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Abstract

Cardiotoxicity, or the development of unwarranted cardiovascular side-effects of oncologic 

therapies, can involve all aspects of cardiovascular disease. The development of cardiac fibrosis 

is a dreaded complication that leads to cardiac mechanical dysfunction, tachyarrhythmias, and an 

increase in cardiovascular mortality. This review details established and putative mechanisms 

leading to fibroblast activation, myofibroblast transdifferentiation, and the development of 

replacement or interstitial cardiac fibrosis as a consequence of cancer treatments. Clinical and 

imaging strategies for cardiac fibrosis assessment as well as emerging antifibrotic therapeutics will 

also be addressed.

Introduction

The adult mammalian heart has a negligeable ability to regenerate – estimated at no more 

than ~ 1% replacement of cardiomyocytes per year [1–4] – and thus rather heals through 

cardiac repair mechanisms leading to scar tissue formation. In adult hearts, fibroblasts 

account for ~25% of the cell population [5], provide support to cardiomyocytes, and 

contribute to multiple signaling processes [6]. The majority of the cardiac extracellular 

matrix (ECM) is constituted by type I and III collagen [7,8]. Cardiac fibrosis requires 

the activation of cardiac fibroblasts – abundant in the interstitial and perivascular space 

– and transdifferentiation to myofibroblasts, resulting in the excess deposition of ECM 

proteins, which may play a reparative role but also negatively impact cardiac function [9]. 
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In addition to activation of the renin-angiotensin-aldosterone system [10,11], β-adrenergic 

stimulation [12,13], and the Wnt pathway [14,15], key mediators of fibrogenic activation 

include growth factors, e.g. transforming growth factor (TGF)-β and platelet-derived growth 

factors (PDGF), and cytokines, e.g. tumor necrosis factor (TNF)-α, and interleukin (IL)-1, 

-4, -6, and -10 [16].

Cardiac fibrosis may occur as a consequence of epicardial and microvascular ischemic 

heart disease, inherited cardiomyopathies, pressure overload such as aortic valve stenosis 

or systemic hypertension, and certain oncologic treatments, amongst others. There are 

three main types of cardiac fibrosis based on histopathology, namely replacement fibrosis, 

interstitial fibrosis, and perivascular fibrosis [9]. Whether interstitial and perivascular 

fibrosis have distinct pathobiological mechanisms remains controversial and is addressed 

elsewhere [9]. Others also distinguish infiltrative interstitial fibrosis as observed in Fabry 

disease with diffuse cellular glycolipid accumulation [17].

Replacement or reparative cardiac fibrosis occurs as a result of sudden cardiomyocyte 

necrosis as observed following acute myocardial infarction and also reported in the setting 

of radiation therapy. Given the negligeable ability of cardiomyocytes to regenerate, the 

collagen-rich scar in this setting serves a critical role, i.e. maintaining the structural 

integrity of the heart, albeit at the price of a deterioration in left ventricular systolic 

function. However, in other pathologies such as systemic hypertension, diabetes mellitus, 

and obesity, interstitial cardiac fibrosis occurs in the absence of significant cardiomyocyte 

death, likely as a result of prolonged activation of fibrogenic stimuli, and predominantly 

involves the interstitium and perivascular space. Interstitial fibrosis can develop insidiously 

[9], and initially manifests as heart failure with preserved ejection fraction (HFpEF) due to 

increased interstitial stiffness leading to a reduction in ventricular compliance and diastolic 

filling. Finally, perivascular fibrosis is most prominent in hypertensive heart disease, and is 

associated with impaired microvascular function leading to perturbation of myocardial blood 

flow [18].

The end-result of replacement, interstitial, and perivascular fibrosis is often cardiac 

dysfunction, either diastolic, systolic, or their combination, leading to heart failure with 

reduced and/or preserved ejection fraction, and an increased propensity for both atrial and 

ventricular tachyarrhythmias most notably atrial fibrillation [19], ventricular tachycardia 

[20], and sudden cardiac death [21]. Indeed, excess ECM proteins, most prominently 

collagen, act as ‘scars’ from a functional standpoint, and are centrally implicated in the 

occurrence of focal electrical re-entry circuits, which may deteriorate to potentially life-

threatening ventricular tachy-arrhythmias [22], and further contribute to the degradation of 

ventricular function.

Expansion of the ECM leading to cardiac fibrosis is associated with increased mortality 

[23]. Cardiac remodeling, defined as a change in geometry with ensuing worsening function 

following injury, occurs as a result of crosstalk between cardiac cells and the ECM: on the 

one hand, cells secrete ECM molecules with regulatory properties, on the other, changes in 

the ECM lead to cellular responses [9,24].
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This review details known and putative associations between oncologic therapies and the 

development of cardiomyocyte injury, fibroblast activation, and subsequent deposition of 

excess ECM proteins leading to cardiac fibrosis.

Anthracyclines

Severe anthracycline-induced cardiotoxicity resulting in depressed systolic function and 

heart failure can afflict up to 25% of patients [25,26]. Ample evidence supports that 

anthracycline-induced cardiac injury is multi-factorial and -genic, with no single mechanism 

fully explaining all aspects of the injury process. Prior studies indicate anthracycline-

induced cardiotoxicity results from a combination of deoxyribonucleic acid (DNA) damage, 

oxidative stress, and metabolic perturbations, leading to the activation of all forms of cell 

death [27,28].

Anthracycline chemotherapy intercalates in the DNA and induces single- and double-

strand DNA breaks in target cells in a topoisomerase (Top)-2-dependent manner 

[29]. By producing temporary single- or double-stranded DNA breaks, Top regulates 

topological changes during DNA replication, transcription, or recombination [30]. Top-2α 
is overexpressed in tumors and is the molecular basis of anthracycline anticancer activity 

[31,32]. Adult cardiomyocytes express Top-2β but not Top-2α [31], and Top-2β is also 

an anthracycline target, forming a Top-2β–anthracycline–DNA ternary cleavage complex 

that induces DNA strand breaks and ensuing cell death [33,34]. Furthermore, anthracycline/

Top-2β bind to selective promoters, significantly affecting the cardiomyocyte transcriptome 

[34,35]. Ensuingly, key antioxidative enzymes are reduced, providing a mechanism linking 

anthracycline-induced reactive oxygen species (ROS) production (O2•− superoxide anion, 

H2O2 hydrogen peroxide, and OH• hydroxyl radical) [36,37] in a Top-2β-dependent 

manner. An additional major pathway of anthracycline-induced cardiotoxicity is through 

mitochondrial complex I NADH dehydrogenase mediated redox cycling with the quinone 

moiety of anthracyclines, leading to the generation of excess reactive oxygen species 

(ROS) [36,38] with ensuing DNA damage [36,38–40]. Furthermore, anthracyclines can 

interact directly with iron to form complexes, catalyzing a Fenton reaction, i.e. the Fe2+ 

mediated conversion of H2O2 to OH•, supported by experimental studies in which excess 

iron accumulation worsens anthracycline-induced cardiotoxicity [41,42].

Anthracyclines such as doxorubicin are known to lead to cardiac fibrosis (Fig. 1) 

[40,43,44]. In particular, anthracycline-induced cardiomyocyte injury and death leads to 

an inflammatory response that induces fibroblast activation [45]. Indeed, anthracyclines 

damage mitochondria, causing the release of mitochondrial DNA, peptides, and lipids, that 

become damage-associated molecular patterns (DAMPs) resulting in innate immune system 

activation [46]. Given the abundance of mitochondria required to maintain cardiac energy 

consumption and function, these mitochondrial DAMPs can lead to a significant response 

amplification, mediated by pattern recognition receptors, primarily Toll-like receptor (TLR) 

-9 [47]. In turn, this activates the pro-inflammatory transcription factor nuclear factor (NF)-

κB, induces the expression of inflammatory cytokines such as TNF-α, and the recruitment 

of inflammatory cells [48,49]. The ensuing chronic inflammation triggers TGF-β1 activation 

which promotes the conversion of fibroblasts to myofibroblasts with ensuing collagen 
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synthesis and deposition [9,50,51]. Both TGF-β1 and its signal transducer SMAD (similar to 

mothers against decapentaplegic) -3 are consistently induced by anthracyclines in the heart, 

and during all phases of the injury process [52].

In addition to cardiomyocyte injury and death, anthracyclines also directly promote the 

release of pro-fibrotic factors from the myocardium. Experimental evidence suggests that 

low-dose doxorubicin exposure can lead to fibroblast activation and perivascular fibrosis 

in the absence of cardiomyocyte injury [53]. Indeed, anthracyclines induce TGF-β release 

from cardiac endothelial cells [54] and fibroblasts [55]. Furthermore, PDGF-A and -B 

are induced 4-5-fold in the ventricles of doxorubicin treated mice [56]. Doxorubicin 

also increases plasma angiotensin-II levels 3-fold [57], mediated in part by enhanced 

renin [58] and angiotensin-converting enzyme [59,60] activities. Importantly, anthracyclines 

promote the trans-differentiation of cardiac fibroblasts to myofibroblasts [55]. Further 

research established the expression of additional fibroblast activation markers in response 

to anthracyclines. Indeed, daunorubicin treatment is associated with increased cardiac 

fibroblast expression of vimentin [61], a protein previously implicated in fibroblast 

proliferation and differentiation [62]. Tenascin-C, another marker of fibroblast activation, is 

induced in doxorubicin-treated pigs [63]. Similarly, connective tissue growth factor (CTGF) 

is a matricellular protein secreted by activated fibroblasts to mediate TGF-β activity during 

the fibrotic response to anthracycline therapy (64), and further has an autocrine function by 

amplifying fibroblast activation, thus creating a positive feedback loop [65].

Following fibroblast/myofibroblast activation, there is increased deposition of collagen type 

I and III in the ECM, leading to cardiac interstitial fibrosis [52]. In addition, doxorubicin 

also results in fibronectin deposition in the ECM [66]. Importantly, tissue inhibitor 

of metalloproteinase (TIMP) -1 that hinders matrix metalloproteinase (MMP) activity, 

is induced by anthracycline treatment, thus impeding ECM degradation and indirectly 

promoting collagen accumulation [53]. Similarly, the matricellular protein thrombospondin 

(TSP) -2 – released mainly by fibroblasts – is induced by doxorubicin, and also inhibits 

MMP proteolytic activity [67]. The net effect of these molecular actions caused by 

anthracyclines is ECM accumulation, leading to interstitial fibrosis. It is important to note 

that the cardiac injury process induced by anthracyclines and ensuing interstitial fibrosis is 

spatially heterogeneous (Fig. 1), with unaffected regions of the myocardium compensating 

through augmentation of function, thus ‘masking’ early cardiotoxicity from a functional 

standpoint [68].

Trastuzumab

Trastuzumab cardiotoxicity is mediated by inhibition of cardiomyocyte human epidermal 

growth factor receptor-2 (also known as ErbB2) which interferes with mitochondrial 

integrity through Bcl-x proteins, leading to adenosine triphosphate (ATP) depletion, 

interference with the repair and survival of cardiomyocytes, and mechanical failure [69,70]. 

In mice, treatment with an anti-ErbB2 antibody further leads to ventricular myofibril 

disarray [71]. Additional animal studies demonstrate trastuzumab-mediated activation of 

cardiomyocyte apoptosis [72] which – similar to anthracyclines – leads to cardiac interstitial 
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fibrosis [73,74] that can be characterized by cardiac magnetic resonance imaging (MRI) 

[75,76].

VEGF Signaling Inhibitors

Angiogenesis inhibitors, or vascular endothelial growth factor (VEGF) signaling pathway 

inhibitors (VSPi), block VEGF signaling through various mechanisms, i.e. (i) anti-VEGF 

antibodies (e.g., bevacizumab), (ii) anti-VEGF receptor antibodies (e.g., ramucirumab), 

and (iii) VEGFR intracellular domain tyrosine kinase inhibitors (TKIs, e.g., sorafenib, 

sunitinib) [77]. VSPi are implicated in the onset of hypertension in up to 80% of 

patients [78,79]. Dissecting the mechanisms thereof is of paramount importance given 

treatment of hypertension associated with VSPi is challenging as demonstrated by its 

abrupt onset and requirement for multiple anti-hypertensive medications [78]. Whereas 

the exact pathobiology leading to severe hypertension remains to be determined, putative 

pathways include endothelial dysfunction with decreased nitric oxide production [80,81], 

and glomerular injury with podocyte apoptosis [82,83]. Refractory hypertension is a well-

known risk factor for the development of cardiac interstitial fibrosis [9] and has been 

reported in certain animal studies of VSPi-induced cardiotoxicity [84,85]. In addition, VSPi 

have been associated with accelerated atherosclerosis [86] as well as coronary microvascular 

dysfunction (sunitinib) [87], however the contributions thereof to the development of 

ischemic heart disease and subsequent cardiac fibrosis have not been investigated to date. 

Importantly, cardiotoxicity by VSPi is reversible in up to 80% of patients upon withdrawal 

[88].

Bruton’s Tyrosine Kinase Inhibitors

Bruton’s tyrosine kinase inhibitors (BTKi) are increasingly used in B lymphocyte 

malignancies [89]. A first-generation BTKi, ibrutinib, has been implicated in cardiac 

fibrosis, a consequence of its lack of selectivity leading to frequent off-target actions [90]. 

Indeed, mice treated with ibrutinib develop left atrial fibrosis with increased deposition 

of fibronectin, collagen-I and -III, left atrial enlargement, and atrial fibrillation [90,91]. 

Using chemo-proteomic profiling and genetically modified mice, the cardiotoxic effect of 

ibrutinib was demonstrated to be due to the inhibition of CSK (C-terminal Src kinase), itself 

a non-receptor tyrosine kinase that functions as a master negative regulator of Src family 

tyrosine kinases (SFKs) [92]. Second-generation BTKi (e.g. acalabrutinib, zanubrutinib) are 

more selective, leading to fewer cardiovascular off-target effects. A recent meta-analysis 

indicated an 87% decrease in symptomatic or life-threatening atrial fibrillation, and a 38% 

decrease in severe hypertension (defined as ≥ 160/110 mmHg or malignant hypertension) 

with second- vs. first-generation BTKi [93]. To date, second-generation BTKi have not been 

implicated in cardiac fibrosis [94].

Immune Checkpoint Inhibitors

Cardiac complications of immune checkpoint inhibitors (ICI) that act on different co-

stimulatory molecules expressed by T lymphocytes and antigen-presenting cells are rare 

– with the caveat of likely being under-recognized [95–97] – but potentially fatal [98]. 
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The pathobiology of cardiac fibrosis in the setting of ICI treatment has not been explored 

[99,100]. Putative mechanisms leading to fibroblast activation, transdifferentiation to 

myofibroblasts, and replacement fibrosis – not demonstrated to date in experimental models 

– may involve ICI-induced (i) direct cytotoxic T-cell mediated cardiomyocyte death [101], 

(ii) chronic inflammation with ensuing oxidative stress [102], and (iii) accelerated coronary 

atherosclerosis [103] leading to ischemic heart disease and cardiomyocyte death. Whether 

ICI also has a direct effect on fibroblasts should also be scrutinized. Cardiac fibrosis is 

overall a very rare complication in ICI [98,104].

Radiation Therapy

Radiation therapy is an integral part of the armamentarium against multiple chest cancers, 

including lymphomas, lung cancer, and breast cancer [105]. However, radiotherapy may lead 

to a myriad of cardiovascular complications, including accelerated coronary artery disease, 

conduction system abnormalities, valvular disease, pericardial disease, and cardiac fibrosis. 

Whereas the underlying pathobiological mechanisms leading to cardiac fibrosis following 

radiotherapy are not entirely understood, certain features of the disease process have been 

explored (Fig. 2).

Endothelial injury of the dense myocardial capillary network and ensuing microvascular 

dysfunction plays a central role. Following radiation, there is a rapid rise in endothelial ROS 

production, mediated in part by the up-regulation of the NADPH oxidases NOX-2 and -4 

[106], with ensuing NO scavenging and peroxynitrite (ONOO−) formation, implicated in 

protein nitrosylation [107]. This endothelial dysfunction leads to the release of eicosanoids 

such as leukotrienes and prostaglandins that increase capillary permeability and leukocyte 

extravasation [108]. In addition, irradiated endothelial cells express adhesion molecules such 

as vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule-1 

(ICAM-1), promoting the recruitment of neutrophils and monocytes [109,110]. These 

leukocytes secrete inflammatory mediators, including TNF-α, IL-1, -6, and -8, and signal 

to neighboring cardiomyocytes and fibroblasts, rapidly promoting the release of pro-fibrotic 

cytokines such as TGF-β, PDGF, insulin-like growth factor (IGF), and basic fibroblast 

growth factor (FGF), as well as myofibroblast transdifferentiation [105,111,112].

Furthermore, endothelial injury results in exposure of the sub-endothelial matrix, permitting 

binding of von Willebrand factor via its collagen interaction sites, followed by a 

conformational change that enables platelet glycoprotein binding and ensuing thrombus 

formation and vascular occlusion [113,114]. This decrease in endothelial and capillary 

density results in microvascular disease, ischemia, cardiomyocyte death, and cardiac fibrosis 

[105]. In addition, chronic hypoxia leads to the expression of hypoxia-inducible factor (HIF) 

-1α, implicated in the stimulation of pro-fibrotic mediators such as TGF-β, endothelin-1, 

and CTGF, thus further contributing to replacement cardiac fibrosis [115,116].

Cardiomyocytes are relatively resistant to radiation injury due to their very low rate 

of proliferation [1–4], however direct radiation-induced cardiomyocyte injury has been 

reported. First, radiation induces ROS [117] which interact with the transcription factor 

NF-κB, resulting in its nuclear translocation and proinflammatory cytokine production, 
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leading to chronic inflammation [118,119]. Second, radiation induces the cardiomyocyte 

endoplasmic reticulum to release excess calcium ions, leading to mitochondrial swelling, 

mitochondrial membrane permeabilization, and oxidative phosphorylation uncoupling 

[120,121]. Third, experimental studies have described an increase in Bax levels following 

radiation [120,122]. Bax then translocates from the cytoplasm to the mitochondrial 

membrane where it opens the mitochondrial membrane transition pore (mPTP), leading 

to membrane depolarization and rupture, release of cytochrome c into the cytoplasm, and 

cardiomyocyte death [123]. Although less well characterized, these direct radiation-induced 

cardiomyocyte death mechanisms also implicate replacement fibrosis, as above [119].

Strategies for Cardiac Fibrosis Assessment

Animal studies present the distinct advantage of direct tissue collection and histological 

staining at predefined timepoints [124], in addition to targeted genetic manipulation and 

controlled environmental factors. Following histology staining, for example with picrosirius 

red, and digital scanning, the fraction of cardiac fibrosis may be quantified using pixel-based 

segmentation and clustering [125].

Whereas endomyocardial biopsies in humans are the gold standard for visualization of 

fibrosis, this approach is limited by its invasive nature [126]. Circulating biomarkers [127] 

including galectin-3, secreted by inflammatory cells and fibroblasts, and soluble ST-2 

(suppression of tumorigenicity-2), a member of the IL-1 receptor family, correlate with 

the degree of cardiac fibrosis [128–130]. The carboxy-terminal pro-peptide of pro-collagen 

type I and the amino-terminal pro-peptide of pro-collagen type III are additional circulating 

biomarkers that correlate with the collagen volume fraction in cardiac fibrosis [131]. 

However, this strategy is not used in routine clinical practice, in part due to a lack of 

validation.

Echocardiography may be used for the rapid assessment of cardiac structure, dimensions, 

function, and remodeling. 2-D [132] or 3-D speckle [133] tracking echocardiography 

with strain measurement further permits the assessment of segmental ventricular function, 

reported to correlate with cardiac fibrosis [134]. Whereas echocardiography does not have 

the spatial resolution to directly image interstitial fibrosis, ensuing changes in diastolic 

function can be readily measured and help unmask the disease, albeit with limited specificity 

[135].

For in vivo characterization, cardiac MRI is the reference modality for detection of 

cardiac fibrosis in both human and animal studies [136]. Two cardiac magnetic resonance 

imaging (MRI) methods are routinely used for fibrosis detection; (i) late gadolinium 

enhancement, and (ii) T1 mapping, alone or in combination with an extracellular contrast 

agent to determine the extracellular volume fraction calculated by pre- and post-contrast T1 

measurements [137–139]. Whereas late gadolinium enhancement is ideally suited for the 

assessment of replacement (or reparative) cardiac fibrosis, T1 mapping is favored for the 

detection of diffuse interstitial fibrosis, for example in the setting of anthracycline-induced 

cardiotoxicity, and quantification of the ECM expansion by measurement of the extracellular 

volume fraction (Fig.1) [140–142]. Using serial cardiac MRI, Farhad et al. demonstrated in a 
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chronic doxorubicin mouse injury model that 10 weeks after the first dose of chemotherapy, 

left ventricular ejection fraction (LVEF) deteriorated and cardiac fibrosis developed, as 

measured by T1 mapping and validated histologically using Masson’s trichrome staining 

[143]. Importantly, cardiac fibrosis also predicted late mortality in mice, whereas the 

deterioration in LVEF did not [143]. Similar experiments and findings in mice [144], rats 

[145,146], rabbits [125,147], and pigs [148] have been reported by other groups.

These experimental observations indicating a strong correlation between cardiac fibrosis and 

left ventricular dysfunction [23,141,149] have translational implications. Whereas on the 

one hand abnormal T1 mapping and extracellular volume expansion in anthracycline treated 

patients may warrant closer follow-up and/or changes in chemotherapy, on the other hand 

normal T1 mapping may allow for longer surveillance intervals [142].

Nuclear imaging permits molecular targeting of cellular and molecular contributors to 

cardiac fibrosis. Mostly studied in the setting of replacement cardiac fibrosis following 

myocardial infarction, nuclear imaging molecular strategies should be explored further 

in experimental models of oncologic treatments. Such radiotracers include 99mTc-labeled 

cyanine-5.5 RGD imaging peptide (99mTc-CRIP) [150,151] and 18F-labeled RGD [152,153]. 

The RGD peptide (containing the arginine-glycine-aspartate motif) binds to integrins such 

as αvβ3, expressed on the cell membrane of myofibroblasts [154]. Caution must be exerted 

however given these integrins are also expressed by endothelial cells, particularly during 

neo-angiogenesis [155], decreasing their specificity for cardiac fibrosis assessment.

Recently, fibroblast activation protein (FAP) has gained significant traction in nuclear 

imaging, with expanding applications in oncologic diseases. 68Ga-fibroblast activation 

protein inhibitor (FAPI) positron emission tomography (PET) was initially developed to 

detect FAP-expressing, cancer-associated fibroblasts. Retrospective studies have indicated 

potential applicability in cardiac diseases, with myocardial FAPI signals correlating with 

underlying metabolic disease [156], coronary artery disease, and LVEF [157] in patients 

with cancer. Interestingly, a small prospective study observed an association between 

right ventricular 68Ga-FAPI signals and the severity of right ventricular dysfunction 

and pulmonary hypertension, suggesting detection of right ventricular fibrosis [158]. 

Furthermore, 68Ga-FAPI predicts the degradation of ventricular dysfunction following acute 

myocardial infarction, and may provide a novel biomarker of left ventricular remodeling 

[159]. In this setting, experimental and clinical studies evaluating 68Ga-FAPI PET in 

oncologic therapies implicated in the development of cardiac fibrosis warrant evaluation.

Limitations

The scientific literature retraced here is heterogeneous in nature, with limited studies 

conducted using pertinent genetically modified models. Thus, definitive results are currently 

lacking in this field. This review may provide a framework for further evaluation of the 

molecular mechanisms culminating in fibroblast activation and cardiac fibrosis in the context 

of established and emerging oncologic therapies. As such, additional work is needed in 

fibroblast-specific gene editing models to determine whether well-established pro-fibrotic 

signaling pathways, e.g. the mitogen-activated protein kinase p38α [160] or the TGF-β 

Packard Page 8

Curr Opin Physiol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



downstream mediator SMAD-3 [161] can protect from oncologic treatment mediated cardiac 

fibrosis and dysfunction.

Conclusions and Future Directions

Improved long-term cancer survival has led to an increase in the incidence of adverse 

cardiac side-effects of cancer treatments [25,26]. The exponential growth of cancer therapies 

warrants (i) monitoring of adverse cardiovascular side-effects such as cardiac fibrosis, 

(ii) developing pertinent experimental strategies to dissect underlying pathobiological 

mechanisms leading to cardiac fibrosis, and (iii) exploring novel therapeutic strategies 

targeting cardiac fibrosis [162].

Once established, the direct targeting of cardiac fibrosis has proven difficult in the 

clinical setting [163–165]. Beyond previously explored antifibrotic therapeutics, a promising 

new development involves targeting of the epigenetic machinery, particularly inhibition 

of histone acetyltransferases (HATs) and histone deacetylases (HDACs) [162]. This 

breakthrough advance centered on chromatin-level modification permits gene expression 

changes – independent of gene editing – downstream of cellular activation pathways and 

upstream of transcriptional changes leading to ECM protein production and deposition. HAT 

p300 is targeted by curcumin [166,167], leading to decreased cardiac fibrosis, however 

with the caveat of a lack of curcumin target specificity [162]. Recently, a novel compound 

A-485 was identified with high p300 specificity [168], setting the stage for its evaluation in 

cardiac fibrosis models. Furthermore, HDAC inhibition with compound ITF2357/givinostat 

mitigates cardiac fibrosis in experimental models [169,170].

Another shift in therapeutic strategy involves engineered CD8+ T-cells [171,172]. By 

directing T-cell specificity using a chimeric antigen receptor (CAR-T cells) towards cardiac 

fibroblasts expressing FAP – a cell surface glycoprotein minimally expressed in normal heart 

tissue but significantly induced in activated fibroblasts – immunotherapy may successfully 

target pathological cardiac fibrosis [171]. These results bear great promise given CAR-T 

cells are already approved by the FDA in patients with leukemia or lymphoma [173], 

thus setting the stage for clinical trial evaluation in patients with cardiac fibrosis. Given 

the dynamic nature of FAP expression by fibroblasts, i.e. during ‘active’ ECM deposition, 

patient selection will be critical to increase the likelihood of trial success [174]. Specifically, 

patients undergoing active cancer therapy, particularly those with limited therapeutic options 

in whom the chemotherapeutic and/or radiotherapeutic strategies necessitate continuation 

despite the development of off-target cardiac fibrosis, as opposed to patients with fully 

established excess cardiac ECM deposition where cardiac fibroblasts have returned to a 

more quiescent state, may stand to benefit the most from a CAR-T cell strategy. This will 

almost certainly require an imaging-based patient selection process, either by cardiac MRI 

or FAPI PET imaging, for the early and accurate identification of cardiac fibrosis prior to 

randomization to CAR-T cell immunotherapy.
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Figure 1. Progression of anthracycline cardiotoxicity from cardiomyocyte injury and death to 
fibroblast activation and interstitial fibrosis.
Anthracycline chemotherapy affects the heart in a ‘patchy’ manner. (A) Segment of normal 

left ventricular myocardium prior to chemotherapy. (B) In the setting of anthracycline 

treatment, cardiomyocyte injury develops with ensuing inflammatory infiltration, primarily 

macrophages. (C) With progression of anthracycline toxicity, cardiomyocyte death occurs, 

leading to activation of fibroblasts and myofibroblasts that produce excess extracellular 

matrix proteins, primarily collagen. (D) In the chronic phase of anthracycline cardiotoxicity, 

scattered dead cardiomyocytes have been replaced with collagen leading to interstitial 

cardiac fibrosis, setting the stage for ensuing cardiac mechanical complications.
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ECM: extracellular matrix. PDGF: platelet-derived growth factor. TGF-β: transforming 

growth factor-β. TNF-α: tumor necrosis factor-α. Wnt: wingless and int-1.
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Figure 2. Radiation therapy-induced endothelial and cardiomyocyte injury leading to fibroblast 
activation and cardiac fibrosis.
Mechanisms leading to cardiac fibrosis following radiation therapy. (A) Following 

radiation, endothelial cells rapidly express adhesion molecules, leading to the recruitment 

of leukocytes. ROS-mediated release of leukotrienes and prostaglandins further induce 

capillary permeability and leukocyte extravasation. Leukocytes, mainly monocytes and 

neutrophils, subsequently release pro-inflammatory cytokines, stimulating cardiomyocytes 

and fibroblasts to secrete pro-fibrotic mediators with ensuing fibroblast activation, ECM 

production, and cardiac fibrosis. (B) Radiation therapy is complicated by collagen exposure 

in the sub-endothelial matrix, with ensuing binding of von Willebrand Factor, platelet 

adhesion, and thrombus formation. Downstream, hypoxia occurs, leading to endothelial cell 

and fibroblast release of HIF-1α, in turn promoting the secretion of pro-fibrotic factors, and 

fibroblast activation. (C) Radiation can also directly injure cardiomyocytes, albeit at a later 

time-point. Three mechanisms have been proposed, namely an increase in ROS production, 

ER stress leading to excess calcium accumulation in the mitochondria, and increased Bax 

expression which translocates to the mitochondrial membrane and opens the mitochondrial 

membrane transition pore. Combined, these lead to mitochondrial swelling and rupture, 
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cytochrome c release, and activation of cell death pathways. Following cardiomyocyte death, 

replacement cardiac fibrosis occurs.

Bax: Bcl-2 associated X-protein. CTGF: connective tissue growth factor. ECM: extracellular 

matrix. ER: endoplasmic reticulum. HIF-1α: hypoxia-inducible factor-1α. ICAM-1: 

intercellular adhesion molecule-1. IGF: insulin-like growth factor. IL: interleukin. mPTP: 

mitochondrial membrane transition pore. NF-κB: nuclear factor-κB. PDGF: platelet-derived 

growth factor. RNS: reactive nitrogen species. ROS: reactive oxygen species. TGF-β: 

transforming growth factor-β. TNF-α: tumor necrosis factor-α. VCAM-1: vascular cell 

adhesion molecule-1. vWF: von Willebrand Factor.
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