Skip to main content
. 2022 Sep 1;19(17):10937. doi: 10.3390/ijerph191710937

Table 5.

Rotated Component Matrix *.

Variable Component
1. PU 2. SIM 3. IM 4. NEC 5. AUT 6. PEU
Cronbach’s Alpha 0.894 0.902 0.908 0.815 0.83 0.676
PU1_q3s1 0.623
PU2_q3s2 0.720
PU3_q3s3 0.811
PU4_q3s4 0.733
PU5_q3s5 0.752
PU6_q4s1 0.628
PEU1_q4s2 0.807
PEU2_q4s3 0.670
PEU3_q4s4 0.592
PEU4_q4s5 0.696
NEC1_q7s5 0.545
NEC2_q8s1 0.760
NEC3_q8s2 0.727
NEC4_q8s3 0.765
NEC5_q8s4 0.659
IM1_q7s1 0.874
IM2_q7s2 0.757
IM3_q7s3 0.897
IM4_q7s4 0.879
AUT2_q13s1 0.811
AUT3_q13s2 0.848
AUT4_q13s3 0.781
SIM1_q11s1 0.827
SIM2_q11s2 0.800
SIM3_q11s3 0.775
SIM4_q11s4 0.822

* Extraction Method: Principal Component Analysis, Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 6 iterations. Source: Authors’ own research.