is not optimistic.
India, currently, as of July 2021, has the second-largest number of people infected with
the COVID-19 in the world, and the epidemic is still developing at an alarming rate. As
of 30 May 2021, there have been 23 confirmed cases and 7 asymptomatic infections in
Guangzhou. The traceability of the virus showed that the genetic sequencing results of
infected persons in the Liwan District of Guangzhou are highly homologous, and they are
all the variants of the new coronavirus (B.1.617) previously discovered in India that spread
extremely quickly. In order to quickly cut off the virus transmission route, Guangzhou
decided to further expand the scope of nucleic acid testing on the basis of continuing
nucleic acid screening in Liwan District from 30 May 2021 [3].

Virus mutation is a key variable affecting the prevention and control of the current
global epidemic [4]. In the face of constantly mutating viruses, it is important to increase the
screening rate of the entire population as soon as possible while increasing the vaccination
rate and speeding up the construction of the domestic herd immunity barrier [5]. The
global epidemic still spread at a high rate, and the pressure on imported cases prevention is
still huge. When the immune barrier is constructed [6], even in the face of stronger mutant
viruses, a good response ability in order to prevail in the race against the virus is very
much needed.
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The Hong Kong (HK) government is one of the pioneers after mainland China imple-
mented the all-people-test (APT) program on 1 September 2020. Therefore, was taken as an
APT case study for us to develop a pandemic prediction model. In the first week, about
310,000 people had registered. Under the epidemic, HK has been locked down for more
than half a year; and the order of the social gathering ban has greatly affected the tourism,
catering, and retail industries. As a strategy, nucleic acid testing is by far one of the most
effective methods to sort out the infected from the population, preventing further viral
infection. This strategy may work well for densely populated cities or areas, such as Hong
Kong. APT could be relatively easier to implement, as it makes little difference between se-
lectively testing only certain clusters and the whole city. As many places began to carry out
large-scale nucleic acid screening, a large number of samples is required. Sample pooling
is a quick approach to mass test many people by grouping several samples into one test.
Sample pooling speeds up the whole disease screening process. When conducting large-
scale population testing, typically 5–10 samples can be mixed for preliminary screening to
improve testing efficiency and reduce testing costs [7,8]. Sample pooling is a solution to the
testing pressure of large samples [9]. After applying some combinatorial optimization, the
impact of technical defects on the results can be avoided as much as possible.

Problem statements. Given the unprecedented, fast-moving health and economic
impacts of COVID-19, with citywide COVID testing becoming the norm, as planned by the
government, a more dynamic forecasting approach was needed to leverage fast-changing
external data and adaptive predictive models to inform an epidemic outlook. We need
a strong model that predicts how the virus could spread across different countries and
regions. The goal of this task is to build a model that predicts the spread of the virus and
when it will end under different citywide COVID testing strategies and generate a best
solution from the potential solutions that harvested daily external information on local
virus and social policy impacts as well as data related to the impact of multiple groups and
parameters on the outbreak, taking the latest data from countries on impact and correlating
them with relevant policies.

Highlights. The innovative contributions of the presented study for Citywide COVID
Testing (CTT) for COVID-19 models are highlighted as follows:

• By establishing a micro-epidemic prevention and control mechanism, the SETPG
(A + I) RD + APT model takes into account a more complex population network,
adding several key features of asymptomatic and symptomatic carrier transmission,
especially for individuals with mild infection, to help scientific researchers develop
insights that may contribute to public health policymaking, including contributions to
public health-forecasting teams.

• A more realistic reconstruction of the pandemic situation would be to take into account
epidemic prevention policies in the model, when virus carriers are found or when the
number of infected exceeds a threshold determined by the capacity of the regional
health care system, including the specific implementation of containment and putting
other social distancing measures, such as “intermittent lockdown”, in place.

• Moreover, attention must be paid to the potential risk posed by re-infection, which is
especially of concern with new variants.

• This model can also inform resource requirements of citywide COVID testing di-
agnostic capacity and the changes of target people groups (TPG) associated with
different strategies.

2. Literature Review

Recent works [10–12] for the spread of COVID-19 mainly include SEIRD, SIRD-RM,
and SEIRDV models, and there have been studies on the spread of novel coronavirus
pneumonia using these models. A standard model of disease spread is the SEIRD model,
in which each individual is either susceptible (S), exposed (E), infected (I), recovered
(R), or dead (D). Compartmental SEIRD models consider only the aggregate number of
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individuals with each disease state and specify a set of differential equations that govern
how the compartmental populations change with time [10].

Reference [11] proposed a compartmental SIRD model with time-dependent param-
eters that can be used to give epidemiological interpretations to the phenomenological
parameters of the Richards growth model. It illustrates the use of the map between these
two models by fitting the fatality curves of the COVID-19 epidemic data in Italy, Germany,
Sweden, the Netherlands, Cuba, and Japan. The results presented here are relevant in
that they showcase the fact that phenomenological growth models, such as the Richards
model, are valid epidemiological models not only because they can successfully describe
the empirical data but also because they capture, in an effective way, the underlying
dynamics of an infectious disease. In this sense, the free parameters of growth models
acquire a biological meaning to the extent that they can be put in correspondence (albeit
not a simple one) with parameters of compartmental model, which have a more direct
epidemiological interpretation.

Reference [12] subdivides the population into six compartments and extends the
SEIRD model by adding the vaccinated population and framing the global model as a
hybrid-switched dynamical system. Aiming to represent the quantities that characterize the
epidemic behavior from an accurate fit to the observed data, they partition the observation
time interval into sub-intervals. The model parameters change according to a switching rule
depending on the data behavior and the infection rate continuity condition. In particular,
they study the representation of the infection rate both as linear and exponential piecewise
continuous functions. The authors choose the length of sub-intervals balancing the data
fit with the model complexity through the Bayesian information criterion. They tested the
model on Italian data and on local data from Emilia-Romagna region. The calibration of
the model shows an excellent representation of the epidemic behavior in both cases. Thirty
days forecasts have proven to well-reproduce the infection spread though in a way that
is better for regional than for national data. Both models produce accurate predictions
of infection, but the exponential-based one perform better in most of the cases. Different
possible forecast scenarios are obtained by simulating an increased vaccination rate.

They often lack interpretability and behavioral guarantees provided by disease models
using differential equations to govern transitions between disease states. However, most of
the literature has not considered the impact of super-spreaders on the epidemic and only
divided the population into four states, namely susceptible (susceptible, S), latent (exposed,
E), infected (infected, I) and removed (removed, R), and the classification of lurkers is not
comprehensive, such as incubation population in the state of medical observation or sus-
pected cases or latent cases mixed with healthy people (i.e., asymptomatic communicators).

Compared with other literature as shown in Table 1, our main contribution is to
provide carefully calibrated and estimated model for assessing the changes of APT and
total (including symptomatic infections and asymptomatic patients) of multi-step imperfect
screening testing in conjunction with diagnostic testing. By combining a citywide COVID
testing model with a nine-group behavioral SEAIRD model, we can consider group-based
strategies and the effect of CCT on the development of the epidemic. The model for this
strand of the epidemic literature is to enrich the underlying SEIR by introducing a scope
for testing policies that may mitigate the output costs of quarantine policies while not
exacerbating the decline in output. It would be relatively straightforward to integrate the
information structure of our model into an improved SEAIRD model in order to evaluate
the available scheme of broad-based testing.
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Table 1. Research work found in the literature for disease prediction.

Method (s)/Type
of Modeling Pros Cons The Research Found in

the Literature

SEIRD model

The model has good
prediction ability and decent
performance. Obtained
long-term predictions reflect
the general dynamic of the
outbreak and are especially
useful for the healthcare
system workers and
government officials.
Obtained short-term
predictions allow us not only
to forecast the future number
of infected, recovered, and
deceased patients but also
estimate forecast error under
adverse or optimistic
circumstances. The proposed
method can be used as an
effective tool for prediction
and analysis of the dynamics
of the COVID-19 pandemic.

The model does not consider
that the exposed category may
have a partial infection ability
and does not distinguish
symptomatic from
asymptomatic people.

Maher et al., 2021 [10]

SIRD-RM growth models

The Richards models are valid
epidemiological models not
only because they can
successfully describe the
empirical data but also
because they capture, in an
effective way, the underlying
dynamics of an infectious
disease. In this sense, the free
parameters of growth models
acquire a biological meaning
to the extent that they can be
put in correspondence with
parameters of compartmental
model, which have a more
direct epidemiological
interpretation.

Due to lack of knowledge of
the epidemiological cycle and
absence of any type of vaccine
or medications, the
government issued various
non-pharmacological
measures to end the
COVID-19 pandemic.

Macêdo et al., 2021 [11]

Switched forced SEIRDV
compartmental models

The model introduces a model
extension that takes into
account the reduced vaccine
efficacy and presents a
preliminary experiment in the
hypothesis of mass
vaccination with a single
vaccine dose.

The possibility of reinfection
and the difference between
one-dose and two-dose
vaccinations were
not considered.

Erminia et al., 2022 [12]

3. Epidemiological Model Proposal
3.1. Multiple Groups Compartment Model

Larger-scale-screening can be carried out in communities where new outbreaks are
emerging in HK. Obviously, no group of people is totally isolated in urban societies. Thus,
it is necessary to regard each group of people as reachable nodes. The flow between
groups can be described by Markov mobility [13]. In Figure 1, nodes define the different
populations in the spread of the disease, and arrows indicate the conversion probability
between populations. The model can accurately reflect the spread and outbreak. The model
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is an infectious disease model with an incubation period [14]. It is designed to calculate
the changes in the target population that needs to be screened. It introduces quarantined
populations and more groups of people and adds more decision-making factors, which is
more complicated but realistic than the prior models.
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3.2. Parameter Setting

We modeled SARS-CoV-2 transmission and interventions. Because we assume that
the community is not a closed population, and there is a risk of continued virus impor-
tation, for which we introduce the coefficients of birth and death rates, even in the most
optimistic scenario, there is a considerable number of cases mainly from community in-
troductions. Furthermore, this situation requires significant financial and clinical capacity
resources. Combined with measures to reduce virus transmission, a testing strategy to
identify symptomatic populations, conducting virus testing, and quarantine may be effec-
tive in controlling transmission. The success of this strategy relies on contacting tracing
and quarantining those with close contact. Screening must be performed at least monthly
to have a large impact on the course of the outbreak within the city and greatly increase
sample collection and assay requirements.

As shown in Table 2, we divided the populations in the transmission process into
compartments of susceptible population (S) and exposed population (E), infected (symp-
tomatic) (I), infected (asymptomatic) (A), target groups people (mildly infected population
and asymptomatic infected and screened, TPG), quarantined and susceptible population
(Sq), quarantined and exposed population (Eq), quarantined and infected population (Iq),
population that died of a disease (D), and recovered population (R). First, we assumed con-
tact tracing capabilities and high compliance with quarantine. While changing population
size and testing rates is easily achievable, this may be an overly optimistic assumption for
some institutions with limited capacity. This value should be parameterized using locally
reported incidence data and underreporting estimates. The probability that the susceptible
individual is infected and turns into an exposed individual in incubation period (infection
rate) is β. In particular, a prevalence of 5% was measured in the strongly virus-carrying
population, which we expect to be significantly higher than the estimated prevalence in
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the general population. We assume that infected individuals with strong symptoms have
the same infectious rate ϕ as individuals with weak symptoms. The model also takes into
account the relative infectiousness of asymptomatic individuals who may have lower infec-
tion rates than symptomatic individuals and the probability of conversion from exposed
population to asymptomatic population is (1−η). There may be significant differences
in the prevalence of specific categories of the virus in the general population. In order
to facilitate the analysis and calculation, we set the prevalence rate as θ. After screening
and testing, those diagnosed as positive for COVID-19 were immediately quarantined in
the model ω. Case quarantine involves completely reducing their contact rate during the
infection. Some of these quarantined contacts may have been contagious but are no longer
able to infect others once they are in quarantine. The removed patients were differentiated
into cured and dead populations, and the conversion rates of the dead population from
infected is γ, and the conversion rate of cured populations from infected populations is
γR, which changed with time. In view of the fact that the isolated infected people will be
sent to the designated hospital for isolation treatment with a certain probability, according
to medical capacity, this part of the population is converted into hospitalized patients in
this model. The isolation rate of ρ is mainly affected by the hospital’s medical capacity.
Our model is conservative (meaning it may overestimate the COVID burden in cities)
because they are more likely to suffer from severe illness and death due to their older age.
As the pandemic develops, the immunity of the population is likely to increase, so we
added immunization rate to the model. The evolution results of the simulation show that if
the population cannot obtain the ability of lifelong immunity, it will be fed back into the
model’s circulation system with the system input rate.

Table 2. Parameter Definition and Meaning.

State Para

Symbol Meaning

Non-quarantined state

S Susceptible people
E In incubation period
A Asymptomatic patients
I Infected population

Quarantine state

TPG The target population (including asymptomatic infections and confirmed
populations with mild symptoms)

Sq 1 Isolated susceptible people
Eq 1 Isolated people in incubation period, no risk of infection
Iq 2 Isolated infections without risk of infection

Others
R Cure (fully recovered, not fully recovered)
D Dead

Conversion Para

Symbol Description Meaning

ϕ Infection rate Probability of exposure to infection

ε Relative infection ratio Infection rate of people in
incubation period

α Positive feedback Probability that people in incubation
period will turn positive

η Input rate Ratio of symptomatic infections to
all infections

β Exposure rate
Rate of exposure of susceptible people to

people in incubation period or
the infection

β1 Immunization rate Probability that people in incubation
period will turn negative

ξ System input rate The ratio of reverting to susceptibility
after recovery

p1 Input rate Ratio of mild infections to
symptomatic infections

µ Daily detection rate Daily nucleic acid testing capacity

θ Prevalence rate The proportion of people suffering from a
certain disease at a certain period of time
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Table 2. Cont.

Removal Rate

Symbol Description Meaning

γ Mortality rate Removal rate of infected persons
(mortality rate)

γR Cure rate Removal rate of infected persons (cure
rate)

Quarantined Rate

Symbol Description Meaning

ω De-quarantine rate Isolation rate of susceptible population

γq
Overload rate of

medical conditions
Probability of quarantined

infected person

γI Treatment rate Probability of hospital admission from
isolation state

ρ Quarantined rate The proportion of medical observation
subjects in the real epidemic

Natural Conversion Rate

Symbol Description Meaning

ν1 Input rate Birth rate
ν2 Output rate Natural mortality rate

1 represents the suspected population; 2 represents the confirmed population.

In Table 3, we categorize the state parameters into five main parameters with initial
accumulation and other parameters without initial accumulation.

Table 3. The State Parameter of Model.

Parameters
Setting
Class

State Parameter

Term Simulated
Value

Fixed Experience
Value

Relative
Error (%)No. Parameters

With initial
accumulation

value

1 S 1 × 105 1 × 105 0
2 E 45 1 × 103 0.9550
3 A 0 10 1
4 I 6 20 0.7000

Without initial
accumulation

value

5 TPG 1 - - 0
6 Sq 1 - - 0
7 Eq 1 - - 0
8 Iq 1 - - 0
9 R 1 - - 0
10 D 1 - - 0

1 Simulated value 1 = 0; fixed experience value 1 = 0.

3.3. Epidemiological Parameters Estimation

For classic and mature models, the reliability of the output results is determined by
the accuracy of the input. Therefore, the model starts with specific data and focuses on
evaluating, testing, and correcting the input values of the model from multi-angles to
improve the model reliability of output. Parameters can be estimated by the method of
moments as:

ϕ̂t =
It+1 − It

It
, (1)

ε̂t =
It+1 − It

Et
, (2)

ˆγRt =
Rt+1 − Rt

It
, (3)
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γ̂t =
Dt+1 − Dt

It
, (4)

is the number of newly infected patients (t~t + 1) divided by the number of infectious
patients at time t. The estimate εt is the number of newly infected people (t~t + 1) divided by
the number of exposed people at time t. The estimate γRt is the number of newly recovered
people (t~t + 1) divided by the number of infectious people at time t. The estimate γt is the
number of new deaths (t~t + 1) divided by the number of infectious people at t.

Estimated from the data as of 22 January 2020, Figure 2a shows red scatters as the
actual value ϕt, and the red curve is obtained by the method of moments. The estimate at t
and the confidence interval with the significance of the estimate within 1–0.05 is 0.0304. The
trend between the estimate and the actual value is shown in Figure 2b. The largest version
of the actual value εt and the estimate are at the same level; by calculating the discrete
Frechet distance between the actual curves P and estimate Q, the smaller the value, the more
similar the values are. The similarity is 0.0256, and the error between the estimate and true
value remains roughly between 0.0007 γRt and estimates ˆγRt are shown in Figure 2c. The
largest of the values of the two can be well-controlled on the same level, and the estimate
at t and the confidence interval of the significance of the estimate of 1–0.05 is 0.0065; the
similarity of estimate are calculated as 0.2456. The numerical comparison score between
the actual mortality rate and the parameter estimate is 0.061. In Figure 2d, the estimate can
fit the actual mortality rate well over time.
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Table 4 shows the average estimate of the four parameters obtained. Standard error of
the mean (SEM) reflects the degree of fit. The standard error values of the four parameters
are small, and the reliability of the simulation prediction is high. Here, the fluctuation of
γ is small, and the fluctuation of ϕ is relatively large. T-statistic = Ave./Standard_Error.
The estimate γ is the largest difference from the actual value, and the average value of
the time series simulation value has the largest probability of significant difference. The
significant differences between the estimated values of ϕ are very small. The p-values of
the four parameters are all greater than the 5% significance level. There is no significant
difference between the experimental group and the real data group.

Table 4. Error analysis of four main parameters.

Term Estimate SEM t-Statistic TSTAT 1 p-Value (pr > |t|)

ϕ 0.02385 0.0037 6.447
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0.05590
ε 5.2844 × 10−4 8.1374 × 10−5 6.494 0.27123

γR 0.0095 7.0950 × 10−4 13.395 0.13234
γ 3.4812 × 10−4 1.6785 × 10−4 2.074 0.05877

1 Here we take 6.447 as the baseline.

The trained model is used for simulation with parameter tuning. The HK incidence
dataset comes from China’s infectious disease network direct reporting system. In addition,
this study was carried out for different regions, and in order to compare with the epidemic
data in HK, we chose data from the U.S. with a large difference to further test the robustness
and generality of the model. Two independent modeling models were established to
monitor trends in various cases. MATLAB was used to simulate the model, and the
incidence data from 22 January 2020 to 13 December 2020 were used for model fitting.
In Figure 3a, 13 July 2020 and 22 August 2020 are two turning points in the dynamics of
the epidemic in HK. The trend of the epidemic from 22 January 2020 to 20 June 2020 and
from 7 October 2020 to 13 November 2021 is consistent with the real data. However, the
simulated data in the intermediate period (20 June 2020~7 August 2020) are obviously
different from the real data, but the overall fit is very good. This difference may be due
to the massive social movement that took place in HK on 06/09. In Figure 3b, we show
the simulation for the United States because not all infected people can be diagnosed
and quarantined immediately. As well as the delay in the spread of the virus, the total
accumulative case growth rate was gradual during 28 March 2020~21 March 2020 and
22 March 2020~2 November 2020 and, especially during 2 November 2020~13 November
2020, increased dramatically. In Figure 3c, from 22 January 2020 to 14 July 2020, there were
no new deaths, and the cumulative daily deaths from 15 July 2020 to 3 October 2021 also
increased relatively slowly. The growth rate of actual cumulative death data from 15 July
2020 to 3 October 2020 was slightly higher than the simulated data. In Figure 3d, for the
U.S., the accumulative recovered curve and accumulative death curve both seem to be the
same, with an explosive increase in mortality from 30 March 2020 to 27 May 2020. 28 May
2020~13 November 2020 showed steady growth. The error between the fitted data and the
expected data points in our model is less than 0.5% of the total number of deaths in the
United States. In Figure 3e, in the early stage, no patient was recovered, and the previous
confirmed data may be distorted somehow. From 24 March 2020 to 18 July 2020 and from
10 May 2020 to 3 July 2021, there were no excessive increases in accumulative recovered
cases. The model can be very close to the actual value. In Figure 3f, as the outbreak dragged
on, with intensive contact tracing followed by quarantine interventions, the recovery rate of
the recovered population increased on 14 April 2020 and has maintained a steady growth
rate. Overall, the model fits the actual data well in the early stage and in the later stage of
the epidemic, indicating that the improved model has high prediction precision for COVID-
19 and can be used for target people group (TPG) prediction. As already observed, the
three models have very similar behavior in the calibration phase, and this behavior is also
confirmed by the forecast data reported. Taking the outbreaks of COVID-19 infections in
Hong Kong and the United States as examples, we find that the predictions at the inflection
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point of the epidemic curve have small uncertainties, and the overall situation is basically
consistent, with temporal delay in pandemic development and re-susceptibility to temporal
immune responses. From Figure 3d,f, it can be found that our model has higher prediction
stability, the SEIRDV model has larger prediction volatility, and the SIRD-RM model has
the largest prediction error.
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In Table 5, according to the parameter estimation method, we obtained four parameter
values suitable for the model. Using the simulation experiment of the model, we obtained
the value of the natural conversion rate.

Table 5. Conversion Parameter Settings.

Class Value Basis

Parameter estimate

ϕ 0.1198
Model simulation +
Method of moments

ε 0.000986415
γR 0.107358
γ 0.0063073

Conversion rate

α 0.000187
Model

simulation
η 0.001
β 0.0009
β1 0.1

Quarantine rate
ω 0.0714 1/Quarantine days

γq 0.1
1/Course of disease

γI 0.1

Natural conversion rate ν1 0.1 Model simulation

The proposed novel model obeys the following rules:

• Suppose now that a very good performance of the novel coronavirus nucleic acid kit
(sensitivity and specificity is 95%) is used to screen all HK people [15].

• The population is uniformly mixed, and the probability distribution of the positive popu-
lation is uniformly distributed overall. We can treat it as an absolute uniform distribution.

• After a patient is cured, he becomes a healthy person who can still be infected again.
• Models incorporate birth and death.

A mathematical model of infectious diseases was established by using nonlinear
dynamics, which is the so-called SETPG (A + I) RD + APT model. According to the system
dynamics modeling idea, the following SETPG (A + I) RD + APT dynamic equation with
positive and negative feedback is proposed [16]:

dS(t)
dt = v1 N(t)− v2 S(t)− {p1 I(t)+εE(t)}(1− ρ)βϕS(t)

−ρ(1−ϕ)β{εE(t)+I(t)+A(t)}S(t)+ωSq(t)+β1E(t)+ξR(t)
dE(t)

dt = (1− ρ)βϕ{εE(t)+p1E(t)} − (α+ β1+v2)E(t)
dA(t)

dt = α(1− η)E(t)− (γR+γ)A(t)−v2A(t)
dI(t)

dt = αηE(t)+(γR +γ)I(t)
dTPG(t)

dt = µ{A(t)+I(t)}
dR(t)

dt = (1− p1)I(t)γR−ξR(t)
dD(t)

dt = γ{A(t)+I(t)}
dSq(t)

dt = ρ(1−ϕ)β{εE(t)+I(t)+A(t)}S(t)−ωSq(t)
dEq(t)

dt = ρϕβ{εE(t)+I(t)+A(t)}S(t)−αEq(t)
dIq(t)

dt = αEq(t)+γq{A(t)+I(t)} − γIIq(t)

(5)

In Figure 4, for HK, as of 10 October 2020, the simulated target population is 13,043. The
average numbers of asymptomatic and mildly infected are 7174 and 5869, respectively;
and for the U.S., the simulated target population is 17,292,960, from which the average
numbers of asymptomatic and mildly infected are 9,511,128 and 7,781,832, respectively.
A related article pointed out that 30–60% of infections are asymptomatic or having only
mild symptoms, but infectivity is not low. We took the average value of all symptomatic
infections and the simulated value of asymptomatic to obtain the final average value of
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the target people group (TPG). In Figure 4, the hatched area is the estimated change in the
number of cumulative cases of TPG in the future obtained by simulation.
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4. Experimental Simulation
4.1. Binary Encoding Nucleic Acid Screening Test

In Table 6, we show the cost saving percentage, time reduction rate, and the positive
detection rate as measurement standards to evaluate the pros and cons of different sample
pooling results. When the mixing ratio is 5:1~8:1, the cost-saving percentage of sample
pooling is 79.5%~86.7%; when the mixing ratio is 10:1~24:1, the cost-saving rate of sample
pooling is 89%~93.5%; the time-reduction rate is approximately identical. For positive
detection rate, the ratio of different sample pooling is different. The detection rate of
5:1~8:1 is 100%, which is at an ideal state; the detection rate of 10:1 is 83%, which is
excellent; the detection rate of 12:1~24:1 is less than half, and the detection rate is low.
Under comprehensive consideration, we adopted a screening test with mixing ratio of 10:1.

Table 6. Performance Results of Nucleic Acid Detection with Different Mixing Ratios.

Group
(Accepted 4 or Non-Accepted ×)

Group
Testing k

Average Number of
Screenings (Person)

Time Reduction
Rate (%)

Single Tube Detection Capability
(before Mixing Experiment)

Solution Concentration
(mL)

Positive Detection
Rate (%) Application Area

A4 5:1 0.2050 7.1428
50,000 tubes/day (the daily testing

volume of private hospitals and private
laboratories)~100,000 tubes/day

(Huo-Yan air membrane laboratory)

3000 100 Beijing, Xinjiang
B4 6:1 0.1727 - 2000 100 -
C4 8:1 0.1330 6~7 1000 100 Shanghai
D4 10:1 0.1100 6.5175 500 83 Hubei, Wuhan
E× 12:1 0.0953 - 250 50 -
F× 24:1 0.0654 - 100 17 -

Source: Wuhan Municipal Health Commission Daily News.

At different daily detection capabilities (DDC), we used the model to obtain the trend
of the target population over time in Figure 5. Grouping detection capabilities help us
observe differences in different detection capabilities under different detection groups,
thereby selecting the best daily detection volume and providing effective guidance for
epidemic prevention.

For HK, with a daily detection capacity of 720,000~750,000, the screening time required
for 700,000 and 710,000 are the same, respectively. The former takes up to 10 days and the
latter takes 11 days. Generally speaking, the virus has a three-day incubation period. In the
middle of the incubation period (about 1.5 days), the virus begins to replicate and become
infectious. At this time, the nucleic acid test can detect positive cases. Testing with our
decision every other day can improve the scientific accuracy of the mass screening. There
is not much difference in time distribution. However, for the number of daily detections, in
Table 7, cumulative detection number with a daily detection capacity of 700,000 is 11 days,
and the cumulative detection rate is 0.009; and for the U.S., the cumulative detection
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number with a daily detection capacity of 7,000,000 is 105,360. The cumulative detection
rate is 0.015; these two detection effects are the best in HK and the U.S. separately among
the group.Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 25 
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At daily detection capacities of 600,000~610,000 and 62,000~660,000, the same screening
time is required. The longest time required for a daily detection capacity of 670,000 is 13 days,
while the longest duration for DDC of 6,700,000 is 18 days in the U.S. The cumulative detec-
tion volume of the target population with a daily detection-capacity of 670,000~660,000 is
6060 and 7404, respectively. The cumulative detection rate of the two are 0.01 and 0.012, for
which the required screening time is 12 days and 13 days separately. In the U.S., in the
group where the required screening time is 18 days, the cumulative detection numbers of
target populations with daily detection capabilities of 6,700,000~6,600,000 are 90,696 and
114,721, and the cumulative detection rates are 0.015 and 0.019, respectively. The detection
effect under these four daily detection ability values is the best in these two regions.

At a daily detection capacity of 500,000~580,000, the screening times required for
580,000~560,000, 550,000~520,000, and 510,000~500,000 are about the same, respectively,
and cumulative numbers of detections of the target population with a daily detection ca-
pacity of 520,000~500,000 are 6150, 7280, and 8153. The cumulative detection rates are 0.012,
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0.014, and 0.016, respectively. As for the U.S., the cumulative numbers of target population
detections with a daily cumulative detection capacity of 5,200,000~5,200,000 are 102,399,
124,444, and 143,688, respectively, and cumulative detection rates are 0.020, 0.024, and
0.020, respectively. These six daily detection abilities are the best. In contrast, the target
detection rate of our model increased by 41.67% in larger-scale screening, which may reflect
higher infection and death rates.

At daily detection capacities of 400,000~480,000, 480,000~460,000, 450,000~430,000, and
420,000~410,000, the required screening time is about the same, respectively. The screening
time required for a daily detection capacity of 400,000 is 19 days, which is the longest.
Cumulative detection numbers of target populations with daily detection capabilities
ranging from 420,000 to 400,000 are 7407, 8188, and 9182, respectively. The cumulative
detection rates are 0.018, 0.020, and 0.023, respectively. In the U.S., the cumulative numbers
of target population detections with daily detection capabilities of 4,200,000~4,000,000 are
144,852, 159,719, and 176,043, and the cumulative detection rates are 0.038, 0.0039, and
0.044. The effect of the six daily detection abilities is the best. We can find that the total
screening rate in the United States was 52.63% higher than that in Hong Kong. At a lower
daily detection rate, the larger-scale screening rate increased compared with the smaller-
scale screening. This may be due to the density of population testing or the accumulation
of infections due to lower testing efforts.

Another important parameter that is closely related to infectivity is the effective re-
generation number, which measures the ability to spread the disease [17]. It can be simply
interpreted as the average number of people infected by an infected person during the infec-
tious period [18]. We made a horizontal comparison of R0 under each daily detection ability
of same groups and obtained the optimal daily detection ability of different groups [19].

In Figure 6, we obtain the R0 of different daily detection capabilities over time in
different groups. In each group, as daily detection capability increases, the minimum
timespan (TS) for each virus transmission capability gradually decreases to 0.5 non-linearly,
and the rate of decrease gradually accelerates until it stabilizes. In Figure 6a,c,e,g, the
shortest timespan (TS) for the virus transmission ability to drop below 1 is 6.5 days, 6 days,
6 days, and 6 days. Likewise, in Figure 6b,d,f,h, the shortest timespan (TS) for the virus
transmission ability to drop below 1 is 2.5 days, 1 day, 1 day, and 2 days. With different
screening capabilities, we selected two strategies that end the epidemic in the highest
DDC/TS rate as the optimal strategy and the average optimization strategy, respectively,
for which the TS is 8 with the DDC of 8153, and the TS is 8.5 with the DDC of 9182. For
the U.S., the TS of optimal CCT strategy is 9.5 days and 9 days with DDC of 159,719 and
143,688. It can be found that the timespan of citywide COVID testing is basically 1 to
3 days, 5 to 6 days, or 7 to 9 days, which basically conforms to the current policies of two
inspections in three days. It also shows the feasibility of our model.
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Figure 6. The R0 of different daily detectability changes over time. (a) The daily detectability from
700,000 cases to 750,000 cases with an interval of 10,000 cases in HK; (b) The daily detectability
between [7,000,000 cases 7,500,000 cases] with an interval of 50,000 in US; (c) The daily detectability
between [600,000 cases 670,000 cases] with an interval of 10,000 in HK; (d) The daily detectability
between [6,000,000 cases 6,700,000 cases] with an interval of 50,000 in US; (e) The daily detectability
between [500,000 cases 580,000 cases] with an interval of 10,000 in HK; (f) The daily detectability
between [5,000,000 cases 5,800,000 cases] with an interval of 50,000 in US; (g) The daily detectability
between [400,000 cases 480,000 cases] with an interval of 10,000 in HK; (h) The daily detectability
between [4,000,000 cases 4,800,000 cases] with an interval of 50,000 in US.

In Table 8, two optimal strategies are obtained, and the results of the average most
effective screening strategy are calculated. The screening timespan of the first optimized
screening strategy is 8 days in HK and 9.5 days in the U.S. The daily detection capacity
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of this strategy is 670,000/day in HK and 6,100,000/day in the U.S., and the cumulative
detection number is 8153 cases in HK and 2,064,970 cases in the U.S. The total detection
timespan of the second optimized screening strategy is 9.5 days in HK and 9 days in the
U.S., and daily detection capacity is 580,000/day in HK and 6,000,000/day in the U.S.; and
the cumulative detection number is 9182 cases in HK and 1,541,830 cases in the U.S. The
detection rates of two strategies are roughly equal: approximately equal to 0.0867 in HK
and 1.8034 in the U.S. By averaging the two optimization strategies, we obtain the optimal
screening strategy, and total detection timespan is 8.25 days in HK and 9.25 days in the
U.S., the total cumulative number of detections (TD) in the target population is 8667 cases
in HK and 1,803,400 cases in the U.S., and the detection rate is 0.0867 per 100,000 people in
HK and 1.8034 per 1,000,000 people in the U.S., which is about 72 times higher than the
current detection rate.

Table 8. Model Simulation Optimization Results Combined with Coding Screening Method.

TS (Days) Region
Total Detection

Number
(Persons)

Asymptomatic
Infection Detected

(Persons)

Mild Infection
Detected

(Persons) 1

Detection Rate
(Per 100,000 and
1,000,000 People)

Residual Rate of
Total Infected

Persons

8/9.5 HK/U.S. 8153/2,064,970 5708/1,445,479 2445/619,491 0.0815/2.0650 −0.0547
8.5/9 HK/U.S. 9182/1,541,830 6427/1,079,281 2754/462,549 0.0918/1.5418 −0.0413

Average Screening Result
8.25/9.25 HK/U.S. 8667/1,803,400 6067/1,262,380 2599/541,020 0.0867/1.8034 −0.048

1 Mild infection detection: calculated based on the proportion of people with mild symptoms of 0.3.

4.2. Invisible Virus Catcher—Artificial Intelligence Digital Technology to Achieve Precise
Prevention and Control of the Epidemic

In Figure 7, BLE (Bluetooth low-energy) broadcasting technology is considered for
use. This technology allows the device to broadcast information to other Bluetooth devices
nearby through the Bluetooth low-energy protocol. Since the smart-phone basically has
Bluetooth function, this technical solution has designed a way to collect information
when contacting other devices at close distance [20]. The app is based on Bluetooth
technology. After installation, it will run in the background of the smart-phone and generate
an independent anonymous ID. When nearby users with the same app are approaching, it
will automatically record the ID through near-field Bluetooth detection. If a user is found to
be positive for the virus in the test, the ID will be marked in database. The app cross-checks
the lists that match the ID. Once the users in the list are marked as infected, it will send
a notification to the users to inform them that they are at risk of exposure. They are then
encouraged to contact the local public health department for tests.

When the penetration rate of tracking applications in a country reaches 70%, the
accurate tracking of populations can be achieved [21]. In Figure 8, with different app
application rates (AAR), the spread rate decreases with the increase of the app application
rate. The timespan for the vanishment of the virus transmission capacity is also nonlinearly
reduced. When the app application rate is 100% (green curve), that is, in an absolute ideal
state, if everyone uses the app to declare their health, the screening timespan required
to end the epidemic is 7 days in HK. The cumulative number of people screened within
14 days of the incubation period is 6060. When the app application rate is 90% (light-green
curve), that is, in an excellent state, the screening timespan required to end the epidemic is
5.5~6 days. The cumulative number of people screened within 14 days was 2901. When the
app application rate is 80% (orange curve), that is, in a good state, the screening timespan
required to end the epidemic is 5–5.5 days, and the total number of people screened is
2483. When the app application rate is 70% (red curve), that is, under the conditions of
accurate tracking, the screening timespan required to end the epidemic is 5 days, and
the cumulative number of people screened is 2065. For the U.S., the AAR is 9, 8, 7, and
5 days separately, corresponding to the total numbers of screening of 114,720, 90,695,
70,540, and 40,376.
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case appears, the mobile phone that has been in close contact with the patient's mobile phone will 

Figure 7. Sketch-map of Bluetooth wireless technology virus-tracking mechanism. (Note: Step
1: effective contact distance for collecting close contacts’ information; Step 2: When close contact
conditions are reached, the mobile device starts recording information; Step 3: Someone get a positive
PCR test result for COVID-19 (coronavirus) and confirmed cases were screened; Step 4: Through the
cloud data, the records of the confirmer’s equipment are retrieved to obtain the people who have had
close contact behaviors; Step 5: The background system will automatically pair through the key of the
confirmed patient, and obtain the bluetooth signal key of all the user’s mobile phones that they have
been in close contact with within a period of time; Step 6: Once a confirmed case appears, the mobile
phone that has been in close contact with the patient’s mobile phone will also automatically warn its
owner, reminding its owner that the person you have been in contact with has been diagnosed and
needs self-quarantine and seek medical treatment as soon as possible.)
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4.3. Performance

In Table 9, the results through simulation are obtained: in experiment 1, we screened a
total of 13,043 cases in HK and 17,292,960 cases in the U.S.; in experiment 2, the total number
of samples screened was 8667 cases in expt. 1 and 6060 in expt. 2 for HK and 1,803,400 cases
in expt. 1 and 1,766,420 cases in expt. 2 for the U.S., which are 11,702 screening cases
relatively reduced compared to experiment 1, improved screening rate by at least 53.54%.

Table 9. Confusion matrix of two experiments.

Screening
Experiment 1

Actual Data/Gold Standard
Total

P(+) PatientHK/U.S. N(−) Non-Patient HK/U.S.

Encoding All-People Test
Simulated

Data
P(+) TP = 7541/16,408,710 FP = 5502/884,250 13,043/17,292,960
N(−) FN 1 = 3159/66,581 TN = 5508/1,736,819 8667/1,803,400

Total 10,700/16,475,291 11,010/2,621,069 21,710/19,096,360 2

Screening
Experiment 2

Actual Data/Gold Standard
Total

P(+) HK/U.S. N(−) HK/U.S.

App Epidemic-Tracking Platform
Simulated

Data
P(+) TP = 7541/16,408,710 FP = 5502/884,250 13,043/17,292,960
N(−) FN 1 = 2262/29,601 TN = 5508/1,736,819 6060/1,766,420

Total 10,442/16,438,311 8661/2,621,069 19,103/19,059,380 2

1 FN, count (AC + mild symptomatic patients); 2 Total is the simulated results in predicted model; T stands for
test, and P stands for patient. TP, true positive; FP, false positive (Type I error); FN, false negative (Type II error);
TN, true negative; (for comparison with below: T+P+ = TP, T−P− = TN, T+P− = FP, and T−P+ = FN).

In Table 10, through different performance indicators, we can see that the sensitivity
and specificity of experiment 2 are slightly higher than those of experiment 1. The false
positive rate of experiment 2 is higher than that of experiment 1, and the false-negative
rate is significantly higher than that of experiment 2. The +LR of experiment 2 is higher
than that of experiment 1. For −LR performance index, experiment 2 is also lower than
experiment 1; that is, the diagnostic value of experiment 2 is higher than that of experiment
1. For accuracy, experiment 2 is significantly higher than experiment 1, which reflects the
superiority of experiment 2.
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Table 10. Evaluation Results of Screening Plan for Comparison.

Evaluation Index Formula (×100%) Experiment 1% HK/U.S. Experiment 2% HK/U.S.

Sensitivity, sen ΣTP/Σ (TP + FN) 70.48/99.60 72.22/99.82
Specificity, sp ΣTN/Σ (TN + FP) 50.03/66.26 63.60/66.24

False-positive rate, Fpr ΣFP/Σ (FP + TN) 49.97/33.74 63.53/33.74
False-negative rate, Fnr ΣFN/Σ (TP + FN) 29.52/0.40 21.66/0.18

Positive likelihood ratio, +LR sen/(1 − sp) 1.4104/2.9520 1.9841/2.9568
Negative likelihood ratio, −LR (1 − sen)/sp 0.8900/0.0142 0.4368/0.0027

Accuracy, AC Σ(TP + TN)/Σ(TP + TN + FP + FN) 60.11/95.02 62.70/95.21

5. Discussion

Citywide COVID testing could provide the means for regular and mass screening for
the early detection of asymptomatic and symptomatic individuals, an especially important
aspect of successful epidemic containment. We present examples of forecasts for viral
transmission in the Hong Kong and the United States. This work has demonstrated how
to build a novel model for the COVID-19 outbreak and screening in different regions,
including interventions, estimating model parameters, and generating posterior predictive
intervals. Furthermore, the model is able to treat the asymptomatic and mild symptomatic
compartments as target variables, as no detailed data were observed about them other than
approximate initial values. For diagnostic accuracy, the model fits the data quite well with
an AC ≈ 60.11 for HK and AC ≈ 95.02 for the U.S. in experiment 1 and predicts reasonably
well with an AC ≈ 62.70 for HK and AC ≈ 95.21 for the U.S. in experiment 2. One can
also note that in the model definition, quarantine, vaccination, natural births, and natural
mortality were included.

Major hospitals are faced with screening and diagnosis tension during the pandemic.
To carry out screening in a short time, screening tests in different models were carried out.
No system is perfect, and the accuracy is relatively low. There is always some uncertainty
and risk, which result in false positives or false negatives. All-people testing combined
with the virus-tracking system is more specific than the nucleic acid test alone. The false
negatives of the two screening methods are much lower than the false-positive rate, which
is inevitable. The false-positive rate of nucleic acid testing is 1.4 times higher than the
false-positive rate of the virus-tracking system. Compared with the false-negative rate, the
false-positive rate is significantly higher, which can easily cause the collapse of medical
treatment. Combining false-positive and false-negative results, if the specificity of a disease
test is high (the research indicates that it is about 50.03% in expt. 1 and 66.26% in expt. 2 for
HK and 66.26% in expt. 1 and 66.24% in expt. 2 for the U.S.), and the diagnostic result is
positive, the person may have the disease and decide whether to conduct other tests. Tests
with high specificity are mostly used for deriving rule in a diagnosis because there is less
chance for being ignored. The two diagnostic tests have the ability to distinguish a case
from a certain disease. The greater the +LR of expt. 1 (1.4104 for HK and 2.9520 for the U.S.)
and 2 (1.9841 for HK and 2.9568 for the U.S.), the greater the probability of achieving a true
positive when the test result is positive. In –LR, the smaller the ratio of expt. 1 (0.8900 for
HK and 0.0142 for the U.S.) and 2 (0.4368 for HK and 0.0027 for the U.S.), the greater the
probability that the result will be truly negative.

Future work could be to include more parameters (e.g., consider time-dependent
infection rates or viral load in patients after infection or graphs within communities) in
the model to capture uncertainty more accurately. Furthermore, one could be employed
to perform simulation studies in order to obtain conclusive results that can be used as
healthcare guidelines and better elucidate how the model may perform under various
scenarios. Feature selection methods can be used to select where the policy interventions
should be placed, and other forms of interventions could be included in the model. An-
other possibility to address any deviations from the standard model is a semiparametric
technique, which could be studied as well.
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6. Conclusions

The data collected from HK were applied to a novel infectious disease model called
SETPG (A + I) RD + APT, which enabled a simulation experiment of the all-people test and
compared results with U.S. data to validate the model robustness. By combining coding
nucleic acid detection and app virus-tracking system, the applicability of the all-people
test was improved. The infectious disease model established has good prediction accuracy
and can be used for short-term predictions for universal screening. When dealing with
the all-people test, this research encountered the problems of overloaded testing, slow
speed, and long training time. In order to solve this problem, this study used the two
experimental methods of coding method and tracking system to optimize the simulation
model, thereby obtaining an optimized strategy for a short-term all-people test suitable for
the reality. In order to improve the performance and make the model closer to reality, we
added different populations and prevention measures to the model. Using mathematical
methods to analyze the mathematical model based on an all-people test of 10 populations,
the physiological significance, prevention, and control mechanisms were obtained. Finally,
multi-evaluation factors in the screening evaluation were used to comprehensively show
the performance results of the two experiments. Results show that both experiments can
improve the efficiency and effectiveness of the all-people test. Here, the advantage of using
an app virus-tracking method is more prominent, and the result of the experiment is also
in line with reality.

This model, however, has limitations. The data for establishing the SETPG (A + I)
RD + APT model are a dynamic time series. Data collection is affected by factors such
as timeliness and control measures. The model will inevitably be different from reality,
which will lead to a deviation in analysis and prediction results of the target people group.
The parameters of the model are estimated through the literature and mathematical model
fitting, and there may be a deviation between the predicted results and actual results.
Observing and predicting from the data, it is relatively simple and easy to implement,
and the short-term prediction effect is acceptable. However, the long-term prediction
performance is significantly reduced, and only variable prediction results can be given,
which cannot reveal the deeper law of the development of the epidemic.
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