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Abstract

How do animals learn? This remains an elusive question in neuroscience. Whereas reinforcement 

learning often focuses on the design of algorithms that enable artificial agents to efficiently 

learn new tasks, here we develop a modeling framework to directly infer the empirical learning 

rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial 

changes in an animal’s policy, and decomposes those changes into a learning component and a 

noise component. Specifically, this allows us to: (i) compare different learning rules and objective 

functions that an animal may be using to update its policy; (ii) estimate distinct learning rates 

for different parameters of an animal’s policy; (iii) identify variations in learning across cohorts 

of animals; and (iv) uncover trial-to-trial changes that are not captured by normative learning 

rules. After validating our framework on simulated choice data, we applied our model to data 

from rats and mice learning perceptual decision-making tasks. We found that certain learning 

rules were far more capable of explaining trial-to-trial changes in an animal’s policy. Whereas the 

average contribution of the conventional REINFORCE learning rule to the policy update for mice 

learning the International Brain Laboratory’s task was just 30%, we found that adding baseline 

parameters allowed the learning rule to explain 92% of the animals’ policy updates under our 

model. Intriguingly, the best-fitting learning rates and baseline values indicate that an animal’s 

policy update, at each trial, does not occur in the direction that maximizes expected reward. 

Understanding how an animal transitions from chance-level to high-accuracy performance when 

learning a new task not only provides neuroscientists with insight into their animals, but also 

provides concrete examples of biological learning algorithms to the machine learning community.

1 Introduction

Learning is a fundamental aspect of animal behavior, as it enables flexible adaptation to the 

time-varying reward structure of an environment. The ability of animals to learn new tasks 
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also happens to be a fundamental component of neuroscience research: many experiments 

require training animals to perform a decision-making task designed to test specific theories 

of brain function. A deeper understanding of how an animal learns—specifically, how it 

updates its policy in order to progress from chance-level to high-accuracy task performance

—would provide both theoretical and practical benefits for understanding animal behavior, 

and would allow us to compare biological learning with the learning behavior of artificial 

agents [32].

Reinforcement learning typically focuses on the design of normative learning algorithms [7, 

18, 30], which describe the optimal action selection policy for a given objective function 

[18]. These models have been successful in endowing artificial agents with the ability to 

efficiently learn complex tasks [16, 28, 33]; in the context of animal and human behavior, 

these models have successfully described and predicted various aspects of observed behavior 

[7, 18, 22, 29].

However, one of the greatest challenges for normative modeling lies in inferring an animal’s 

internal model from behavior alone. Specifically, it is difficult to characterize an animal’s 

objective function because animals often behave in ways that would not appear to increase 

their expected reward [2, 6, 12]. Modeling the intricacies of such behaviors often requires 

incorporating extensions into traditional reinforcement learning models, necessarily trading 

off the reward-maximizing properties of these models in order to better describe the data 

[9, 12, 17, 36]. Just as the rise of large public datasets enabled a revolution in machine 

learning [8, 13], the advent of high-throughput animal training opens the door to an exciting 

alternative approach to modeling learning. Leveraging new behavioral datasets containing 

millions of choices [11, 20], it may now be possible to infer directly from data the rules that 

govern animal learning.

In this paper, we present a flexible framework for inferring learning rules directly from an 

animal’s decision-making behavior. Our method efficiently tracks the dynamic trial-to-trial 

changes in an animal’s policy parameters over the course of training, and provides an 

interpretable decomposition of those changes into a learning component and an additive 

noise component (Fig. 1). Our method is formulated as a general framework that can model 

a variety of conventional learning rules, and offers a new way to compare different models 

of learning. We expect this approach to advance our understanding of learning from both 

computational and biological perspectives, offering valuable insights to neuroscientists and 

machine learning researchers alike.

2 Models and Methods

2.1 Model of decision-making

We present our model in the context of a generic two-alternative forced choice (2AFC) 

task, a common paradigm for studying decision-making behavior. On each trial, an animal 

is presented with a stimulus st, and makes a choice yt ∈ {0, 1}, referred to generally as a 

“leftward” or “rightward” choice. An animal receives a reward (rt = 1) if its response yt is 

correct, but receives no reward (rt = 0) otherwise. The correct answer yt for a given stimulus 

st depends on the rules of the specific task.
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We assume that an animal’s behavior on a trial t is governed by an internal model, 

parametrized by a set of weights wt. These weights describe how an animal’s choice 

depends on the task stimulus, st, as well as any task-irrelevant aspects, such as a stimulus-

independent bias toward one choice over the other. Specifically, we construct an input carrier 

vector xt = [1, st] that couples linearly with the weight vector wt, such that the probability of 

the animal going “rightward” on trial t is

p yt = rightward ∣ xt, wt ≡ pR xt, wt = exp xt ⋅ wt
1 + exp xt ⋅ wt

. (1)

The weight component that interacts with the constant “1” in the input vector captures 

the bias to choose to go “rightward”, while the weights that couple with the task stimuli 

st represent the animal’s stimulus sensitivities. This model is generally applicable to a 

wide array of tasks and can be readily extended to include other types of task-irrelevant 

covariates, such as the history dependence [4, 23, 24]; it is also a natural extension of the 

classic psychometric curve approach [34] to modeling choice behavior.

2.2 Model of trial-to-trial weight update

Because learning is inherently a time-varying process, we need a way to characterize how 

the weights evolve over time. We use a state-space representation for the weights w ∈ ℝK [1, 

4, 19], in which we model the weight update Δwt as a function of the input xt, the output yt, 

as well as the current state wt (Fig. 1a).

We assume that the weight update Δwt can be decomposed into a deterministic learning 

component, vt, and an independent Gaussian innovation noise, ηt:

Δwt ≡ wt + 1 − wt = vt + ηt, ηt N 0, diag σ1
2, …, σK

2 . (2)

The variance of the noise component for the k-th weight is captured by σk
2, the volatility 

hyperparameters. The deterministic component is modeled with a specific learning rule, 

scaled by a non-negative learning rate; for now we simply use vt as a placeholder variable to 

write

vt = diag α1, …, αK vt, vt = LearningRule wt, xt, yt , rt . (3)

Element-wise, this is equivalent to vt k = αk vt k for the k-th component of the weight 

vector. In general, we can treat each learning rate αk as a separate hyperparameter in the 

model.

We note that our method is an extension of our earlier work [23, 24], which presented a 

purely descriptive model that used only the noise term, ηt, to capture trial-to-trial changes in 

the weight trajectory.
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2.3 Learning models

Our framework allows flexible exploration of different learning models, as long as the 

predicted weight update due to learning, vt, can be computed from the current weights 

wt and any past experience (such as previous choices y1:t or rewards r1:t). In particular, 

policy-gradient learning [7, 15, 30, 31] fits readily into our framework.

In this paper, we explore the family of REINFORCE [35] learning rules, a set of well-

established policy update rules that seek to maximize expected reward by sampling the 

policy gradient at each trial. In its simplest form, the REINFORCE update for the k-th 

weight is given by

vt k = αk ⋅ rat, yt ⋅ ϵat 1 − pat xt k, ϵR = + 1, ϵL = − 1, (4)

where at is the animal’s choice at trial t, yt is the correct answer for this trial and pat is the 

probability, as obtained from the policy, that the animal selected action at at trial t (pR(xt, 

wt) from Eq. 1 in the case that the animal selected to go rightward, and (1 − pR(xt, wt)) in 

the case that the animal went to the left at trial t). The reward is ra, y = 1 when a = y (correct 

choice), and 0 otherwise (incorrect). The sign ∈a is simply a mathematical consequence of 

how we modeled the choice probability (Eq. 1). In what follows, we will refer to the model 

defined by the combination of Eq. 1, Eq. 2 and the REINFORCE learning rule of Eq. 4 as 

RFK. In the case that there is a single α parameter shared across the K dimensions in Eq. 4, 

we will refer to this model as RF1.

We also consider a version of REINFORCE with a constant but weight-specific baseline, 

{βk} [30, 35]:

vt k = αk ⋅ rat, yt − βk ⋅ ϵat 1 − pat xt k . (5)

Note that the baseline adjusts the effective reward in the update equation, in the sense that 

the reward term r in Eq. 4 is now replaced by (r − βk). Each baseline βk is an additional 

hyperparameter in the model, to be inferred data. We will refer to the model defined by 

this learning rule (and Eq. 1, Eq. 2) as RFβ. See the Supplementary Material (SM) for a 

case-by-case evaluation of both the REINFORCE and REINFORCE with baseline learning 

rules.

2.4 Inference of the weight trajectory

We use hierarchical Bayesian inference to estimate both the time-varying weight trajectory 

and the best set of hyperparameters from choice data. The inference procedure consists 

of two loops, for (i) weight estimate at fixed hyperparameters, and (ii) hyperparameter 

optimization.

For the inner loop, the goal is to determine the combined weight trajectory that maximizes 

the posterior distribution, at fixed hyperparameters ϕ ≡ {σ1, …, σK, α1, …, αK, β1 …, 

βK}. With T trials in the dataset, and K weights, we optimize the entire weight trajectory 

at once by representing it as a KT-dimensional vector w. The posterior is constructed from 
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the likelihood function and the prior distribution. The model of choice probability (Eq. 1) 

specifies the trial-specific likelihood function p(yt|xt, wt). The model of trial-to-trial weight 

updates (Eqs. 2–3) corresponds to a Gaussian prior on the weight trajectory, w ~ (u, 

C), with mean u = D−1v and covariance C−1 = D⏉Σ−1D; here D is the difference matrix 

constructed as K copies of a T × T matrix stacked block-diagonally, where each T × T 
block has +1 along the main diagonal and −1 along the lower off-diagonal; Σ is a diagonal 

matrix of σ’s (see SM for full details) [4]. Note that the prior mean v depends on the 

hyperparameters {αk} and {βk}, and the covariance matrix C depends on {σk}. Given data 

 = {xt, yt}t=1,…,T, the log-posterior for w is

log p(w ∣ D; ϕ) = 1
2 log C −1 − (w − u)⊤C−1(w − u) + ∑t = 1

T log p yt ∣ xt, wt
+ const .

(6)

For the outer loop, we perform numerical optimization so as to 

obtain the set of hyperparameters, ϕ = {{σk}, {αk}, {βk}}, that 

maximize the approximate marginal likelihood, or evidence, defined as 

p(D ∣ ϕ) = ∫ dw p(D ∣ w)p(w ∣ ϕ) = p(D ∣ w)p(w ∣ ϕ)/p(w ∣ D; ϕ) ≈ p(D ∣ w)p(w ∣ ϕ)
N w ∣ wMAP, − H−1  [5, 25]. 

We use Laplace approximation to approximate the posterior distribution over the 

weights, p(w| ; ϕ) ≈ (w|wMAP, −H−1), where H is the Hessian at the maximum a 

posteriori estimate of the weights, wMAP. We usually fit multiple models with different 

hyperparameter initializations to locate the global optimum of model evidence. See SM for 

full details of the inference procedure.

3 Results

Although our method can be applied to a wide variety of tasks, for clarity, we will mostly 

focus on a specific 2AFC task: the International Brain Laboratory’s (IBL) decision-making 

task based on visual detection [11]. See Fig. 2a and the caption for a more in-depth 

description of the task.

3.1 We can infer learning rates from simulated data

We first demonstrate our method with simulated data that resembles a mouse’s choices as 

it learns the IBL task. We generated two time-varying weight trajectories for the mouse’s 

bias and sensitivity (Fig. 2b), according to the trial-to-trial weight update model (Eq. 2) 

with the standard REINFORCE learning rule (Eq. 4). Four hyperparameters were used to 

generate the weight trajectories, with a learning rate α and a noise strength σ for each 

weight (Fig. 2c); the values were chosen to emulate the properties of the real data. We used 

the probabilistic decision-making model (Eq. 1) to generate a stimulus-response pair for 

each trial based on the weights, and only used this simulated behavioral data to infer the 

weight trajectories and the hyperparameters.

We confirm that our method accurately recovers the weight trajectories (Fig. 2b), as well as 

the values of the underlying hyperparameters (Fig. 2c). In particular, it is able to separately 

infer different values for the learning rates (α1 and α2) for the two different weights. In 
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the SM, we show additional recovery analyses, including the recovery of RFβ weights and 

hyperparameters from simulated data.

3.2 We can decompose weight updates into learning and noise

Moreover, our method can explicitly decompose each trial-to-trial weight change Δwt into 

a learning component vt and a noise component ηt (Eq. 2). Fig. 2d demonstrates that 

our method has accurately de-mixed the components separately, as shown by the narrow 

shaded gap between the true and retrieved curves. The decomposition provides a useful 

tool for interpreting the behavioral data. In particular, we can quantify how much of the 

trial-to-trial weight update is along the dimension of learning: we calculate the projected 

square magnitude of the update Δwv, t
2 = Δwt ⋅ vt

2/ vt
2 that is parallel to vt, and its fraction 

out of the net weight update |Δwt|2. In the simulated data (Fig. 2), for example, the average 

contribution from the learning dimension is Δwv, t
2/ Δwt

2
all trials = 0.53. This is a better 

approach than a naive comparison between the inferred values of the learning rate α and the 

noise strength σ, which can be difficult to interpret.

In the SM, we explore the effect of model mismatch on both hyperparameter and weight 

decomposition recovery. There, we show that a successful decomposition of learning and 

noise components depends crucially on the correct choice of the learning model. In this case, 

we know that the learning model for the inference is correct, because it assumes the same 

model (REINFORCE) as the one used for generating the “true” weight trajectory. In the case 

of actual data, the true learning model is not known; however, as we also show in the SM, 

the Akaike Information Criterion, can help us successfully identify the underlying learning 

model (see SM).

3.3 Animals learn different weights at different rates

Now we apply our method to model the choice behavior of 13 mice (78,000 trials; 6,000 

trials per mouse) learning the IBL task as they transition from chance-level to greater 

than 70% accuracy (see SM for learning curves for these animals). Taking one mouse 

as an example, we plot the weight trajectories inferred under different learning models 

(Fig. 3). Specifically, we compared a model without learning (RF0; Fig. 3a); a model with 

REINFORCE learning and a single learning rate α for all weights (RF1; Fig. 3b); and 

a model with REINFORCE learning and separate learning rates for all K = 2 weights 

(RFK; Fig. 3c). We also performed the same analysis for the 13 mouse cohort (see SM 

for weight decompositions for whole cohort). We measure the model fit in terms of the 

Akaike Information Criterion (AIC), or the negative log-likelihood penalized by the number 

of parameters. For the majority of our cohort, the model fit is considerably better (the AIC is 

smaller) for RFK compared to both RF0 and RF1 (Fig. 4d).

Allowing per-weight learning rates has interesting implications. When the learning rate 

is uniform (RF1), the prescribed weight update is in the direction of the gradient of the 

expected reward, and therefore follows the path of steepest ascent in the reward landscape. 

On the other hand, if the learning rate is different for each direction (RFK), the weight 

update is not necessarily along the direction of the gradient. We show simulated trajectories 
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for a mouse using the RF1 and the RFK learning rules to update its policy (σ = 0 in this 

case) in Fig. 5 (lines (b) and (c), respectively). That the AIC for the RFK model is so much 

better than that for the RF1 model, and that the retrieved weight trajectory for the animal 

(Fig. 5a) looks so different to the RF1 trajectory, suggests that the learning behavior of the 

mouse cannot be explained as a simple gradient ascent on the expected reward landscape.

3.4 Animals shift their effective reward when learning

Whereas the net trajectories from RF1 and RFK look very similar (Fig. 3b–c), they give 

different results for the learning-noise decomposition (Fig. 3e–f), especially if we focus 

on the bias (yellow). For RF1, it is the noise that captures most of the changes in the 

bias, while the contribution of the learning component is negligible (Fig. 3e). For RFK, 

the learning component for the bias is more dynamic, but its cumulative effect deviates 

more significantly from the inferred trajectory (Fig. 3f). The consistently larger slope of the 

cumulative learning, compared to the net weight trajectory, suggests that our learning model 

for the trial-to-trial weight change is missing an additive offset.

To introduce additive offsets to the learning component, we considered another learning 

model, REINFORCE with baseline (RFβ; Eq. 5), with separate learning rates and baselines 

for different weights. We used the RFβ model to infer the weight trajectories (Fig. 3d), and 

plotted their decompositions into learning and noise components (Fig. 3g). Interestingly, the 

trial-to-trial weight changes are almost entirely captured by the learning components (Fig. 

3g), which was consistent across the entire cohort of 13 mice (see SM).

From the inferred hyperparameters for the RFβ model (Fig. 4b), we can make several 

observations. Firstly, for all animals in the cohort, the learning rate for the bias is larger 

than the learning rate for the weight on the contrast. This is consistent with the finding that 

allowing per-weight learning rates, as in the RFK model, leads to vast improvements in AIC 

compared to RF1 models with a single learning rate. The larger learning rate associated 

with the bias indicates that mice adjust their bias on a faster timescale than they adjust the 

weight they place on the contrast (which can also be readily observed in the retrieved weight 

trajectories of Fig. 3a–d). Understanding why animals’ choice biases fluctuate on such short 

timescales will be an interesting question to explore in future work.

Secondly, we look to values of the retrieved baseline parameters in Fig. 4b in order to 

postulate as to why the REINFORCE with baseline model, as opposed to any of the other 

learning models we consider, is capable of explaining the trial-to-trial weight updates used 

by real animals. We notice that the baseline values for all animals for both the stimulus 

and bias are non-zero. Recall that with RFβ, as given by Eq. 5, the effective reward for a 

correct trial is (1–βk), and βk for an incorrect trial. Thus, compared to the RF1 and RFK 

models, the RFβ model results in non-zero weight updates for error trials. Furthermore, that 

the baseline values are not equal to 0.5 (since rat, yt ∈ 0, 1 ) indicates that error and correct 

trials result in updates of different sizes. Finally, the fact that the retrieved baseline values 

are often negative or, when they are positive, are greater than 1 allows for the sign of the 

weight update given in Eq. 5 to change for either correct trials (in the case that the baseline 

is larger than 1) or error trials (in the case that the baseline is negative). In this way, the 
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RFβ model may be better equipped to handle seemingly ‘suboptimal’ weight updates that do 

not seem to maximize expected reward. However, fully understanding why the RFβ learning 

rule, as opposed to the RFK and RF1 learning rules, explains the trial-to-trial weight changes 

of real animals will require further analyses and will be explored in future work.

3.5 Model comparison for different learning models

So far, our approach in this work was to only introduce new parameters if they improved 

the model (either in terms of the fit, or the interpretability); the lower AIC values obtained 

by allowing separate learning rates (RFK), or adding baselines (RFβ), justified our modeling 

choices (Fig. 4c–d).

But the generality of model comparison supported by our method is not limited to 

the inclusion of additional parameters; any learning rule detailing trial-to-trial weight 

updates can be considered and plugged into Eq. 3. In addition to RF1, RFK and RFβ, 

we compared two other learning rules that are closely related to REINFORCE, but 

make different assumptions. Specifically, we considered the action-averaged REINFORCE 

(AAR), [Δw]k = αk ⋅ py ⋅ ϵy 1 − py [x]k, where effective reward is averaged over the choice 

probability; and the reward-agnostic REINFORCE (RAR), [Δw]k = αk ⋅ ϵy 1 − py [x]k, whose 

effective reward is a constant 1 (see SM for more rationales). We find that RFβ provided 

better fits to more animals, including our example animal (Fig. 4), although there was 

considerable variation in the preferred learning rule across animals. It will be an interesting 

future work to compare a broader variety of learning rules.

3.6 Application to other datasets

Our method offers a general method that can be applied to analyze choice behavior in many 

perceptual decision-making experiments. Here we analyze data from a different animal 

species (rat) learning a different task [2], where the stimulus is a delayed pair of two 

auditory tones (see Fig. 6 and caption for task details). Now we need three weights (bias and 

two tone sensitivities) to describe the decision-making behavior. We first recovered the three 

weight trajectories using a no-learning model (Fig. 6a), and performed similar analyses as 

before, using the three learning models RF1, RFK and RFβ. As we show in the SM, the RF1 

and RFK models are once again incapable of explaining the trial-to-trial weight changes in 

the animals’ policies; however, as shown in Fig. 6d, the RFβ model is equipped to explain 

the majority of the trial-to-trial weight updates. See SM for the full set of results for this 

dataset.

4 Discussion

In this work, we develop a novel framework for extracting the learning rules underpinning 

animal behavior as mice and rats learn to perform perceptual decision-making tasks. Our 

method can accurately infer the time-varying weights governing an animal’s policy, along 

with an animal’s learning rates for different weights, hyperparameters governing the noise 

in different weights, as well as any reward baselines that the animal may be using in order 

to update its policy. We validated our method on simulated data, and applied it to a cohort 

of 13 mice learning to perform a sensory decision-making task [11], as well as 19 rats 
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learning a parametric working memory task [2]. In addition to the inferred learning rule 

and time-varying weights themselves, our method provides interpretable decompositions 

of the weight trajectories into learning and noise components. Whereas learning models 

are typically compared via generic model comparison metrics like the Akaike Information 

Criterion, comparing learning rules by their ability to explain the underlying trial-to-trial 

changes in an animal’s policy provides an intuitive alternative.

Based on applications to two datasets, we were able to make several novel observations 

about animal learning, two of which we feel are particularly interesting. First, our best-

fit model shows that different components of an animal’s policy, controlled by different 

weights in our model, are updated with different learning rates. This implies that animal 

learning does not necessarily follow the gradient of the expected reward landscape at 

every trial. Although weight-specific learning rates αk were formally proposed in [35], 

our work provides empirical evidence for weight-specific learning in real animals. Second, 

we found that the REINFORCE with baseline (RFβ) model, with additive offsets to the 

effective reward, does particularly well in capturing the trial-to-trial weight changes along 

the dimension of prescribed learning. This finding was upheld in a second dataset involving 

rats learning a task with a two-dimensional stimulus space. Given that the prescribed 

learning rule affects only a 1-D subspace of the model weights, the success of RFβ to 

capture fluctuations in this higher-dimensional weight space is even more remarkable. 

Understanding of the role of baselines (effective reward offsets), as well as an investigation 

of whether they vary over time (as in, for example, the Actor-Critic framework [30]) present 

promising directions for future work.

We briefly discuss several limitations of our method. Our model of learning does not 

incorporate sensory uncertainty [14, 21], history dependence [2, 6, 10] or state dependence 

[3], all of which are known to affect decision-making behavior. Our model can, however, 

be readily extended to allow more flexible descriptions of learning rates and baselines, 

for example by introducing session-by-session changes for the hyperparameters [24]. 

Furthermore, an exciting future direction will be to compare our model of choice behavior 

with value function based models, such as variants of Rescorla-Wagner [22], or other 

dynamic models such as those considered in [26, 27]. While [15] provides support for 

the view that humans use policy-gradient methods instead of value prediction, Temporal 

Difference (TD) methods are more typically used to model choice behavior in the 

computational cognitive science community, and a comparison of our model with some 

standard TD models would help contextualize our work. Despite these limitations, we 

believe that our method can be readily applied to study different tasks, animal species, and 

learning models; and that it can be used to provide insights into empirical features of animal 

learning. We believe our approach will provide a powerful framework for the data-driven 

investigation of animal learning behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Ashwood et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments and Disclosure of Funding

We thank Peter Dayan, Yotam Sagiv and Sam Zorowitz for helpful comments and discussion at the beginning of 
this project. We thank Nathaniel Daw, Alejandro Pan-Vazquez, Yoel Sanchez Araujo and Ilana Witten for useful 
comments and discussion as this project was being completed. Finally, we thank the anonymous NeurIPS reviewers 
for their insightful comments and feedback.

JWP was supported by grants from the Simons Collaboration on the Global Brain (SCGB AWD543027), 
the NIH BRAIN initiative (NS104899 and R01EB026946), and a U19 NIH-NINDS BRAIN Initiative Award 
(5U19NS104648).

References

[1]. Ahmadian Y, Pillow JW, and Paninski L. Efficient markov chain monte carlo methods for 
decoding neural spike trains. Neural Computation, 23(1):46–96, 2011. ISSN 0899–7667. doi: 
10.1162/NECO_a_00059. [PubMed: 20964539] 

[2]. Akrami A, Kopec CD, Diamond ME, and Brody CD. Posterior parietal cortex represents sensory 
history and mediates its effects on behaviour. Nature, 554(7692):368, 2018. Data available at: 
10.6084/m9.figshare.12213671.v1. [PubMed: 29414944] 

[3]. Ashwood ZC, Roy NA, Stone IR, Laboratory TIB, Churchland AK, Pouget A, and Pillow JW. 
Mice alternate between discrete strategies during perceptual decision-making. bioRxiv, page 
2020.10.19.346353, Oct. 2020. doi: 10.1101/2020.10.19.346353. URL https://www.biorxiv.org/
content/10.1101/2020.10.19.346353v1.

[4]. Bak JH, Choi JY, Akrami A, Witten I, and Pillow JW. Adaptive optimal training of animal 
behavior. In Lee DD, Sugiyama M, Luxburg UV, Guyon I, and Garnett R, editors, Advances in 
Neural Information Processing Systems 29, pages 1947–1955, 2016.

[5]. Bishop CM. Pattern recognition and machine learning. Springer, 2006.

[6]. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Schölvinck ML, Zaharia AD, and Carandini 
M. The detection of visual contrast in the behaving mouse. Journal of Neuroscience, 31(31): 
11351–11361, 2011. ISSN 0270–6474. doi: 10.1523/JNEUROSCI.6689-10.2011. [PubMed: 
21813694] 

[7]. Dayan P and Daw ND. Decision theory, reinforcement learning, and the brain. Cognitive, 
Affective, & Behavioral Neuroscience, 8(4):429–453, 2008. Publisher: Springer.

[8]. Deng J, Dong W, Socher R, Li L-J, Li K, and Fei-Fei L. Imagenet: A large-scale hierarchical 
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 
248–255. Ieee, 2009.

[9]. Findling C, Skvortsova V, Dromnelle R, Palminteri S, and Wyart V. Computational noise 
in rewardguided learning drives behavioral variability in volatile environments. Nature 
Neuroscience, 22(12): 2066–2077, Oct. 2019. doi: 10.1038/s41593-019-0518-9. [PubMed: 
31659343] 

[10]. Fründ I, Wichmann FA, and Macke JH. Quantifying the effect of intertrial dependence 
on perceptual decisions. Journal of Vision, 14(7):9–9, June 2014. ISSN 1534–7362. doi: 
10.1167/14.7.9.

[11]. IBL, Aguillon-Rodriguez V, Angelaki DE, Bayer HM, Bonacchi N, Carandini M, Cazettes 
F, Chapuis GA, Churchland AK, Dan Y, Dewitt EE, Faulkner M, Forrest H, Haetzel LM, 
Hausser M, Hofer SB, Hu F, Khanal A, Krasniak CS, Laranjeira I, Mainen ZF, Meijer GT, 
Miska NJ, Mrsic-Flogel TD, Murakami M, Noel J-P, Pan-Vazquez A, Sanders JI, Socha KZ, 
Terry R, Urai AE, Vergara HM, Wells MJ, Wilson CJ, Witten IB, Wool LE, and Zador A. A 
standardized and reproducible method to measure decision-making in mice. bioRxiv, 2020. doi: 
10.1101/2020.01.17.909838. Data available at: 10.6084/m9.figshare.11636748.v7.

[12]. Kastner DB, Miller EA, Yang Z, Roumis DK, Liu DF, Frank LM, and Dayan P. Dynamic 
preferences account for inter-animal variability during the continual learning of a cognitive task. 
bioRxiv, 2019. doi: 10.1101/808006.

[13]. Krizhevsky A, Sutskever I, and Hinton GE. Imagenet classification with deep convolutional 
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

Ashwood et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorxiv.org/content/10.1101/2020.10.19.346353v1
https://www.biorxiv.org/content/10.1101/2020.10.19.346353v1


[14]. Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai AE, Donner TH, Carandini M, Tonegawa 
S, Uchida N, and Kepecs A. Reinforcement biases subsequent perceptual decisions when 
confidence is low, a widespread behavioral phenomenon. eLife, 9, Apr. 2020. doi: 10.7554/
elife.49834.

[15]. Li J and Daw ND. Signals in Human Striatum Are Appropriate for Policy Update Rather 
than Value Prediction. Journal of Neuroscience, 31(14):5504–5511, Apr. 2011. doi: 10.1523/
JNEUROSCI.6316-10.2011. [PubMed: 21471387] 

[16]. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, and Riedmiller M. 
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[17]. Ng AY, Russell SJ, et al. Algorithms for inverse reinforcement learning. In ICML, volume 1, page 
2, 2000.

[18]. Niv Y. Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3):139–154, 
June 2009. doi: 10.1016/j.jmp.2008.12.005.

[19]. Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rad KR, Vidne M, Vogelstein J, and Wu 
W. A new look at state-space models for neural data. Journal of computational neuroscience, 
29(1–2):107–126, 2010. [PubMed: 19649698] 

[20]. Pinto L, Koay SA, Engelhard B, Yoon AM, Deverett B, Thiberge SY, Witten IB, Tank DW, 
and Brody CD. An accumulation-of-evidence task using visual pulses for mice navigating in 
virtual reality. Frontiers in behavioral neuroscience, 12:36, 2018. Publisher: Frontiers. [PubMed: 
29559900] 

[21]. Pisupati S, Chartarifsky-Lynn L, Khanal A, and Churchland AK. Lapses in perceptual decisions 
reflect exploration. bioRxiv, page 613828, 2019. Publisher: Cold Spring Harbor Laboratory.

[22]. Rescorla RA, Wagner AR, et al. A theory of pavlovian conditioning: Variations in the 
effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research 
and theory, 2:64–99, 1972.

[23]. Roy NA, Bak JH, Akrami A, Brody C, and Pillow JW. Efficient inference for time-varying 
behavior during learning. In Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi 
N, and Garnett R, editors, Advances in Neural Information Processing Systems 31, pages 5695–
5705, 2018. [PubMed: 31244514] 

[24]. Roy NA, Bak JH, The International Brain Lab, Akrami A, Brody CD, and Pillow JW. Extracting 
the dynamics of behavior in sensory decision-making experiments. Neuron, 2021. ISSN 0896–
6273. doi: 10.1016/j.neuron.2020.12.004. URL http://www.sciencedirect.com/science/article/pii/
S0896627320309636.

[25]. Sahani M and Linden JF. Evidence optimization techniques for estimating stimulus-response 
functions. In Advances in neural information processing systems, pages 317–324, 2003.

[26]. Samejima K, Doya K, Ueda Y, and Kimura M. Estimating Internal Variables and Parameters of a 
Learning Agent by a Particle Filter. In Thrun S, Saul LK, and Schölkopf B, editors, Advances in 
Neural Information Processing Systems 16, pages 1335–1342. MIT Press, 2004.

[27]. Sandi C, Gerstner W, and Lukšys G. Stress, noradrenaline, and realistic prediction of mouse 
behaviour using reinforcement learning. In Koller D, Schuurmans D, Bengio Y, and Bottou 
L, editors, Advances in Neural Information Processing Systems 21, pages 1001–1008. Curran 
Associates, Inc., 2009.

[28]. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, 
Antonoglou I, Panneershelvam V, and Lanctot M. Mastering the game of Go with deep neural 
networks and tree search. Nature, 529(7587):484, 2016. [PubMed: 26819042] 

[29]. Sutton RS and Barto AG. Time-derivative models of Pavlovian reinforcement 1990. Publisher: 
The MIT Press.

[30]. Sutton RS and Barto AG. Reinforcement learning: An introduction. MIT press, 2nd edition, 
2018.

[31]. Sutton RS, McAllester DA, Singh SP, and Mansour Y. Policy gradient methods for reinforcement 
learning with function approximation. In Solla SA, Leen TK, and Müller K, editors, Advances in 
Neural Information Processing Systems 12, pages 1057–1063. MIT Press, 2000.

[32]. Tamprateep V. Of Mice and Mazes: Simulating Mice Behavior with Reinforcement Learning. 
PhD thesis, University of Texas at Austin, May 2017.

Ashwood et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S0896627320309636
http://www.sciencedirect.com/science/article/pii/S0896627320309636


[33]. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, 
Ewalds T, and Georgiev P. Grandmaster level in StarCraft II using multi-agent reinforcement 
learning. Nature, 575(7782):350–354, 2019. Publisher: Nature Publishing Group. [PubMed: 
31666705] 

[34]. Wichmann FA and Hill NJ. The psychometric function: I. Fitting, sampling, and goodness of 
fit. Perception & Psychophysics, 63(8):1293–1313, Nov. 2001. ISSN 1532–5962. doi: 10.3758/
BF03194544. [PubMed: 11800458] 

[35]. Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement 
learning. Machine Learning, 8(3–4):229–256, May 1992. doi: 10.1007/bf00992696.

[36]. Zorowitz S, Momennejad I, and Daw ND. Anxiety, avoidance, and sequential evaluation. 
Computational Psychiatry, 4:1–17, 2020. Publisher: MIT Press.

Ashwood et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Broader Impact

Our work seeks to describe and predict the choice behavior of rodents in the context 

of decision-making experiments. We hope that neuroscientists and psychologists use 

our framework to better understand learning within their own experiments, and we 

have publicly released our code so as to enable this (https://github.com/pillowlab/

psytrack_learning). Additionally, our work leverages data from two new publicly 

available datasets [2, 11], acting as an example of the value of open-science practices.
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Figure 1: 
Model schematic. (a) We use a state-space representation with a set of time-varying weights 

wt, whose change is driven by a learning process as well as noise. (b) Animals usually 

improve their task performance with continued training, such that their expected reward 

gradually increases; however, the trial-to-trial change of behavior is not always in the 

reward-maximizing direction. (c) Considering the animal’s learning trajectory in weight 

space, we model each step Δwt as a sum of a learning component (ascending the expected 

reward landscape) and a random noise component.

Ashwood et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Validation on simulated data. (a) The IBL task [11]: on each trial, a sinusoidal grating (with 

contrast values between 0 and 100%) appears on either the left or right side of a screen. 

Mice must report the side of the grating by turning a wheel (left or right) in order to receive 

a water reward. (b) We simulate a bias weight and stimulus weight (solid lines) which 

evolve according to our model using the REINFORCE rule, then generate choice data. From 

the choice data, we successfully recover the weights (dashed lines) with a 95% credible 

interval (shading). (c) We also successfully recover the underlying hyperparameters from the 

simulated data (error bars are ±1 posterior SD).(d) We decompose each recovered weight 

into a learning component (solid lines) and a noise component (dashed lines). Shading 

shows the cumulative error between the true and recovered components.
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Figure 3: 
Result from an example IBL mouse. (a-d) Inferred trial-to-trial weight trajectories for the 

choice bias (yellow) and contrast sensitivity (purple), recovered under different learning 

models: (a) RF0, No learning model, with only a noise component to track the changes 

in behavior with the noise component. This mouse’s bias fluctuates between leftward 

and rightward choices (negative and positive bias weight), whereas its decision-making 

is increasingly influenced by the task stimuli (gradually increasing stimulus weight). (b) 
RF1, REINFORCE with a single learning rate for all weights. (c) RFK, REINFORCE with 

a separate learning rate for each of the two weights. (d) RFβ, REINFORCE with baselines, 

where the baseline is also inferred separately for each weight. (e-g) The decomposition 

of trial-to-trial weight updates into learning and noise components, for the model shown 

in the same row. The noise component is shown with the dashed line, while the learning 

component is given by the solid line.
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Figure 4: 
Population analysis for 13 IBL mice. (a) The average fraction of the trial-to-trial weight 

updates along the learning direction, as prescribed by three learning models RF1, RFK, and 

RFβ. Each open circle represents a mouse; the example mouse from Fig. 3 is marked by a 

filled circle. The solid bars indicate the mean fraction across the animal cohort. Whereas the 

mean fraction of animals’ weight updates due to learning is just 0.30 for the RF1 model, 

it is 0.92 for the RFβ model. (b) The inferred learning rates and baselines, for the contrast 

and bias weights, from each mouse using the RFβ model. (c) Model comparison across 

learning rules within RF family, and beyond it (see Sec. 3.5 for a description of AAR and 

RAR learning rules), in terms of the difference in their Akaike Information Criterion (AIC) 

relative to the REINFORCE model (RFK). Each line is a mouse, and our example mouse 

is marked in black. (d) Model comparison within the family of REINFORCE models, with 

different numbers of varied learning rates. One outlier mouse was excluded from this figure 

for visibility (the AIC decreased by a massive 126.5 for the RFK model relative to the RF0 

model). Our example mouse is marked in black.
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Figure 5: 
Weight trajectories plotted on the expected reward landscape for the IBL task. When the 

animal increases wcontrast and simultaneously decreases wbias to zero, this results in a higher 

expected reward. (a) The recovered full trajectory for an example IBL mouse over the course 

of 6000 trials for the RFK model (this is the same trajectory that is shown in Figure 3c). 

We compare the animal’s trajectory with deterministic trajectories generated (without noise) 

from the (b) RF1 and (c) RFK learning rules when the learning rates are fixed to those 

inferred from data.
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Figure 6: 
Results from a rat auditory discrimination task [2]. (a) We track an example rat’s choice bias 

(yellow) and the sensitivity to two stimuli (red, blue) while training on the task described in 

(b). (b) In this task, a rat hears two tones of different amplitudes (tones A and B) separated 

by a delay. If tone A is quieter than B, the rat must nose-poke into the left port for reward, 

and vice-versa if tone A is louder than B. (c) We now use the RFβ model to predict how our 

rat updates its behavior. (d) The weights from (c) are decomposed into learning (solid) and 

noise (dashed) components, as in Fig. 3g.
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