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Abstract

Unraveling the network of interactions in ecological communities is a daunting task. Com-

mon methods to infer interspecific interactions from cross-sectional data are based on co-

occurrence measures. For instance, interactions in the human microbiome are often inferred

from correlations between the abundances of bacterial phylogenetic groups across sub-

jects. We tested whether such correlation-based methods are indeed reliable for inferring

interaction networks. For this purpose, we simulated bacterial communities by means of the

generalized Lotka-Volterra model, with variation in model parameters representing variabil-

ity among hosts. Our results show that correlations can be indicative for presence of bacte-

rial interactions, but only when measurement noise is low relative to the variation in

interaction strengths between hosts. Indication of interaction was affected by type of interac-

tion network, process noise and sampling under non-equilibrium conditions. The sign of a

correlation mostly coincided with the nature of the strongest pairwise interaction, but this is

not necessarily the case. For instance, under rare conditions of identical interaction

strength, we found that competitive and exploitative interactions can result in positive as

well as negative correlations. Thus, cross-sectional abundance data carry limited informa-

tion on specific interaction types. Correlations in abundance may hint at interactions but

require independent validation.

Author summary

The bacteria in and on our body (the human microbiome) largely determine how our

body functions, and whether we stay healthy or get sick. These bacteria do not live on

their own, but interact among each other and with their human host. Finding out which

bacteria interact with each other is cumbersome, but patterns of joint occurrence between

species might provide a clue to their ecological dependencies. We investigated whether

correlations in species abundance can be used for the purpose of ecological network

reconstruction. We simulated different bacterial communities with known interactions
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according to a theoretical population model. After having collected virtual samples from

our simulated data, we performed a correlation analysis and then compared the correla-

tion network with our known interaction network. We found that correlations can be

informative for underlying interactions, but ecological conclusions should be drawn care-

fully. An obvious limitation of correlation analysis is that direction of interaction cannot

be recovered from co-occurrence data, making correlations insensitive for detection of

asymmetric interactions. In addition, we found that competitive and exploitative interac-

tions can induce positive as well as negative correlations. We recommend careful interpre-

tation and validation when inferring networks from cross-sectional abundance data.

Introduction

The human body harbors an exceptional bacterial diversity [1]. The composition of these bacte-

rial communities is generally shaped by characteristics of the host and by the ecological depen-

dencies among bacterial species themselves [2–4]. These dependencies often occur through

competitive or synergistic interactions, which may lead to a (mutual) decrease or increase in the

abundance of interacting species [5]. For instance, it is known that bacteria can interact with

each other through excreted metabolites, which can function as an antimicrobial or as a food

source [2,6]. Among other mechanisms, for example, negative interactions take place when

toxic compounds produced by one species harm other bacteria, whereas positive interactions

occur when bacteria feed on the nutrients that are produced by others. Besides, many different

forms of interactions exist, depending on the effects experienced by the species involved.

Knowledge of interspecific interactions in the human microbiome is paramount to understand

ecological processes and compositional changes in relation to health and disease [7,8].

Most human microbiome studies are limited to only a few samples in time, presenting

mere ‘snapshots’ of the microbial ecosystem, even if these are derived from hundreds of

human hosts. A common way to infer microbial networks from such cross-sectional data is by

quantifying co-occurrence, e.g., through (partial) correlations, between bacterial phylogenetic

groups. Several different conclusions have been derived from such endeavors, for example on

species associations that reflect shared or overlapping niche preferences [9], microbial com-

munity structure [10,11], the resilience of microbial communities to perturbations [12] and

keystone species in microbial networks [13]. Currently there are several correlation-based net-

work tools available that can deal with the difficulties of microbiome data, such as the compo-

sitionality [14–16]. The potential of correlation-based approaches for uncovering microbial

networks has been highlighted in previous research [17].

Whether correlation-based networks represent meaningful ecological structure in microbial

communities is however debated. Carr et al. (2019) showed that spurious correlations may occur

due to the use of sequencing methods, data transformations and the large number of unmeasured

variables [18]. Berry & Widder (2014) and Hirano & Takemoto (2019) assessed the performance

of different co-occurrence methods for inferring interaction structure and found that their perfor-

mance strongly depends on the underlying network properties, like network size and density and

the number of samples used to construct the network [13,19]. Apart from the challenges of meta-

genomic-based abundance data and disagreement between various network tools, here we ques-

tion whether correlations itself are at all useful to distinguish between different ecological

interaction types. Resource competition and metabolic cooperation have been successfully

inferred within environmental microbiomes, by linking ecological distribution data to multi-spe-

cies metabolic models and subsequent verification of putative interactions by means of experi-

mental co-growth analysis [20]. However, host-associated microbiomes often include non-
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culturable organisms, without information on nutrient requirements or metabolic function. Like-

wise, performance of correlation analysis in relation to alternative interaction types in human

microbiota is not well understood and deserves further investigation.

Correspondence of correlations with ecological interactions needs to be studied against a

known ground truth, which can be achieved by means of simulation. Mathematical models

have been used as ground truth in assessment of correlation network techniques before (e.g.

[21]), but correlation networks have not been systematically investigated against distinct inter-

action types in dynamic models. This requires elucidation especially as the ‘true’ ecological

networks governing microbiome dynamics are still unknown. For this purpose, we assessed

the performance of correlation-based network reconstruction by simulating abundance data

based on the generalized Lotka-Volterra (gLV) model. The gLV model describes the collective

dynamics of multiple species by means of an interaction matrix that can modulate different

types of interactions [22]. The model is commonly used in microbiome studies for different

aims: to simulate microbial communities under various interaction structures [22], to infer

interaction structure from time-series data [12], to forecast population dynamics after a per-

turbation [23], to infer the network topology from steady state samples [24] and to identify the

efficiency of intervention protocols in altering the state of a system via the addition or subtrac-

tion of microbial species [25]. In ecology, gLV-type models have been questioned for their reli-

ance on pairwise additive interactions, as well as for the strictly linear effects imposed on

interspecific interactions. Nonetheless, from the perspective of network inference, it makes

sense to first investigate gLV-type models, as their first-order description of ecological depen-

dencies, specified through a pairwise interaction matrix, resembles the objective of correlation

analysis and most network models [2].

In addressing how gLV-type interactions can be inferred from cross-sectional data, we

mainly focus on the correspondence between the obtained correlation-based networks and the

underlying network of ecological interactions. We specifically investigate how inference of

microbial interaction types is enabled by interindividual variation in population-dynamic

parameters, e.g., species-specific carrying capacities, intrinsic growth rates and strength of

interspecific interactions, and how network reconstruction is affected by gLV model assump-

tions. We highlight several situations where correlations cannot distinguish microbial interac-

tion types, and therefore recommend careful interpretation and validation when inferring

networks from cross-sectional abundance data.

Methods

Two species Lotka-Volterra model with self-limitation

First, we investigated how interactions between two species of microbial populations are dis-

played in terms of correlations in abundances in the Lotka-Volterra model. For the sake of

convenience, we use the term ‘species’, although in studies with real microbiome data it is

often not possible to characterize the taxonomic abundances at species level and therefore gen-

era or higher taxonomic levels are often used instead.

The two-species Lotka-Volterra model is given by the following set of ordinary differential

equations:

dN1

dt
¼ r1N1 1 � K � 1

1
N1 þ a12N2

� �

dN2

dt
¼ r2N2 1 � K � 1

2
N2 þ a21N1

� �
ð1Þ
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Here, Ni is the abundance of either species 1 or species 2 (with i = 1 or i = 2). The term ri is

the intrinsic growth rate of each species, here normalized to 1 and 2 per time unit for species 1

and 2 respectively. The effect of each species’ abundance on its own growth is defined in terms

of the species-specific carrying capacities Ki, with αii = –Ki
- 1 denoting intraspecific competi-

tion. We arbitrarily chose the carrying capacity for the first species to be higher than the carry-

ing capacity for the second species (K1 = 1.5; K2 = 1.1), meaning intraspecific competition is

less strong for species 1 compared to species 2. Furthermore, αij (i = 1, 2; j = 1, 2; i 6¼ j) indi-

cates the interspecific interactions (the effect of one species abundance on the growth of the

other species). A positive αij (e.g., as in the case of mutualism) denotes a positive effect of spe-

cies j on the growth of species i, a negative αij (e.g., as in the case of competition) means a nega-

tive effect of species j on the growth of species i (S1 Fig). We assessed the effect of variation in

the interspecific interaction parameters on correlation in equilibrium abundance between

both species. For this purpose, the interspecific interaction strengths (α12 and α21) were drawn

randomly from two normal distributions with similar or different mean and similar or differ-

ent standard deviations (σα). Moreover, we also investigated the situation where |α12| = |α21|.

Note that it was not possible to achieve stable co-existence for every combination of α12 and

α21. More information on the conditions for co-existence can be found in the supplementary

information (S1 Text).

Generalized host-specific Lotka-Volterra model

Microbial abundance is not only shaped by intra- and interspecific interactions, but also by

host characteristics, for example lifestyle, diet and age [26]. Therefore, we investigated the per-

formance of correlation-based network inference of microbial networks for a host-specific ver-

sion of the gLV model. The host specific gLV model is given by:

dNi;m

dt
¼ ri;mNi;m 1 � K � 1

i;mNi;m þ
XS

j ¼ 1

j 6¼ i

aij;mNj;m

0

B
@

1

C
A ð2Þ

Here, Ni,m is the abundance of each species i in host m, with i = 1, . . ., s (s being the total

number of bacterial species) and m = 1, . . ., 300 (the total number of hosts). The terms ri,m and

Ki,m are the intrinsic growth rates and the carrying capacities of each species i in host m. The

carrying capacities are kept separated from the interaction matrix A which only contains inter-

specific interactions (namely, the pairwise terms αij), facilitating a one-to-one comparison

with the correlation matrix.

Parameterization of the base case simulations

We started with a base case and we added step by step variation to this case. Note that the

base-case parametrization does not reflect any particular real-world system. Rather, parame-

ters were chosen in such a way to facilitate computation and promote co-existence between

species. Variations to the base-case parameters are shown later on, but also here, findings

should be appreciated from a qualitative rather than quantitative viewpoint. In the base case

the number of bacteria equals ten. The species-specific growth rate ri and the species-specific

carrying capacity Ki were randomly drawn from uniform distributions respectively U(0.05,

0.1) and U(0, 1). The density of the interaction matrix A in the base case was chosen such that

both sparsity of the interaction network and co-existence of the species was promoted in all

simulations; in the base case, density was ¼ meaning that three out of four possible interac-

tions were set to zero. Moreover, to ensure co-existence between species in the model we chose
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stronger intraspecific interactions than pairwise interspecific interactions. The species-specific

parameters αij were drawn from a Gaussian mixture distribution, as follows. Half of the inter-

actions were drawn from a negative normal distribution: αij ~ N(–0.25, 0.1); and the other half

of the interactions were drawn from a positive normal distribution: αij ~ N(0.25, 0.1). All inter-

actions were restricted to lie between –0.5 and 0.5, i.e., the normal distributions were truncated

at –0.5 and 0.5. The parameters ri, Ki and the interaction matrix A were randomly drawn 1000

times from the aforementioned distributions to obtain 1000 different parameter combinations.

Hereafter, host-specific parameters were drawn from log-normal distributions around species-

specific parameters, as follows:

lnðjaij;mjÞ � NðlnðjaijjÞ; saÞ

lnðri;mÞ � NðlnðriÞ; srÞ

lnðKi;mÞ � NðlnðKiÞ; sKÞ

ð3Þ

8
><

>:

Here, σα denotes the interindividual variability in interspecific interactions among the 300

hosts (with σα = 0.25 in the base case), and |αij,m | denotes the absolute strength of interaction

from species j on the growth of species i for each host m. Note that, for the sake of simplicity,

the use of log-normal distributions was adopted to induce fold-changes around population

means, where both the presence and the sign of interspecific interactions are kept constant

across hosts. However, this may be untrue in real microbiota as many microbes can change

metabolic pathways and therefore may switch from interaction types and interaction partners.

In the base case model, the carrying capacities and growth rates were kept constant across

hosts, meaning σr and σK were set equal to 0.

The simulation process yielded 300.000 timeseries (300 host specific timeseries for each of

the 1000 ten species networks). The running time of the model was chosen such that all species

reached their equilibrium abundance. If at least one species did not survive (i.e., when its

abundance dropped below 0.001), we rejected the simulation in favor of another randomly

drawn parameter set. After sampling the abundances at equilibrium, we added independent

and identically distributed noise υ to mimic uncertainty in measurements (with υ ~ U(-0.01,

0.01) in the base case). This measurement noise can be thought of as representing, for example,

sampling errors, environmental contamination, batch effects during sequencing, or annotation

errors in reference genomes [27]. Simulations were performed in R (R version 3.6.0; https://

www.r-project.org/). The gLV model was solved with the lsoda function from the deSolve

package (version 1.24) which uses a FORTRAN ODE solver written by Petzold & Hindmarsh

(1995) [28]. R code is available via GitHub (https://github.com/susannepinto/gLV_

microbiome.git). A general overview of the base case simulation design is given in Fig 1.

Variations to the base case model

We studied multiple variations to the base case model. Like the base case simulations, we did

1000 simulations per variation. As a first variation, we added host-specific variability to the

species-specific parameters ri and Ki using Eq 3, with σr = 0.25 and σk = 0.25.

Second, we varied the amount of measurement noise, from υ ~ U(–0.01, 0.01) (medium

noise in the base case) to υ ~ U(–0.001, 0.001) (low noise) and to υ ~ U(–0.1, 0.1) (high noise).

We also simulated timeseries with a different type of noise, namely varying magnitudes of pro-

cess noise W (S2 Fig). In contrast to measurement noise, which was added only to the sampled

abundances, process noise was added to the gLV model such that within-host population

dynamics were perturbed at discrete time intervals Δt (Δt = 1 time unit). The time-varying pro-

cess noise was drawn from a log-normal distribution to prevent the abundances from
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�

Fig 1. Representation of the workflow. In an interaction network singular green and red arrows represent a commensalistic interaction and an amensalistic

interaction respectively, whereas double green arrows represent mutualism and double red arrows competition. A green and red arrow signifies an exploitative

interaction. See S1 Fig for more details. (A) A random interaction matrix i. This interaction matrix is implemented in the gLV model (B) together with the intrinsic

growth rates and carrying capacities of the species. (C) All timeseries are (slightly) different due to the variation in the interaction strengths. (D) The partial

correlations are calculated from the abundances per species sampled from the 300 different hosts at equilibrium. Only the significant correlations and the lower

part of the matrix are used for the comparison with the original interaction matrix i. Variations to the workflow were studied by adding for example a perturbation

or process noise.

https://doi.org/10.1371/journal.pcbi.1010491.g001
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dropping below zero, i.e. ΔWi = ln(Ni,m(Δt))–ln(Ni,m(t)) ~ N(ln(Ni,t), σW) (with σW ~ N(0, 1) for

high process noise and σW ~ N(0, 0.1) for low process noise).

Further, we simulated data with interaction strengths drawn from a uniform (αij ~ U(–0.5,

0.5)) or unimodal (αij ~ N(0, 0.15)) distribution. As in the base case, the interaction strengths

were restricted to lie between –0.5 and 0.5 (S3 Fig).

We also analyzed three different structures of microbial networks. First, we increased the

number of species s to 30. To promote co-existence, we also reduced the density of the interac-

tion matrix to 1/6. Secondly, we simulated a network based on a producer consumer relation

between the species (S4 Fig). Instead of random interaction networks (S4A Fig), the producer-

consumer networks are based on a cross-feeding structure between producers and consumers

(with equal numbers of producers and consumers) (S4B Fig). Producers excrete metabolites

which are consumed by the consumers. Because consumers remove the ‘waste’ from the pro-

ducers, the presence of a consumer can also be beneficial for the producers. Therefore,

between producers and consumers positive interactions are more likely to occur than negative

interactions. On this purpose, we drew the consumer-producer interactions from the positive

side of the Gaussian mixture distribution (αij ~ N(0.25, 0.1)). In contrast, among producers

and consumers themselves, the interactions are predominantly negative as these species are

more likely to compete for similar resources. On this purpose, we drew the interactions among

producers and among consumers from the negative side of the Gaussian mixture distribution

(αij ~ N(–0.25, 0.1)). Thirdly, we simulated a microbial network with interaction hubs, i.e. a

network containing species with unusually high numbers of ecological interactions compared

to other species in the network (S4 Fig) [29]. Hub-species networks were created according to

the Barabási-Albert model [30] and implemented with the barabasi.game function from the

igraph package (version 1.2.11). In the network-generating algorithm, interactions are distrib-

uted according to a mechanism of preferential attachment. Thus, species with interactions

obtain a higher chance of getting more interactions, resulting in a few ‘hub-species’ with many

interactions. We constructed two scale-free directed graphs (with power = 2), denoting

“incoming” and “outgoing” interactions, and combined these to obtain a bidirected graph.

Density was kept similar to the base case model (1/4).

Next, we also investigated how network inference is affected by sample size by considering a

scenario with 3000 instead of 300 hosts. We did this for the base-case model with random interac-

tion networks, as well as for the producer-consumer and hub-species networks described above.

Last, we investigated the effect of a perturbation on the performance of network inference.

The populations were perturbed after 175 time units, with a perturbation that lasted for 50

time units. The perturbation was modelled by taking a new set of random carrying capacities

per species per sample. Due to the simulated perturbation, the equilibrium distribution shifted.

After the perturbation, the species grew back to their original equilibrium. Sampling occurred

before, during or after the perturbation.

Assessment of correlation-based network inference

With the simulated data at hand, we created a dataset with the abundances of the model species

sampled at equilibrium for each host m. After adding measurement noise to the data, we

inferred the correlations between species by calculating the partial Pearson correlation coeffi-

cients ρ between all abundances Ni across the m different hosts (Fig 1). We did not use plain

correlations, because partial correlations have the advantage of controlling for confounding

interactions (e.g. interactions between bacterial species affecting the abundance of a third spe-

cies) [31]. Agreement between the partial correlation matrix and the interaction matrix A
from the gLV model was assessed qualitatively, i.e., we only considered whether significant
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entries in the partial correlation matrix agreed with the interaction matrix in terms of non-

zero entries with the correct sign. We used the Benjamini-Hochberg procedure to control for

the expected proportion of ‘false discoveries’ after calculating partial correlations between each

pair of species [32]. The results (true positives, true negatives, false positives and false nega-

tives) were stored in a confusion matrix (Table 1). Because a correlation matrix is symmetric

and an interaction matrix A is not, we only used half of the partial correlation matrix (Fig 1D)

to construct the confusion matrix. For a correctly classified interaction, either one or both

interactions in the upper and lower part of the A matrix must have the same sign as in the

lower part of the partial correlation matrix. This can produce a bias, because asymmetric inter-

actions can result in a true positive result for correspondence of the correlation coefficient (ρ)

with either interaction. For example, for exploitative interactions, both negative and positive

correlations are classified as true positive results. Therefore, we tested the effect of this bias on

the success of network inference by specifying the intended sign in correlation analysis, as the

sign of the strongest interaction in each pair of species. Hence, for an exploitative interaction,

only a positive or a negative correlation is correct, depending on the weights of the asymmetric

interactions. Secondly, we also tested the effect of this bias on the success of network inference

by setting the rule that the sign of both interactions must be matched by the inferred correla-

tion coefficient. Hence, only mutualism and competition can be inferred correctly, as amensal-

ism, commensalism and exploitative interactions are asymmetric.

Performance of network inference was evaluated with precision and recall and a combina-

tion of both measures, called the F1-score [33]. The precision is the fraction of correctly classi-

fied interactions among the total number of significantly predicted interactions (i.e.,

significant partial correlations) and the recall is the fraction of correctly classified interactions

among the total number of non-zero interactions in the interaction matrix A. The F1-score

(on a scale from 0 (no agreement) to 1 (perfect agreement)) is obtained as the harmonic mean

of precision and recall, weighted equally, as given in the following equation:

F1 ¼ 2 �
precision � recall
precisionþ recall

ð4Þ

Results

Inference of asymmetric and symmetric interactions in a two-species

system

Correlations in abundances of the species in a two-species Lotka-Volterra model are shaped by

the type of interaction involved. Fig 2 shows scatterplots of the abundances of two bacterial

Table 1. The confusion matrix as used in this study. The inferred partial correlation coefficient ρ (from the lower part of the partial correlation matrix) must have the

same sign as one of the interactions in the interaction matrix A to be considered as a true positive finding in base case analysis.

Interaction in the A matrix from the model Inferred partial correlation

Negative� Not significant Positive�

No interaction 0, 0 false positive true negative false positive

Mutualism +, + false positive false negative true positive

Competition –, – true positive false negative false positive

Commensalism +, 0 | 0, + false positive false negative true positive

Amensalism –, 0 | 0, – true positive false negative false positive

Exploitative interaction +,–|–, + true positive false negative true positive

� Only significant partial correlations (with p < 0.05) are considered after correction for multiple testing with Benjamini-Hochberg procedure.

https://doi.org/10.1371/journal.pcbi.1010491.t001
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species for different interaction mechanisms over a range of different combinations of α12 and

α21. Mutualistic interactions clearly yielded a positive correlation in abundance between the

two species involved (Figs 2A and S5). Competitive interactions generally yielded negative cor-

relations (Figs 2B and S5). However, under perfectly symmetric competition (when α12 = α21)

we did find a positive correlation depending on interaction strength and carrying capacities of

the species involved (S5D Fig, second panel). In the situation where one of the two species

does not experience any benefits or limitations in growth from the other species, as is the case

with commensalism and amensalism (i.e. α12 = 0 or α21 = 0), correlations are zero because one

of the species will grow to its carrying capacity irrespective the abundance of the other species

(Fig 2C and 2D).

Correlations under exploitative interactions among bacteria, benefitting one but harming

the other species, generally yielded positive correlations (Figs 2E, 2F and S5), but negative cor-

relations were also found. This happened when the exploitative benefit was of equal magnitude

as the harm done to the other species (S5D Fig), or of similar mean magnitude but with more

variation (e.g. species 1 is exploited by species 2;–α12 = α21 and σα12<< σα21 (exploitative

interaction type 1) or species 2 is exploited by species 1; α12 = –α21 and σα21<< σα12 (exploit-

ative interaction type 2) (S5B Fig). However, if the exploitative benefit outweighs the harm

done to the other species, exploitative interactions will generally yield positive correlations. It

should also be noted that the two species were not exchangeable, because species 1 was given a

weaker intraspecific interaction strength than species 2. Thus, in the absence of interspecific

interactions, species 1 can reach a higher abundance at equilibrium. This means that, for the

same interspecific interaction strength, the species with the higher carrying capacity exerts a

stronger (negative) effect on the growth of the other species.

Network inference under various interaction types

Here we used the base case model to assess the success rate of recovering a particular interac-

tion type between pairs of species: amensalism, commensalism, exploitative interactions,

mutualism and competition (S1 Fig). Fig 3A shows that correlations were more often found in

mutualistic and competitive interactions, where interacting species experience the same quali-

tative effects from each other, than in amensalistic and commensalistic interactions, where

only one species experiences an effect from the presence of another species. For exploitative

interactions among bacteria, either a positive or negative correlation coefficient ρ could be

found, with a success rate comparable to amensalistic and commensalistic interactions. Con-

trary to the results that included symmetric interactions, there was no difference between the

successful inference of positive interactions over negative interactions in any interaction type

(Fig 3B). For all interaction types, the sign of the significant correlation coefficient ρ found,

mostly agreed with the sign of the type of the interaction (Fig 3A and 3B). However, with the

inferred correlations neither the type nor direction of the original interaction could be

recovered.

Fig 2. Scatter plots between the abundances of two bacterial species for different interaction mechanisms: (A) mutualism, (B)

competition, (C) commensalism, (D) amensalism and (E, F) exploitative interactions. The abundances of the two species N1 and N2 at

equilibrium are shown as scatterplots and have been obtained by running the two-species Lotka-Volterra model, with K1 = 1.5; K2 = 1.1;

r1 = 1; r2 = 2 and αij drawn randomly from normal distributions with identical means and standard deviations (α12 ~ N(|0.7|, 0.2), α21 ~ N

(|0.7|, 0.2)). In the case of commensalism and amensalism: α12 ~ N(|0.7|, 0.2) and α21 = 0. The two species can co-exist under certain

combinations of αij (S1 Text). The grey polygon indicates the area where co-existence is possible. Note that the axes have different ranges

in each subplot. Because the two species have different carrying capacities, the two situations of exploitative interactions are different. i.e.,

in case of exploitative interaction type 1: species 1 is exploited by species 2 and in case of exploitative interaction type 2: species 2 is

exploited by species 1.

https://doi.org/10.1371/journal.pcbi.1010491.g002
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Network inference under various sources of process variability

Next, we investigated how correct network inference was affected by several variations to the

base case model (Fig 4 and S1 Table). In all cases considered, interactions were recovered with

precision exceeding recall. This means that the likelihood of missing an interaction (i.e., 1 –

recall) was higher than the likelihood of finding a false interaction (i.e., 1 – precision), illustrat-

ing the effect of false discovery rate control.

Partial correlations corresponded to non-zero entries in the interaction matrix only when

interindividual variation existed in the interaction parameters (αij) and/or carrying capacities

(Ki) (Fig 4A and 4B). These parameters directly influence microbial abundance patterns, as

interspecific interactions and carrying capacities determine the equilibrium of the gLV model.

The intrinsic growth rate only determines the speed at which species reach their equilibrium,

and this parameter is not informative for the equilibrium abundances. In fact, performance

under interindividual variation in growth rates was just as bad as the performance under pure

measurement noise with no variation in model parameters (Fig 4B).

Performance of correlation-based network inference was robust to measurement noise, if

measurement noise was small compared to interindividual variation in process parameters
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Fig 3. The percentage of significant partial correlations (with sign matching interaction in either direction), as recovered from the base case model. (A) For

different types of pairwise interactions and (B) for the different correlations.

https://doi.org/10.1371/journal.pcbi.1010491.g003
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Fig 4. Inference under various sources of process variability. For the different scenario’s we show the precision, recall and the F1-score. (A) The

base case model. (B) Host-specific variation in the carrying capacities and intrinsic growth rates. (C) Decreased and increased amount of

measurement noise (υ) and the effect of process noise (W) (S2 Fig). (D) Interaction strengths drawn from a uniform and unimodal distribution (S3

Fig). (E) The results for a 30 species system, a network based on a producer-consumer structure and a network with hub interactions (S4 Fig). (F) The

effect of network inference when specifying the intended sign in correlation analysis, as the sign of the strongest interaction in each pair of species, or
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(Fig 4C). When measurement noise became of the same magnitude as the variation in inter-

specific interactions, the F1-score deteriorated, and it was no longer possible to use correla-

tions as a proxy for interactions (Fig 4C). We also checked whether adding process noise

would affect the inference. We did observe a significant improvement of the inference from a

model with process noise relative to only measurement noise (Fig 4C and S1 Table).

Hereafter, we investigated the effect of drawing the interaction strengths from different

types of distributions (Figs 4D and S3). We did not observe a difference between the success

rate of network inference under a Gaussian mixture distribution or uniform distribution,

which were conditioned to have similar variances (S1 Table). However, successful inference

deteriorates with reduced interaction strength, as success rates were better under a Gaussian

mixture distribution or uniform distribution, as compared to a unimodal distribution around

zero (with smaller variance) (Fig 4D). The weaker interactions have a smaller effect on equilib-

rium abundances of other species, which makes them harder to detect with correlation

analysis.

Fig 4E shows the results for different network types. Increasing the number of species from

10 to 30 had a significant negative effect on the success of the inference (S1 Table), which was

mainly due to reduced precision. Conversely, F1-scores were improved as compared to the

base-case when assuming a producer-consumer based network (S4 Fig and S1 Table), on

account of an improved recall. The inference in a network with interaction hubs (as explained

in S4 Fig) was significantly worse than in a random network, which could be attributed to a

somewhat reduced recall.

Note that problems may arise with asymmetric relationships. When using the rule that pair-

wise correlations should match the strongest interaction between both species involved as the

intended sign, we found only a slight non-significant reduction in F1-score as compared to the

base case scenario (Fig 4F and S1 Table). Thus, pairwise interactions wherein the net effect on

population growth is positive or negative are mostly picked up as such in correlation analysis.

However, under the rule that mutual interactions must both be reflected in the sign of the cor-

relations, asymmetric interactions cannot be recovered as correlations are symmetric. We

indeed found much lower F1-scores when detection of asymmetric interactions was no longer

considered as a true positive result after inferring a significant correlation coefficient ρ (either

positive or negative) (Fig 4F).

Finally, we verified that network inference improved with increasing sample size. This

applied to models with random as well as structured interactions networks (Fig 4G). In the

base case, precision was somewhat reduced at increased sample size notwithstanding Benja-

mini-Hochberg control. However, this was compensated by substantially improved recall,

resulting in significantly increased F1-scores. Interestingly, precision stayed more or less con-

stant at increased sample size in producer-consumer and hub-species networks, whereas recall

improved but remained somewhat behind that of random networks.

Network inference under non-equilibrium conditions

Fig 5 shows that the equilibrium assumption is not necessary for successful correlation-based

network inference. In fact, our results even suggest that a perturbation can positively affect the

by setting the rule that the sign of both interactions must be matched by the inferred correlation coefficient (strict inference). (G) Three scenarios with

3000 hosts, for the base-case with random interaction networks as well as for the scenarios with structured (i.e. producer-consumer and hub-species)

networks. Network inference was assessed by the F1-score, which measures agreement between the interaction matrix in the gLV model and the

inferred partial correlation matrix on a scale from 0 (no agreement) to 1 (perfect agreement) (according to the rules of Table 1). The dashed line

indicates the median result from the base case model. The bars of the boxplots indicate the variability of the data outside the middle 50% (i.e., the

lower 25% of scores and the upper 25% of scores).

https://doi.org/10.1371/journal.pcbi.1010491.g004
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Fig 5. The effect of a perturbation on correlation-based network inference. (A) Example of a timeseries. Dashed lines represent sampling timepoints. Sampling

was performed during the perturbation (t1 = green, t2 = yellow, t3 = blue and t4 = grey) and at equilibrium (t5 = dark blue). Alternatively, sampling was performed

randomly between t = 100 and t = 1000 (random = pink). (B) Results (F1-scores) of network inference for sampling at various timepoints. After a perturbation all

species grow back to their original equilibrium. The bars of the boxplots indicate the variability outside the middle 50% (i.e., the lower 25% of scores and the

upper 25% of scores). Dashed lines represent median results of sampling during equilibrium.

https://doi.org/10.1371/journal.pcbi.1010491.g005
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performance of network inference. Variation in the growth rates becomes significantly infor-

mative outside the equilibrium (S2 Table). Also, variation in the interactions becomes even

more informative when the population is still growing towards the equilibrium. Network

inference is impaired only right after the start of a perturbation, when the population is still far

from a new equilibrium, unless the interindividual variation is in the carrying capacities (Fig

5B). We also assessed the success of correlation-based inference when the sampling occurred

randomly in time in relation to the perturbation. We found that the F1-score resembled an

average of F1-scores across various sampling timepoints.

Discussion

Correlation-based network inference has been used in many studies and for many different

types of human and environmental microbial communities [31]. The reliability of the results

with regards to true ecological dependencies has been criticized, to the extent that correlation

analysis has been suggested to almost never reveal anything substantive about the biotic rela-

tionships between bacteria [18]. However, the theoretical basis that enables ecological interac-

tions to be inferred from cross-sectional abundance data remains poorly understood. Most of

the previous research has focused on the reconstructed network properties or the difficulties

pertaining to metagenomics-based abundance patterns, e.g., the compositionality of the data

and the high proportion of zeros [18,31,34]. While these difficulties are pervasive and merit

further consideration, here, we question whether correlations are at all useful in distinguishing

different interaction types in microbial networks.

We demonstrated multiple pitfalls when using correlation-based methods for inferring

interactions. Some of those pitfalls are well known, as they relate to the inherent symmetry of

correlation-based metrics and the frequent asymmetry of ecological interactions [18]. As a

result, asymmetric interaction types (commensalism, amensalism and exploitative interac-

tions) cannot be recovered with indication of the direction of interaction, which agrees with

prior work done by Weiss et al. (2016) [21]. Symmetric interaction types, where species

involved affect each other’s growth in a qualitatively similar way (competition, mutualism) can

be recovered, although competitive interactions may also result in positive correlations, albeit

in very rare cases where species have identical competitive strength. Likewise, we found that

exploitative interactions generally induce positive correlations, especially in the likely circum-

stance where the exploitative benefit outweighs the harm to the exploited species. These find-

ings might explain why empirical correlation-based networks have a relative shortage of

negative correlations [20,34,35]. It remains to be investigated whether the high frequency of

positive edges in reconstructed networks is caused by methodologic limitations or whether the

interspecific interactions in host-associated microbiota are primarily mutualistic [36–39].

Still, as illustrated by our analysis, correlations in microbial abundance across indepen-

dently sampled hosts can be indicative for underlying ecological interactions under host-spe-

cific variation in microbial population dynamics. That is, if microbial groups of interest are

omnipresent and their interactions are appropriately captured by generalized Lotka-Volterra

(gLV) dynamics, the variation in population abundances should be driven by interindividual

variability in population-dynamic parameters. In the context of the gLV model, the informa-

tive parameters are primarily related to intrinsic growth rates, carrying capacities and strength

of between-species interactions of microbial groups considered. A change in species abun-

dances can be informative for the interactions among those species, as was also previously

shown by Stone and Roberts (1991) [40]. It remains to be determined how much variability

across individual hosts is driven by external forcing and by gradual differences in process-

related parameters relative to measurement noise. On one hand, it is well known that microbes
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adapt to host-specific environments, shaped by diet, lifestyle, hormonal regulation, immune

system, etcetera [26]. As an example, increased abundance of a particular bacterial species at

increased glucose intake levels might be reflective of increased resource availability (affecting

carrying capacity and growth rate) or superior competitive strength (affecting interactions

with other species) [6]. On the other hand, environmental drivers of bacterial growth can oper-

ate over different spatial and temporal scales and correlations in abundance can be reflective of

shared environmental niches that have no meaning in terms of direct biotic interactions [1].

Therefore, a correlation between the abundance of two species does not imply that those

species are interacting [41]. Many of the detected correlations may be caused by shared envi-

ronmental preferences rather than species interactions [42]. Such kind of environmental filter-

ing can mask putative between-species interactions as well as induce spurious correlations

[18]. Also, co-occurring species may appear to be dependent on each other, while their co-

occurrence can be explained by them actually sharing a similar dependency on a third party–

so that co-occurrence, and hence apparent dependencies drawn from that, may also be

explained by higher-order interactions [43]. Berry and Widder (2014) claimed that network

interpretation is only possible if samples are derived from similar environments [13]. Our

analysis suggests that network inference partially depends on a degree of heterogeneity in pop-

ulation-dynamic parameters. If differences in bacterial abundances between hosts are mainly

due to measurement noise, their correlations are not informative of underlying interactions.

In our simulations, with relative standard deviation in process-related parameters between

hosts of about 25%, inference performed well as long as measurement noise had coefficients of

variation well below 10% of mean bacterial abundances. Strikingly, the inference of interac-

tions was even improved when process noise was added. More research is needed to delineate

the extent to which correlation analyses can be confounded by latent environmental drivers of

microbial population dynamics, and how strongly one should condition on environmental or

host homogeneity.

Our results have been obtained by using the gLV model. While the gLV model has been

very popular in microbiome research because of its manageability, it has several drawbacks. In

ecology, the gLV model has been criticized for the absence of trophic levels within the model

[44]. This is in contrast to most classical ecological (e.g. plant-herbivore or predator-prey) sys-

tems, where direct consumption and predation offer more opportunity for top-down regula-

tion, possibly obscuring interactions in co-occurrence patterns [45]. But trophic levels are

probably not so relevant in the human microbiome as bacteria mainly interact with each other

through excreted metabolites [2]. Furthermore, the interactions between bacteria might be

much more complex than the additive and pairwise interactions that the gLV model assumes.

Momeni et al (2017) claimed that pairwise modeling will often fail to predict microbial dynam-

ics, as many interactions occur through chemical production pathways (such as cross-feeding

and nutrient competition) involving more than two species [46]. Correlation analysis fails to

capture the resulting higher-order interactions, for which more advanced techniques, e.g.

graphical models [47], might be more appropriate. It is unclear, how well directed links pre-

dicted by these methods recover true ecological interaction types. Often, they require more

prior knowledge of the network of microbial interactions, time series or more fine-grained

data on the pathways of interaction. Moreover, microbial networks can be bi-directed and

cyclic [20], which poses problems for inference of directionality and type of interactions from

mere cross-sectional data. More classical methods of separating direct from indirect interac-

tions, e.g. path analysis [48], rely on testing of specific alternative causal hypothesis, which can

only be considered as a next step in network inference. To shed more light on causal pathways,

there is a need in microbial ecology for models that can describe the full set of metabolite con-

centrations, metabolic fluxes and species abundances within a community [49]. Based on
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metabolic modelling, Freilich et al. (2011) concluded that cooperative interactions are rela-

tively rare among free-living bacteria and, if present, are often unidirectional. Machado et al.

(2021) suggested that mutualistic interactions are much more common among host-associated

bacteria, that often form highly cooperative communities and have smaller genomes and fewer

metabolic genes compared to other species. Cooperative communities are resilient to nutrient

change and adaptable to a wide variety of different environments, including the human body

[20,43]. Metabolic modeling is still challenging and heavily based on a priori assumptions, but

is also a rapidly developing field that may prove useful for computational validation of correla-

tion-based interaction networks [50].

In addition, the gLV model disregards important biological processes, such as adaptation

(for instance, switching of mutualistic partners due to for example horizonal gene transfer

[51]), that may affect the topology of ecological networks, rather than the strength of ecological

interactions in a network. Furthermore, the gLV model displays dynamics that are character-

ized by strong equilibrium attractors. Many studies have shown the occurrence of complex

dynamics as alternative stable states [52], oscillations and chaos in experimental [53–55], but

also in field studies [56], with ecological communities. Whether this also applies to the bacte-

rial communities inhabiting the human body is still unknown, due to the paucity of long-term

human microbiome studies. However, a study among a thousand western individuals has sug-

gested the existence of tipping elements in the intestinal microbiome [57] indicating the possi-

ble presence of alternative attractors in the dynamics of gut microbiome communities [58,59].

As a general critique, the use of simulated data based on gLV dynamics raises the question

to what extent the necessary model assumptions (and therefore the results) are representative

for the human microbiome. Of course, real data are much more complex than simulated data.

To reiterate, our base-case parametrization does not reflect any particular real-world system,

and findings should be appreciated from a qualitative rather than quantitative viewpoint. Even

so, while models can only serve as very crude approximations, the main features of model-

based analysis might still hold, as demonstrated by Freilich et al. (2018) [42]. They compared a

well-resolved, empirically defined interaction network of species in the rocky intertidal zone

in Central Chili to a reconstructed network based on the co-occurrence of those species. There

are similarities in their findings to our results. For example, they found that weak interactions

are missed more often than interactions above a certain threshold. They also concluded that

the ability to correctly detect a true link varies across different interaction types, and that posi-

tive interactions are better detected than negative interactions. Interestingly, in line with our

results, they also found that negative interactions are misclassified as positive interactions

more often than vice versa.

In our simulation studies, the chance of finding false interactions was well under control by

using partial correlations with adjustment for multiple testing. It should be noted that applica-

tion of correlation-based network reconstruction to real-world high-throughput microbial

abundance data typically requires additional constraints for control of false discovery rates.

Real-world microbiome data have some specific challenges which may negatively affect the

success of correlation-based network inference. The compositionality of the data, the diversity

of species (with many rare species) and the density of interactions make these networks harder

to predict and apparent correlations more likely to appear [14,19]. Various correlation-based

methods, often free of charge and stored in pre-programmed packages are available to handle

these challenges. However, Weiss et al. (2016) showed that with the same data, there is much

disagreement between the inferred networks generated by different tools [21]. Thus, even if

correlations are a useful proxy of microbial interactions, performance of network inference in

high-dimensional settings will also strongly depend on the specific network modelling

approach taken.
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To summarize, correlation-based methods are particularly insensitive for the detection of

asymmetric interactions (such as exploitative interactions, amensalism or commensalism), as

direction of interaction cannot be recovered from co-occurrence data. Still, they may perform

well when applied to networks that are dominated by mutualistic and competitive interactions,

as in producer-consumer systems. Applicability of correlation-based network inference to

readily available microbiome data thus depends on the type of interactions that govern micro-

biome dynamics, which likely depends on each application. To conclude, our study suggests

that hypotheses about microbial interactions, generated with correlation-based methods,

should be questioned with domain-specific knowledge. We highlight again the careful inter-

pretation and validation that is required.

Supporting information

S1 Text. Co-existence in a two-species Lotka-Volterra model with self-limitation. Table A.

Conditions for stable co-existence in the two-species Lotka-Volterra model. Fig A. Zero-

growth isoclines (“null-clines”) in the two-species Lotka-Volterra model.

(PDF)

S1 Fig. Cartoon illustrating the different interaction mechanisms.

(PDF)

S2 Fig. The effect of process noise (W) on the within host population dynamics.

(PDF)

S3 Fig. Distributions of interaction strengths in three different scenarios.

(PDF)

S4 Fig. Network structures used in the different case studies.

(PDF)

S5 Fig. The effect of αij on the correlations between the abundances of two bacterial species

for different interactions mechanisms.

(PDF)

S1 Table. Mann-Whitney U test results for the F1-scores of the base case model and for the

F1-scores of the model with different sources of process variability.

(PDF)

S2 Table. Mann-Whitney U test results for the F1-scores of the samples taken during equi-

librium (t5 in Fig 5) and for the F1-scores of the samples taken outside equilibrium.

(PDF)

Author Contributions

Conceptualization: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten Scheffer,

Johannes A. Bogaards.

Data curation: Susanne Pinto, Elisa Benincà, Johannes A. Bogaards.

Formal analysis: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Johannes A. Bogaards.

Funding acquisition: Elisa Benincà, Johannes A. Bogaards.

Investigation: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten Scheffer, Johannes A.

Bogaards.

PLOS COMPUTATIONAL BIOLOGY Correlations carry limited information about network interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010491 September 9, 2022 18 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010491.s008
https://doi.org/10.1371/journal.pcbi.1010491


Methodology: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten Scheffer, Johannes A.

Bogaards.

Project administration: Susanne Pinto, Elisa Benincà, Johannes A. Bogaards.

Resources: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten Scheffer, Johannes A.

Bogaards.

Software: Susanne Pinto, Elisa Benincà, Johannes A. Bogaards.

Supervision: Elisa Benincà, Johannes A. Bogaards.

Validation: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Johannes A. Bogaards.

Visualization: Susanne Pinto, Elisa Benincà, Johannes A. Bogaards.

Writing – original draft: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten Scheffer,

Johannes A. Bogaards.

Writing – review & editing: Susanne Pinto, Elisa Benincà, Egbert H. van Nes, Marten

Scheffer, Johannes A. Bogaards.

References
1. Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;

486: 207–214. https://doi.org/10.1038/nature11234 PMID: 22699609

2. Faust K, Raes J. Microbial interactions: from networks to models. Nature Reviews Microbiology volume.

2012; 10: 538–550. https://doi.org/10.1038/nrmicro2832 PMID: 22796884

3. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level Analysis of Gut

Microbiota Variation. Science. 2016; 352: 560–564.
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