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Sex-specific epigenetic development in the mouse 
hypothalamic arcuate nucleus pinpoints human 
genomic regions associated with body mass index 
Harry MacKay1, Chathura J. Gunasekara1, Kit-Yi Yam2, Dollada Srisai2, Hari Krishna Yalamanchili1,3,4, 
Yumei Li5, Rui Chen5, Cristian Coarfa6,7, Robert A. Waterland1,8*

Recent genome-wide association studies corroborate classical research on developmental programming indicating 
that obesity is primarily a neurodevelopmental disease strongly influenced by nutrition during critical ontogenic 
windows. Epigenetic mechanisms regulate neurodevelopment; however, little is known about their role in estab-
lishing and maintaining the brain’s energy balance circuitry. We generated neuron and glia methylomes and tran-
scriptomes from male and female mouse hypothalamic arcuate nucleus, a key site for energy balance regulation, 
at time points spanning the closure of an established critical window for developmental programming of obesity 
risk. We find that postnatal epigenetic maturation is markedly cell type and sex specific and occurs in genomic 
regions enriched for heritability of body mass index in humans. Our results offer a potential explanation for both 
the limited ontogenic windows for and sex differences in sensitivity to developmental programming of obesity 
and provide a rich resource for epigenetic analyses of developmental programming of energy balance.

INTRODUCTION
The global prevalence of obesity has increased rapidly in recent de-
cades to affect more than 2 billion people, making it one of the largest 
contributors to poor health worldwide (1). Classic studies in both 
rodents (2) and humans (3) show that nutrition during critical early- 
life periods can permanently alter energy balance regulation, 
predisposing to obesity (4–7). Such phenomena are known as 
developmental programming. More recently, large genome-wide 
association studies (GWAS) have corroborated a developmental 
origin for obesity by discovering that GWAS variants associated 
with adult body mass index (BMI: kilograms per square meter) are 
strongly enriched for neurodevelopmental genes (8, 9) and chromatin 
marks in fetal brain (10). Accordingly, and consistent with previous reports 
(11, 12), we suggest that it may be useful to consider obesity as a 
neurodevelopmental disease. This proposal is supported by recent 
data on maternal obesity; currently, one-third of all reproductive-age 
women in the United States are obese (BMI ≥ 30) (13). Extensive 
human (14) and animal model data (15, 16) indicate that maternal 
obesity during pregnancy and/or lactation promotes obesity in her 
offspring, potentially leading to transgenerational amplification of 
obesity. Maternal obesity additionally appears to increase the risk of 
neurodevelopmental outcomes including attention deficit hyperac-
tivity disorder and autism spectrum disorder (13, 17). The increasing 
prevalence of maternal obesity in the developed world in recent de-
cades is mirrored by increases in the prevalence of these disorders 
(18, 19), suggesting that the establishment of energy balance regulation 

is one of several neurodevelopmental outcomes that are adversely 
affected by maternal obesity.

Like obesity, neural tube defects including spina bifida and 
anencephaly are developmental outcomes that are influenced both 
by genetics and by nutrition during a critical ontogenic period. The 
success of population-level intervention to prevent neural tube defects 
suggests a model for primary prevention of obesity. In particular, a 
link with dietary folate had been known for decades, but the discovery 
that neural tube closure is an early embryonic event made it clear 
that prevention would require dietary fortification at the population 
level (20). Analogously, because neurodevelopment is intimately 
dependent on epigenetic mechanisms (21–23), we propose that 
effective interventions to prevent obesity may depend on a detailed 
understanding of developmental epigenetics within the hypothalamus 
and other brain regions. During developmental periods when epi-
genetic mechanisms are undergoing establishment or maturation, 
transient environmental influences can induce persistent epigenetic 
changes (24, 25). Epigenetic mechanisms may therefore account for 
two hallmarks of developmental programming of energy balance: 
plasticity limited to specific developmental periods of (i.e., critical 
windows) (24) and sex-specific effects (26). Cytosine methylation 
(5mC) and hydroxymethylation (5hmC) constitute the two main 
epigenetic modifications of DNA in the brain, with relatively high 
levels of 5hmC being a unique feature of brain tissue (27). With this 
in mind, we hypothesized that sex-specific postnatal epigenetic 
maturation in the hypothalamic arcuate nucleus (ARH), a key node 
in the energy balance circuitry, defines the ontogeny of the early 
postnatal critical window (2) for developmental programming of 
energy balance regulation and obesity risk. Because previous studies of 
hypothalamic developmental epigenetics (28–31) lack the temporal-, 
regional-, cell type–, and/or sex-specific resolution required to 
evaluate this question, we used unbiased genome-wide approaches 
to screen for sex-specific epigenetic development in postnatal ARH 
neurons and glia. Our results document marked sex differences in 
epigenetic maturation in the ARH, supporting our hypothesis. 
Unexpectedly, we find that human orthologs of murine genomic 
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regions undergoing sex-specific epigenetic maturation in ARH neu-
rons are enriched for genetic variants associated with BMI, impli-
cating developmental epigenetics at the nexus of genetic and early 
environmental risk factors for obesity.

RESULTS
Sex-specific epigenetic development in ARH neurons
If the postnatal day 21 (P21) closure of the critical window for de-
velopmental programming of energy balance regulation in rodents 
(2) is dictated by epigenetic maturation in the ARH, important 
epigenetic development in ARH neurons and/or glia must occur 
around this time. Accordingly, at ages flanking P21 (P12 and P35), 
we used microdissection and fluorescence-activated nuclear sorting 
(FANS) followed by whole-genome bisulfite sequencing (WGBS) 
and RNA sequencing (RNA-seq) to comprehensively profile changes 
in DNA methylation/hydroxymethylation and gene expression in 
ARH neurons and glia of male and female mice (n = 3 to 5 per cell 
type, age, and sex combination, with a total of N = 34 libraries for 
WGBS and N = 39 libraries for RNA-seq; table S1). Because WGBS 
does not distinguish between 5mC and 5hmC, we will refer to 
steady-state measures as methylation/hydroxymethylation but con-
tinue to refer to comparative measures as differential methylation 
(5mC) to simplify the text, acknowledging that changes in methyl-
ation may stabilize as either of the two marks. Our deep WGBS data 
achieve an average autosomal per-CpG read depth of 77× within 
each cell type, age, and sex group (Fig. 1A; fig. S1, A and B; and table 
S1). The differentially methylated regions (DMRs) that we detected 
between neurons and glia in the ARH overlap substantially with those 
detected in the mouse cortex (fig. S1C) (23). In addition, of the seven 
neuron-versus-glia DMRs that we previously validated by pyro-
sequencing in the cortex (32), a total of six (86%) were also detected 
in the ARH (2 = 9.55, P < 0.01), supporting the reliability of our 
WGBS data. Consistent with observations in the cerebral cortex (23), 
average autosome-wide CpH methylation/hydroxymethylation in-
creased from P12 to P35 in ARH neurons; average autosome-wide 
CpG methylation/hydroxymethylation did not change (fig. S1D). We 
focused our analysis on methylation/hydroxymethylation within the 
CpG context because of its enrichment in regulatory regions (23) 
and amenability to read-level methylation analysis (33). Unsupervised 
clustering of genome-wide transcriptomic and CpG methylation/
hydroxymethylation data (Fig. 1B) grouped samples primarily by 
cell type; transcriptomic data on ARH neurons additionally segre-
gated by age. Of the 18,996,589 autosomal CpGs covered, more than 
25% were differentially methylated between neurons and glia; just 
more than 1% showed effects of age and sex, respectively (fig. S1E). 
In both ARH neurons (Fig. 1, C and D) and glia (fig. S1F), however, 
many maturational changes from P12 to P35 were sex specific.

In fact, when we integrated across proximal CpGs to identify 
maturational DMRs (mDMRs), most (65.3 and 82.1%) were sex 
specific in neurons (Fig. 1, E and F; and table S2) and glia (figs. S1G 
and S2A), respectively. We identified mDMRs showing a minimum 
absolute methylation difference of 5% and false discovery rate 
(FDR) < 0.05. Consistent with the CpG-level analysis (Fig. 1C), 
most mDMRs show methylation increases, of median range of 12 to 
15% (Fig. 1E). We asked to what extent sex-specific mDMRs reflect 
different developmental trajectories. In neurons, at 40.5% of male- 
specific mDMRs, methylation in females had already reached the 
mature level by P12 and was stable thereafter (fig. S2B); we term 

these “female-precocious mDMRs.” Among female-specific DMRs, 
on the other hand, only 14.8% were male-precocious (fig. S2C). This 
indicates that a substantial component of epigenetic maturation in 
ARH neurons is completed earlier in females than in males. In glia, 
epigenetic maturation was largely distinct from that in neurons 
(fig. S2A) but likewise showed extensive sexual dimorphism and 
a bias toward female precocity (38.5 versus 22.2%, respectively; 
fig. S2, D and E).

Whereas we did study neurons and glia separately, ARH neurons 
are themselves heterogeneous, consisting of subpopulations defined 
by the expression of Agrp, Pomc, Kiss1, Ghrh, and others (34). Epi-
genetic maturation occurring only in ARH neuronal subtypes (Fig. 2A) 
may not be detected by conventional DMR callers. We therefore 
reanalyzed our WGBS data using cluster-based analysis of CpG 
methylation (CluBCpG), which partitions the genome into 100–base 
pair (bp) bins to detect clusters of read-level methylation patterns 
representing different cell types (33). By far, the predominant 
cluster-level change in ARH neurons from P12 to P35 was the 
formation of fully methylated (100%) read clusters (Fig. 2B), which 
occurred more frequently in males than in females. Results in glia 
(fig. S3A) were similar (table S3). In contrast to mDMR bins, in 
which methylation changes occur at any number of CpGs in the bin, 
those enriched for fully methylated reads tended to gain methylation 
at just one CpG site in an epiallele cluster, bringing it to full methyl-
ation (Fig. 2, C and D, and fig. S3, B to D); we therefore term these 
“topped-off clusters” (TOCs) (Fig. 2D). TOCs exhibited higher rates 
of sex specificity than mDMRs (88.86 and 92.4% in neurons and glia, 
respectively). Accordingly, we focused our analysis on sex-specific 
TOCs. These show little overlap with mDMRs (Fig. 2E) and very 
different associations with genic features. Specifically, whereas neu-
ronal mDMRs are strongly associated with CpG islands (CGIs) up-
stream and downstream of genes, TOCs are depleted within CGIs 
but enriched in all non-CGI genic contexts (fig. S3E). Our inter-
pretation is that TOCs represent genomic regions targeted for post-
natal maturational “topping off” of methylation within specific ARH 
neuronal and glial subtypes.

We next asked to what extent maturational methylation changes 
affect gene expression over this same postnatal epoch. Compared 
to the 9968 differentially expressed genes (DEGs) between neurons 
and glia, there were only 863 maturational DEGs (P35 versus P12) 
in neurons and far fewer sex DEGs (fig. S4, A to C, and table S4). 
Unlike cell type–specific methylation differences near transcription 
start sites, which were negatively correlated with gene expression 
differences, the widespread methylation changes from P12 to P35 
(Fig. 1C) were not clearly correlated with expression changes (fig. 
S4, D and E). This suggests that, rather than regulating steady-state 
expression, postnatal epigenetic maturation in the ARH regulates 
gene expression potential, enabling adult-like responses to circulating 
hormones and nutrient signals.

Postnatal epigenetic maturation is associated 
with the response to food restriction
To explore the function of postnatal epigenetic maturation in the 
ARH, we analyzed gene ontology (GO) terms associated with mDMRs 
(Fig. 3A and fig. S5A). In neurons, among mDMRs reflecting methyl-
ation increases (the majority; Fig. 1E), those common to both sexes 
were associated with stem cell differentiation, consistent with com-
mitment to developmental fate (Fig. 3A). Those specific to males 
were associated with glutamatergic synapses (Fig. 3A), providing a 
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potential explanation for the elevated excitatory tone in female versus 
male proopiomelanocortin (POMC) neurons (35, 36).

Neuronal differentiation involves stage-specific methylation changes 
at enhancers and transcription factor (TF) binding sites, epigeneti-
cally “priming” cell type–specific patterns of methylation-sensitive 

enhancer activity and TF binding (23, 37–40). Consistent with ob-
servations in the mouse cortex (23, 41), both mDMRs and TOCs 
were enriched for various sets of brain enhancers (fig. S5D). We 
next asked whether neuronal mDMRs are enriched for TF binding 
motifs. mDMRs undergoing methylation increases were enriched 
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for binding motifs of neurodevelopmental TFs in the Lhx, Dlx, and 
Sox families (Fig. 3B, bottom section) involved in hypothalamic de-
velopment (42–44). Those that lost methylation, on the other hand, 
were enriched for binding motifs of key immediate early gene TFs 
that are markers for neuronal activity (Fig. 2B, top section), including 
AP-1, Fos, Jun, Egr, and Atf (45). Notably, half of these are tran-
scriptionally regulated in AgRP neurons in response to food depri-
vation (Fig. 3B) (46) versus only one of the TFs associated with 
methylation gains (2 = 10.16, P < 0.01; Fig. 3B). TF chromatin 
immunoprecipitation sequencing (ChIP-seq) data from the brain 
(fig. S5B) corroborated the motif-based analysis. These data suggest 
that postnatal maturation of the transcriptional response to fasting 
(a key function of ARH neurons) involves targeted demethylation 
at binding sites for fasting-induced TFs. Compared to mDMRs, the 
TOCs identified by our read-level analysis showed markedly similar 
patterns of enrichment and depletion of TF binding motifs in both 
male (Fig. 3C) and female neurons (fig. S5C), supporting our inter-
pretation that TOCs represent cell type–specific mDMRs. Although 
both mDMRs and TOCs are largely sex specific, associations with 
TF binding do not show substantial sex differences. The ability of 
ARH neurons to regulate energy balance in response to peripheral 
signals develops after the second postnatal week in rodents (47); 
together, therefore, our data suggest a key role for epigenetics in the 
genesis of energy balance regulation.

Sex-specific epigenetic maturation occurs at human GWAS 
loci linked to BMI
A recent meta-analysis of GWAS for BMI comprising data on 
approximately 700,000 individuals found that BMI-associated vari-
ants are enriched among brain-associated and neurodevelopmental 
genes (9). We therefore wondered whether BMI-associated single- 
nucleotide variants (SNVs) are associated with ARH mDMRs. 
Because phenotype-associated genetic variants often affect cell type–
specific genes or regulatory elements (48), we likewise tested for 
associations with TOCs. To confirm that it is reasonable to map 
mouse mDMRs and TOCs to the human genome, we evaluated the 
PhastCons score, a measure of evolutionary conservation, in the ge-
nomic regions we identified, finding that mDMRs and TOCs tend 
to exhibit higher conservation than neuron-versus-glia DMRs 
(table S5). This is particularly compelling given that neuron-versus- 
glia DMRs, which are established in the mouse hypothalamus during 
early postnatal life (28), are highly conserved between mouse and 
human (32, 49), suggesting both that our findings in mice are rele-
vant to humans and that genetic variation in these elements could 
be particularly deleterious to neurodevelopment.

To evaluate, we used stratified linkage disequilibrium score re-
gression (10) to determine whether heritability for a range of traits 
is enriched in human orthologs of mDMRs and TOCs (table S6). 
To control for potential overlap with the 53 baseline epigenomic 
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features from Finucane et al. (10), we first ran this analysis using 
just mDMR and TOC features (Fig. 4A). We then included the 
baseline features from Finucane et al. (10) (baseline-included model; 
fig. S6A). SNV heritability for BMI was enriched in male-specific 

and common mDMRs that gain methylation in postnatal ARH 
neurons (Fig. 4A), a finding that persisted in the baseline-included 
model (fig. S6A). Male-specific neuronal TOCs were strongly associated 
with heritability for height (Fig. 4A) and, in the baseline-included 
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model, both height and BMI (fig. S6A). Concordance between the 
models indicates that variants within mDMR and TOC regions are 
associated with additional heritability beyond that explained by the 
baseline epigenomic features. We considered whether the frequent 
co-enrichment of both BMI and height may reflect that height is 
used in the calculation of BMI. Index SNVs driving associations 
of mDMRs and TOCs with height, however, are generally distinct 
from those driving associations with BMI (fig. S6, C and D). Female- 
specific TOCs in glia (but not neurons) were enriched for heritability 
of BMI in both models (Fig. 4A and fig. S6A) and, in the baseline- 
included model, for pubertal growth (fig. S6A), suggesting a 
previously unrecognized role for ARH glia in sex differences in 
somatic growth.

In addition to overlap with genetic variants associated with BMI, 
we also considered overlap with regions known to exhibit differential 
DNA methylation in the ARH in animal models of postnatal devel-
opmental programming (50–55). Notably, these regions are signifi-
cantly enriched within neuron-versus-glia DMRs, as well as within 
male-specific neuron TOCs (fig. S6, E and F), suggesting that the 
genomic regions we have identified constitute promising targets for 
future epigenetic investigations into the developmental programming 
of energy balance.

DISCUSSION
Our study, the first unbiased, genome-wide, cell type– and sex-specific 
analysis of epigenetic maturation in the mouse ARH, supports the 
hypothesis that the suckling period is a critical window for epigenetic 
developmental programming of energy balance regulation. We show 
that in the mouse ARH, neurons and glia undergo sex-specific 
epigenetic maturation during early postnatal life. These previously 
unknown sex differences echo well-known neuroanatomic and func-
tional sexual dimorphism in the hypothalamus. Relative to males, 

female rodents have more axosomatic and fewer axodendritic syn-
apses onto ARH neurons (56) and are more responsive to leptin (57), 
both of which are stable sexual dimorphisms established in early 
postnatal life. Females also have more POMC neurons, express 
higher levels of POMC, and have greater numbers of excitatory gluta-
matergic synapses onto POMC neurons (36). Although less studied 
in the context of energy balance, ARH glia are also sexually dimorphic. 
Compared to males, female rats have simpler astrocyte morphology 
in the ARH (58) and, in the hypothalamus, a reduced inflammatory 
response to high-fat diet (59). By studying the developmental dy-
namics of CpG methylation, we were able to show that epigenetic 
development of the ARH is advanced in females relative to males, 
expanding upon previous observations of sex differences in hypo-
thalamic methylation (31, 60).

Critical windows for environmental influences on epigenetic 
regulation coincide with ontogenic periods when DNA methylation 
is undergoing developmental establishment or maturation (24, 25). 
Disruption of these maturational processes offers a potential expla-
nation for the persistence and sex specificity of developmental pro-
gramming by postnatal nutrition (Fig. 5) (26). Our results also provide 
mechanistic insight into the function of postnatal epigenetic devel-
opment in the ARH. Binding sites for TFs in the Lhx, Dlx, and Sox 
families gain methylation in ARH neurons postnatally (Fig. 3B). 
These TFs are associated with neuronal differentiation, migration, 
and neurite outgrowth (61–63) and specify subtypes of ARH neu-
rons (42). At the same time, binding sites for TFs such as Fos, Egr1, 
Jun, and others lose methylation in ARH neurons. These activity- 
dependent immediate early genes, many of which are regulated by 
fasting in AgRP neurons in the ARH (46), organize rapid transcrip-
tional responses to stimulus-induced neural activity (64). Because 
TF binding is frequently methylation sensitive (38), together, these 
observations indicate that postnatal epigenetic maturation in ARH 
neurons reprograms transcriptional regulatory networks, silencing 

A B

C

D

−
Lo

g 10
P

0

5

10

15

20

103,700,000chr7: 103,800,000

RELN

rs2299383

rs825680

0

2

4

6

73,500,000 73,600,000

−
Lo

g 10
P

chr16:

ZFHX3

Male-specific neuron P35 > P12 mDMRs
rs1263627

0.0

2.5

5.0

7.5

10.0

207,050,000chr2: 207,150,000

−
Lo

g 10
P

KLF7

Anthropometric

Male
Female

TOCs

mDMRs P35 > P12Neurons

mDMRs P35 < P12

Common
Male

Female

Common
Male

Female

Other

B
od

y 
m

as
s 

in
de

x 
(B

M
I)

H
ei

gh
t

O
be

si
ty

 (
cl

as
s 

1)

O
ve

rw
ei

gh
t (

st
ag

e 
1)

P
ub

er
ta

l g
ro

w
th

W
ai

st
-h

ip
 r

at
io

A
lz

he
im

er
’s

 d
is

ea
se

A
no

re
xi

a 
ne

rv
os

a

C
or

on
ar

y 
ar

te
ry

 d
is

ea
se

E
cz

em
a

F
em

or
al

 n
ec

k 
bo

ne
 d

en
si

ty

M
aj

or
 d

ep
re

ss
iv

e 
di

so
rd

er

A
ge

 o
f m

en
ar

ch
e

A
ge

 o
f m

en
op

au
se

B
ip

ol
ar

 d
is

or
de

r

S
ch

iz
op

hr
en

ia

R
he

um
at

oi
d 

ar
th

rit
is

T
yp

e 
2 

di
ab

et
es

U
lc

er
at

iv
e 

co
lit

is

Y
ea

rs
 o

f e
du

ca
tio

n

Log2 enrichment

0

2.5

5.0

7.5

10

Male
Female

TOCs

mDMRs P35 > P12Glia

mDMRs P35 < P12

Common
Male

Female

Common
Male

Female
* *

*

**
*** * **

*

* ***
** * *

*
** ** *

***
***

*
**

***
**

*
**

*
*

**
*

**
* *

Fig. 4. Regions of sex-specific epigenetic maturation in mouse ARH are enriched for heritability of BMI in humans. (A) Significant enrichment of BMI-associated 
GWAS SNVs in mDMRs and TOCs as computed by stratified LD score regression. Only enrichments remaining significant after Benjamini-Hochberg correction are shown. 
(B to D) Examples of overlaps between TOCs or mDMRs and NHGRI index SNVs associated with BMI. Human orthologs of mDMRs and TOCs (±1 kb) are indicated by 
vertical gray bars. Benjamini-Hochberg–adjusted P values for SNV-BMI associations obtained from (9). *P < 0.05, **P < 0.01, and ***P < 0.001.



MacKay et al., Sci. Adv. 8, eabo3991 (2022)     28 September 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  R E S O U R C E

7 of 13

those previously required for neural growth and differentiation and 
derepressing those responsive to acute energy balance states. This 
maturation of gene expression potential may explain why mDMR 
methylation changes were generally not associated with gene ex-
pression. Elucidating such associations may require perturbations, 
such as fasting, designed to elicit hormonal and nutritional signal-
ing from the periphery.

GWAS results strongly indicate a neurodevelopmental etiology 
for obesity (8, 9). Our data indicating that sex- and cell type–specific 
epigenetic development in the ARH occurs in genomic regions 
associated with heritability of human BMI provide further evidence, 
ultimately suggesting that adult obesity risk is determined in part by 
epigenetic development in the ARH. This is consistent with the 
observed enrichment of BMI heritability within human fetal brain 
H3K4me3 (10). Our data also corroborate earlier studies indicating 
that neuroepigenetic development and regulatory features are highly 
conserved from mouse to human (32, 65), indicating that the mouse 
provides an apt model for human epigenetic development in the 
ARH. Many targets for postnatal epigenetic development, including 
neuron mDMRs and TOCs, remain significantly enriched for BMI 
heritability even when highly enriched baseline factors such as con-
servation and non–tissue-specific epigenetic features are included 
in the model. This indicates that our findings are not an artifact of 
heightened conservation in regulatory regions.

We believe that public health interventions to curb the worldwide 
obesity epidemic would benefit by considering obesity as a neuro-
developmental disorder. For decades, investigations into the develop-
mental origins of health and disease have documented the outsized 
effects of environmental exposures during early life (3, 4, 66). The 
more recent BMI GWAS data (8, 9) provide independent corrobo-
ration that human obesity is strongly determined during prenatal and 
early postnatal development. Our results provide the novel insight 
that developmental epigenetics are likely involved in both early 
environmental and genetic influences on obesity risk, suggesting that 

improved understanding of these cell type–specific developmental 
processes could offer insights into effective primary prevention of 
obesity. Recently, however, such studies have not been prioritized. 
Instead, research into the epigenetics of obesity has increasingly 
focused on studies of peripheral tissues in humans. For example, a 
genome-scale study screening for associations between peripheral 
blood DNA methylation and BMI concluded that interindividual 
epigenetic differences are a consequence rather than a cause of obesity 
(67). While studies of this sort are valuable in elucidating biomarkers 
and epigenetic sequelae of obesity, they highlight the importance of 
studying the brain to understand the etiology of obesity.

Building a mechanistic understanding of the neuroepigenetic 
basis of obesity will require initial studies in animal models to identify 
the ontogenic periods, brain regions, and cell types involved. The 
technologies needed for this sort of genome-wide, brain region– and 
cell type–specific study of epigenetic development are only recently 
available. The best previous work surveying postnatal epigenetic 
development in the mouse brain (23) used FANS, WGBS, and RNA-
seq to compare neurons and glia from the cerebral cortex of adult 
versus fetal mice. That study, however, was neither designed to re-
solve sex differences in early postnatal epigenetic development nor 
targeted to a brain region central to energy balance regulation. Neu-
ronal DNA methylation differs widely between brain regions (49), 
highlighting the importance of studying regions appropriate to the 
phenotype of interest. Studying sex differences is similarly important, 
as foundational studies focused on the preoptic area of the hypo-
thalamus found that gonadal steroids play a role in establishing sex 
differences in DNA methylation (31, 60), raising the possibility that 
similar mechanisms are at work elsewhere in the brain. A recent 
study of pubertal epigenetic development in the female mouse ARH 
attests to the importance of DNA methylation in mediating postnatal 
hypothalamic development, again pointing to a role for epigenetics 
in mediating sex-specific neurodevelopmental processes, but lacks 
genome-wide coverage and cell type–specific resolution (30). Hence, 
while there is longstanding interest in the idea that the development 
of energy balance regulation involves epigenetic mechanisms in the 
ARH, the lack of a “roadmap” has forced investigators to generally 
focus on candidate genes such as Pomc (68) and Agrp (53). These 
previously studied regions are enriched within our neuron-versus- 
glia DMRs and male neuron TOCs, suggesting that our unbiased and 
sex-specific genome-wide data on neuron- and glia-specific epigenetic 
development in the ARH provide valuable targets for future studies.

Our study is not without limitation. Although we did study neu-
rons and glia separately, these classes are themselves heterogeneous 
(34). Interpreting developmental dynamics in WGBS data is com-
plicated by the possibility that proportions of different cell types 
may change between two time points. This can make it difficult to 
distinguish methylation changes occurring within cells from those 
reflecting shifts in the proportional representation of different cell 
types. In this regard, it is advantageous that hypothalamic neurons 
are postmitotic by P12 (69); hypothalamic glia, however, are still 
a dynamic population at this time, complicating interpretation. 
Read-level analysis of our WGBS data provided evidence of methyl-
ation changes occurring within only specific neuronal subclasses. 
With just two time points, however, we had limited power to decon-
volute methylation dynamics. Future studies obtaining WGBS data 
on many more time points will enable the application of latent-state 
computational models (70) to identify subclasses of ARH neurons 
following distinct developmental trajectories.
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As noted above, conventional bisulfite sequencing cannot dis-
tinguish between cytosine methylation and hydroxymethylation. 
Accordingly, steady-state methylation at any given region could be 
a combination of both methylation and hydroxymethylation (27). 
Hydroxymethylation (5hmC) is an intermediate in the Tet-mediated 
demethylation pathway, but accumulating evidence indicates that it 
also acts as an epigenetic mark (71, 72). Compared to 5mC, 5hmC 
is relatively enriched in cis-regulatory elements and may play a role 
in regulating neural cell type–specific gene expression (27). Previ-
ous studies in the mediobasal hypothalamus show that Tet expres-
sion and enzymatic activity decline substantially by P25 in mice 
(60), suggesting limited formation of 5hmC in the ARH within the 
ontogenic window we studied. However, we do observe evidence of 
modest demethylation from P12 to P35 (Fig. 1, E and F), and this 
could be an underestimate owing to the inability to distinguish 5mC 
from 5hmC. In contrast, because unmethylated cytosine is not a 
substrate for hydroxylation by Tet enzymes, methylation increases 
from P12 to P35 (the vast majority of features we identified; 
Fig. 1, C to F) must reflect actual gains in 5mC; whether these stabi-
lize as 5mC or 5hmC, however, remains to be determined (Fig. 5). 
Future studies incorporating measures of 5hmC and including 
additional time points flanking ours would be valuable to address 
this. As another potential limitation, our study focused on the 
C57BL/6 mouse, the most widely used laboratory strain. While 
approximately half of mDMRs exist in genomic regions that are 
conserved between mice and humans (table S5), and neuron- 
versus-glia differential methylation is conserved between mice and 
humans (32), methylation differences do occur between strains (73), 
so epigenetic maturation may also differ. Given the wide range of 
variation in energy balance phenotype between strains (74), a com-
parative approach would be informative. Last, sex differences in 
neuroepigenetics are evident at birth, around the time of the go-
nadal hormone surge (60), and continue to evolve into adulthood 
(75), necessitating a more detailed ontogeny to fully understand 
observations such as precocious epigenetic development in fe-
males, which could help explain differential vulnerability to obe-
sity (76), and developmental programming (26, 77, 78) in females, 
as well as the sex-specific genetic architecture of disease risk (79, 80) 
in general.

Our data provide a framework and novel set of candidate regions 
for both investigating the epigenetic basis of developmental pro-
gramming and translating findings from rodent models to humans. 
The overlap with human BMI GWAS SNVs points to the need to 
determine when analogous developmental neuroepigenetic processes 
occur in humans, which would point to the optimal time for inter-
vention. Of major concern in humans, long-term effects of ma-
ternal obesity during offspring fetal development (81) may lead 
to transgenerational amplification of obesity (15). Because many 
neuro developmental processes that occur postnatally in mice occur 
during late fetal development in humans, it is possible that the 
ARH neuroepigenetic maturation we describe here occurs in utero 
in humans.

In summary, our study, built on the premise that obesity is a 
neurodevelopmental disorder, highlights the power of a develop-
mental neuroepigenetic perspective to contextualize GWAS results 
and identify ontogenic processes vulnerable to developmental pro-
gramming. As obesity remains a major public health challenge, we 
hope that our work will invigorate efforts to understand develop-
mental determinants of obesity risk.

MATERIALS AND METHODS
Animals
This study was approved by the Institutional Animal Care and Use 
Committee of Baylor College of Medicine and Vanderbilt University, 
and animals were maintained in accordance with federal guidelines. 
Female C57BL6/J mice aged 2 to 4 months were mated and singly 
housed with ad libitum access to food and water for the duration of 
pregnancy and lactation. Litters of six to nine pups were used for 
this study. ARH was microdissected as described in (82) from brains 
collected at P12 and P35 from randomly selected male and female 
mice (n = 1 per sex per litter). ARH microdissections were pooled to 
generate five independent tissue pools with n = 4 mice each per 
age and sex, yielding a total of 20 tissue pools. Tissue pools were 
flash-frozen on dry ice and stored at −80°C.

Tissue preparation
NeuN immunolabeling and FANS were carried out as previously 
described (82). Pooled ARH microdissections were dissociated by 
Dounce homogenization. Nuclei were purified by ultracentrifugation 
on a 1.8 M sucrose column (100,000 rcf). Pelleted nuclei were 
collected and stained using rabbit anti-NeuN (1:4000; Millipore, 
ABN78) followed by Alexa Fluor 488–conjugated goat anti-rabbit 
immunoglobulin G (1:2000; Thermo Fisher Scientific, A-11008) and 
the nucleic acid dye TO-PRO-3 as a counterstain (1:1000; Thermo 
Fisher Scientific). Sorting was performed on the Sony SH800 Cell 
Sorter (Sony Biotechnology). FSC (Forward scatter) and SSC (Side 
scatter) gates were set to exclude debris and non-nuclear material, 
and TO-PRO-3 nuclear gating was used to collect single nuclei only 
(fig. S1A). Sorted nuclei were pelleted and frozen on dry ice and stored 
at −80°C. DNA was extracted from sorted nuclei using the AllPrep 
DNA/RNA Micro Kit (QIAGEN) according to the manufacturer’s 
directions. RNA was collected from flow-through after DNA isolation 
using TRIzol LS according to the manufacturer’s instructions (Thermo 
Fisher Scientific). DNA was eluted from columns using two rounds 
of 50 l of nuclease-free H2O (pH 8.0), dried in SpeedVac (Eppendorf), 
and then resuspended in 12 l of TE buffer (pH 8.0). DNA and 
RNA were quantitated by PicoGreen and NanoDrop, respectively.

RNA sequencing
Libraries for RNA-seq were prepared using the SMART-Seq v4 
Ultra Low Input kit (Takara Clontech) according to the manufac-
turer’s instructions (82). RNA was incubated with lysis buffer for 
5 min. First-strand complementary DNA (cDNA) synthesis was 
performed using the included 3-SMART-seq CDS primer II and V4 
oligonucleotide. cDNA was amplified using polymerase chain reac-
tion (PCR) Primer II A and subsequently purified using AMPure XP 
beads (Beckman). Illumina libraries were prepared using a Nextera 
XT DNA library preparation kit (Illumina) and sequenced on the 
Illumina HiSeq 2500 platform generating 100-bp paired-end reads.

Whole-genome bisulfite sequencing
Tagmentation-based WGBS library preparation was performed as 
previously described (82, 83) using 50 to 100 ng of mouse genomic 
DNA. After adapter preannealing and transpososome assembly, 
DNA was tagmented by adding the assembled transpososome and 
incubating at 55°C for 8 min. Following purification using SPRI 
beads, oligonucleotide replacement and gap repair were performed 
using Ampligase and T4 DNA Polymerase. The product was puri-
fied using SRPI beads and followed by bisulfite treatment using the 
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EZ DNA Methylation Gold Kit (Zymo Research). Libraries were 
generated by PCR amplification using KAPA 2G robust hotstart 
ready mix. After purification using SPRI beads, libraries were diluted 
and sequenced on a NovaSeq 6000 platform generating 150-bp 
paired-end reads.

RNA-seq analysis
Read quality was analyzed before and after trimming using Fastqc 
(v0.11.5). RNA-seq reads were aligned to the mouse reference genome 
GRCm38v23 using STAR v2.7.9a (84). Reference sequence and 
annotations were downloaded from GENCODE portal. Genome 
was indexed using STAR by setting --runMode to genomeGenerat. 
Gene expression values from each sample were quantified as the 
number of reads mapped (to a specific gene) by setting --quantMode 
to GeneCounts. --outFilterScoreMinOverLread and --outFilterMatchN-
minOverLread were set to 0.3. Sample numbers used in the final 
analysis are glia_f_12 = 5, glia_m_12 = 5, glia_f_35 = 5, glia_m_35 = 5, 
neuron_f_12 = 5, neuron_m_12 = 5, neuron_f_35 = 5, and 
neuron_m_35 = 4. Normalization and differential expression 
testing were performed using DESeq2 (v1.28.1) using cell type, age, 
and sex as factors (85). Pairwise comparisons were made using 
the apeglm package for log2 fold change shrinkage (86). Significant 
DEGs were defined as those with abs(log2FoldChange) > 1 and 
Benjamini-Hochberg–adjusted P value of <0.05.

WGBS analysis
FASTQ files were quality-trimmed using TrimGalore (v0.4.4) with 
a minimum Phred score of 20 and a minimum posttrimming read 
length of 50. Read quality was analyzed before and after trimming 
using Fastqc (v0.11.5). Libraries were deduplicated using Picard 
(v2.10.10). Trimmed reads were aligned to the mouse genome (mm10) 
with Bismark (v0.18.1) using the default settings (87). Sample numbers 
used in the final analysis are glia_f_12 = 5, glia_m_12 = 4, glia_f_35 = 4, 
glia_m_35 = 4, neuron_f_12 = 5, neuron_m_12 = 4, neuron_f_35 = 5, 
and neuron_m_35 = 3. Autosomal CG, CHG, and CHH methylation 
calls were gathered from Bismark output and used to assess broad 
developmental changes in cytosine methylation using unpaired 
two-sided t tests. Differentially methylated CpG loci (DMLs) were called 
using DSS (88) first using the general experimental design with cell 
type, age, and sex as factors to determine the relative contribution 
of each to the per-CpG methylation state, followed by pairwise compari-
sons between P12 and P35 libraries separated by cell type and sex. 
Only CpGs with at least five reads per library were considered. Across 
all autosomal CpGs, the average depth for individual libraries was 
16.6× (± 5.2) and for combined library groups was 77.3× (± 13.8). 
Libraries with less than 10× average depth across all autosomal CpGs 
were excluded from analysis. DMRs were called from pairwise DML 
comparisons using DSS with an FDR threshold of 0.05 and a minimum 
absolute differential methylation cutoff of 5%. DMRs were annotated 
to UCSC gene features with promoter and 3′ regions defined as 
regions respectively flanking the TSS (Transcription Start Site) and 
TES (Transcription End Site) by 3 kb. The upstream and downstream 
annotations correspond to the 7 kb up- or downstream of the 5′ or 3′ 
flank of the promoter and 3′ annotation, respectively. Unless otherwise 
noted, all methylation analyses are conducted solely on autosomes.

Initial clustering of WGBS and RNA-seq data
CpGs meeting coverage criteria were grouped into 1-kb genomic bins. 
Average autosomal bin-level methylation was calculated for each 

sample. Before clustering, the first principal component was removed 
from the dataset using the removePrincipalComponents function 
in the WGCNA (v.1.70.3) package. Surrogate variable analysis was 
conducted using the R package sva (v.3.36.0) to remove bins with 
>0.25 probability of being associated with one or more latent vari-
ables (pprob.gam) and more than >0.75 probability of being associ-
ated with one or more of cell type, age, or sex (pprob.b), yielding 
706,217 of 1,405,375 1-kb bins used for clustering. The R package 
umap (v.0.2.7.0) was used to cluster scaled methylation values with the 
following settings: min_dist = 0.25, spread = 0.5, and n_components = 
2. This analysis was repeated on RNA-seq data with pprob.gam < 0.5 
and pprob.b > 0.5, yielding 18,260 of 26,578 transcripts used for 
umap clustering.

Comparison with cortical DMRs
CpG methylation calls were obtained from mouse frontal cortex 
neurons and glia (23). This dataset was first lifted over to mm10 and 
then processed through our DSS pipeline using the same depth, sig-
nificance, and differential methylation cutoff criteria as our ARH 
neurons and glia to obtain neuron-versus-glia DMRs in the cortex. 
DMR sets were first reduced to include only those overlapping re-
gions meeting read depth criteria in both ARH and cortex datasets. 
The statistical significance of overlap between cortical DMRs and 
our ARH DMRs was calculated using R package LOLA (v.1.18.1) 
(89) with all CpG-bearing 100-bp genomic bins meeting coverage 
criteria in both ARH and cortex as the universe region set. Mouse 
cortical neuron-versus-glia DMRs and nondifferentially methylated 
control regions were validated by bisulfite pyrosequencing in (32). 
These genomic regions were lifted over to mm10 and compared 
with our ARH neuron-versus-glia DMRs using a chi-square test 
of independence.

Correlation of DNA methylation and gene expression
Per-sample methylation values within DMR loci were correlated 
with per-sample gene expression values in TSS-flanking bins using 
Spearman correlation. Scrambled correlations were generated as a 
control using random DMR-gene pairings. To illustrate the relation-
ship between methylation and expression in promoter regions, several 
representative correlations were chosen from promoter DMRs in 
the neuron-versus-glia and common neuron mDMR context. Only 
sample pools for which both RNA-seq and WGBS data were avail-
able were used in this analysis (table S1).

CluBCpG analysis
Read-level analysis using the CluBCpG package was preceded by 
random forest imputation of missing methylation calls from reads 
mapped to nonoverlapping 100-bp bins genome wide [Precise 
Read-Level Imputation of Methylation (PReLIM)] (33). This yielded a 
total of 3,793,207 covered autosomal bins in neurons and 3,793,867 
in glia. Sample libraries with the same cell type, age, and sex were 
combined, yielding merged libraries for comparison using CluBCpG.  
The original implementation of CluBCpG was designed to compare 
libraries with roughly equivalent read depths and had no framework 
for making statistical comparisons in epiallele frequency. To account 
for this, we developed a down-sampling approach to read depth 
normalization. For each bin, we identified the merged library with 
the lowest read depth and set that value as the target. Reads from 
merged libraries were resampled 100 times per bin, drawing a number 
of reads equal to that bin’s target. For each bin, we calculated the 
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proportion of the down-sampled reads made up of each epiallele and 
compared this value between libraries. Within each bin, epialleles 
that were significantly more frequent in one library were defined as 
enriched. The statistical significance of this enrichment value was 
determined using two-sided Fisher’s exact test with a significance 
threshold of P < 0.05 for each of the 100 draws, and read clusters 
that were significant on >95% of draws were defined as significantly 
enriched in one library relative to the other. This process was con-
ducted separately in neurons and glia, yielding an average of 54.01 
informative reads per bin in neurons and 54.41 in glia. TOCs were 
defined as bins containing a fully methylated read cluster significantly 
enriched at P35 relative to P12. TOCs were generated in both sexes, 
and overlapping bins were excluded to yield sex-specific TOCs.

Gene enrichment analysis
GO analyses were conducted using the R package clusterProfiler 
(v.3.16.1) (90). For RNA-seq analysis, significant DEGs were used 
as input, while for DMR analysis, genes annotated to promoter DMRs 
were used. Figures were generated using the top 4 most significantly 
enriched GO Biological Process terms.

Genomic overlap and enrichment analysis
Analysis of DMR and TOC enrichment in genomic annotations was 
conducted using the R package LOLA (v.1.18.1) (89) with all covered, 
CpG-bearing 100-bp genomic bins as the universe region set. 
Annotations for ChIP-seq were obtained from the ChIP-Atlas (91) 
neural peak set on 11 November 2020 using a significance threshold 
of q < 1 × 10−10. Annotations for brain enhancers were derived from 
EnhancerDB (obtained on 29 March 2022) and lifted over to mm10 
as needed (92).

TF binding site motif enrichment analysis
We used HOMER (v.4.11.1) (93) to identify enriched motifs from 
the JASPAR CORE 2018 (94) database within our epigenetic matu-
ration features (93). We ran the findMotifsGenome.pl function with 
the following flags: -size given -cpg -nomotif to generate CpG-
matched background sets with the same size distribution as our 
methylation features. Enrichment was calculated as the ratio of motif 
matches in the target sequences to the number of matches in the 
background sequences. To compensate for the different sizes of 
methylation feature sets, enrichment values were scaled within each 
comparison for plotting. Heatmaps were plotted using the top 12 
motifs by Benjamini-Hochberg–adjusted P value for each methyl-
ation feature and split by k-means clustering (k = 2). The proportion 
of fasting-regulated genes in each k-means cluster was tested using 
a chi-square test of independence.

Enrichment of heritability in epigenetic maturation features
DMRs and TOCs were lifted over to hg19 using the UCSC liftOver 
software with a minimum of 50% matching bases, yielding an average 
of 54.62% of DMRs and TOCs successfully aligned to the human 
genome. We conducted stratified LD (linkage disequilibrium) 
score regression using the LDSC software (v.1.0.1) (https://github.
com/bulik/ldsc) (48) to determine the enrichment of trait-associated 
heritability within our DMRs and TOCs. LD scores from a European 
population were downloaded from phase 3 of the 1000 Genomes project 
(https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_
Phase3_plinkfiles.tgz). LD score regression was performed on HapMap3 
single-nucleotide polymorphisms (SNPs) (https://data.broadinstitute.

org/alkesgroup/LDSCORE/weights_hm3_no_hla.tgz) that are in 
the 1000 Genomes set excluding the major histocompatibility com-
plex (MHC) region on chr6. We ran LDSC on all of our neuron and 
glia mDMRs and TOCs with 1-kb flanking regions, with and without 
the 53 “baseline” genomic features described in (10). Sources for 
summary GWAS statistics for traits are given in table S6. Enrichment 
scores and per-trait Benjamini-Hochberg–adjusted P values are 
reported for significantly enriched feature-trait combinations.

Overlap of BMI and height SNPs
NHGRI (National Human Genome Research Institute) index SNPs 
for BMI and height were downloaded from the NHGRI database 
(27 October 2021). Expected overlap was defined as the proportion 
of overlapping BMI and height SNPs across the entire genome. Ob-
served feature-associated overlap was computed in the same way, 
limited to SNPs overlapping mDMR and TOC features. Odds ratio 
was calculated as the ratio of observed, feature- associated overlap to 
expected genome-wide overlap. Two-sided Fisher’s exact test was used 
to test the hypothesis that mDMR and TOC features are enriched 
for SNPs that annotate to both BMI and height.

Comparison with published developmental programming DMRs
The following search terms were entered into PubMed and Google 
Scholar (28 July 2020) to locate articles describing changes in DNA 
methylation in the ARH in response to models of nutritional develop-
mental programming: (developmental programming, early- life, gesta-
tional diabetes, high-fat diet, high-growth diet, litter size, maternal 
diabetes, maternal obesity, maternal overnutrition, obesity, perinatal, 
postnatal, prenatal) + (CpG methylation, DNA methylation, epi-
genetic) + (arcuate nucleus, hypothalamus, mediobasal hypothalamus). 
Articles focusing on DNA methylation in the ARH in response to 
models of early-life programming were selected. Where possible, ge-
nomic ranges of regions showing significant differential methylation 
were extracted, lifted over to mm10 as needed, and expanded to 
a minimum size of 2 kb. To compute enrichment, null distributions 
were generated by creating 100 control sets for each type of DMR 
and TOC. Control sets were generated by randomly selecting, for 
each DMR/TOC, a genomic region of identical size and similar CpG 
density (±10%). Enrichment was calculated by comparing the overlap 
between published DMRs and ARH DMRs/TOCs relative to the mean 
overlap between published DMRs and the corresponding control sets. 
Statistical significance was calculated using a one-proportion Z test. 
Published DMRs included in this analysis are given in table S7.

Software
All statistical analyses were performed in R (4.0.x). In addition to 
those packages listed above, we also used the following packages to 
prepare results and figures: Bsseq (v.1.24.4), data.table (v.1.14.0), 
dplyr (v.1.0.7), forcats (v.0.5.1), fuzzyjoin (v.0.1.6), genomicRanges 
(v.1.40.0), ggplot2 (v.3.3.5), ggpubr (v.0.4.0), pheatmap (v.1.0.12), 
and corpora (v.0.5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo3991
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