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Host and environmental factors shaping gut microbiome 
development have been well defined in term infants1, but 
less well defined in significantly preterm infants. In term 

infants, birth mode2–5 and receipt of breast milk1,5–7 are the main 
factors influencing the gut microbiome over the first year. Related 
work in preterm infants has yielded inconsistent results, potentially 
reflecting smaller cohorts and lack of longitudinal sampling8–10. 
These inconsistencies underscore the need for a focused investi-
gation into the factors influencing normal gut microbiome struc-
ture and function in preterm infants in the absence of intestinal 
pathologies such as necrotizing enterocolitis (NEC) or late-onset 
sepsis (LOS).

Preterm infants born <32 weeks’ gestation will initially be cared 
for on the neonatal intensive care unit (NICU). This unique setting 
plays a crucial role in the acquisition and development of the gut 
microbiome, which has been associated with life-threatening dis-
ease including NEC11–14 and LOS15,16. This has led to increased inter-
est in and use of probiotics in the NICU, although the efficacy of 
probiotics in preventing NEC and LOS remains inconclusive17 and 
the potential benefits from probiotic-mediated NEC, LOS or mor-
tality reduction18,19 need to be balanced against low but important 
risks reported in the literature from contamination and probiotic 
sepsis20–23. Studies exploring the impact of probiotics on gut micro-
biome development are few in the preterm population, but have 

shown that Bifidobacterium spp. in particular are able to colonize 
the gut long term24–26.

In the present study of preterm infants in the absence of intes-
tinal disease or LOS, we aimed to (1) characterize the longitudinal 
development of the preterm gut microbiome throughout their stay 
on the NICU and (2) determine the influence of co-variates on the 
developing bacterial community and function during this critical 
period of early life.

Results
The current metagenomic analysis included a total of 1,431 sam-
ples collected longitudinally from 123 very preterm infants born 
<32 weeks’ gestation during their stay in a single British NICU 
(Extended Data Fig. 1). Samples were collected between birth (day 
of life (DOL) 0) and DOL 120, with the median (interquartile range 
(IQR)) DOL for final sample collection occurring on DOL 57 (43–
77). Infants each contributed a median (IQR) of 11 (9–14) samples. 
Comprehensive demographic information is described in Methods 
and presented in Extended Data Table 1. Most babies received some 
mothers’ own milk (MOM) at some point (92.7%), with receipt of 
formula increasing with age. All samples had known milk expo-
sure (MOM, formula or both) (Fig. 1a) and antibiotic exposure. To 
include infants from before probiotics were introduced, the cohort 
in the present study was admitted over a 10-year period, covering 

Strain-specific impacts of probiotics are a 
significant driver of gut microbiome development 
in very preterm infants
Lauren C. Beck1, Andrea C. Masi1, Gregory R. Young   2, Tommi Vatanen3,4, Christopher A. Lamb   1,5, 
Rachel Smith   6, Jonathan Coxhead6, Alana Butler7, Benjamin J. Marsland   7, Nicholas D. Embleton8,9, 
Janet E. Berrington   1,8,10 ✉ and Christopher J. Stewart   1,10 ✉

The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influenc-
ing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to 
analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks’ gestation) who did not develop intesti-
nal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas 
two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic  
(B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers’ own milk, breast milk fortifier, antibiotics and probiotics 
were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove micro-
biome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and 
significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs 
and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a 
PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, 
some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in 
probiotic products and their impact on host interactions in the preterm gut.

Nature Microbiology | VOL 7 | October 2022 | 1525–1535 | www.nature.com/naturemicrobiology 1525

mailto:j.e.berrington@ncl.ac.uk
mailto:christopher.stewart@newcastle.ac.uk
http://orcid.org/0000-0001-5342-1421
http://orcid.org/0000-0002-7271-4956
http://orcid.org/0000-0001-8104-3720
http://orcid.org/0000-0003-1457-3160
http://orcid.org/0000-0002-6185-2843
http://orcid.org/0000-0002-6033-338X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41564-022-01213-w&domain=pdf
http://www.nature.com/naturemicrobiology


Articles Nature Microbiology

a period before probiotic introduction and during two sequen-
tially administered probiotics. Infants born between 2011 and 2013 
received no probiotics. Probiotics were then introduced to the NICU 
in 2013; Infloran (B. bifidum 1 × 109 colony-forming units (c.f.u.) 
and L. acidophilus 1 × 109 c.f.u.) was supplemented until mid-2016, 
after which Labinic (B. bifidum 0.67 × 109 c.f.u., B. longum subsp. 
infantis 0.67 × 109 c.f.u. and L. acidophilus 0.67 × 109 c.f.u.) was used.

Overview of taxonomy. Non-bacterial microbes were explored 
based on Metagenomic Phylogenetic Analysis (MetaPhlAn; fungi 
and archaea) and VirMap (virus). No archaea and only 11 fungal 
species were detected. Candida albicans and C. glabrata were the 
most abundant and prevalent fungi, but only detected in 26 samples 
(14 infants) and 15 samples (9 infants), respectively. Our method 
allowed detection of DNA viruses, of which only two were detected; 

cytomegalovirus was found in eight samples from seven infants 
and betapolyomavirus was detected in two samples from the same 
infant. In total, 394 bacterial species were identified and thus subse-
quent analysis was focused on bacteria.

Species richness declined slightly over the first 10 d of life, cor-
responding to a loss of aerobic bacteria (Fig. 1b). After day 10, 
species richness increased consistently until NICU discharge and 
Shannon diversity increased exponentially from birth until day 45, 
with a modest increase from day 45 (Fig. 1b). There was a general 
increase in the relative abundance of obligate anaerobic bacteria 
from birth until day 80, after which the gut microbiome consisted 
of approximately 1:1 facultative and obligate anaerobes (Fig. 1c). 
Staphylococci dominated the earliest samples and accounted for 
most of the Gram-positive bacteria during the first month of life. 
Relative abundance of Bifidobacterium (Actinobacteria phylum) 

0.25

0.50

0.75

1.00

0 30 60 90 120

R
el

at
iv

e 
ab

un
da

nc
e

0

0.25

0.50

0.75

1.00

0 30 60 90 120

R
el

at
iv

e 
ab

un
da

nc
e

0.25

0.50

0.75

1.00

0 30 60 90 120

R
el

at
iv

e 
ab

un
da

nc
e

0

0.25

0.50

0.75

1.00

0 30 60 90 120

R
el

at
iv

e 
ab

un
da

nc
e

15

20

25

30

35

0.6

0.9

1.2

1.5

1.8

0 30 60 90 120

R
ic

hn
es

s S
hannon

0

25

50

75

100

0 30 60 90 120

DOL

P
ro

po
rt

io
n 

of
 s

am
pl

es
 (

%
)

a b

c d

e f

MOM + formula MOM only Formula only

Richness

Shannon

Bifidobacteria
Staphylococci
Enterococci
Escherichia spp.
Klebsiella spp.

Gram negative
Gram positive

Actinobacteria

Bacteroidetes

Firmicutes

Proteobacteria

Aerobe
Obligate anaerobe
Facultative anaerobe

DOL

DOL DOL

DOL

DOL

Fig. 1 | Descriptive overview of diet and the preterm gut microbiome in the first 120 d of life (n = 1,431). a, Proportion of samples where infants were 
receiving MOM, formula or MOM and formula. b–f, LOESS fits (95% CIs shaded in grey) over time for richness and Shannon diversity (b), aerobic, 
facultative anaerobic and obligate anaerobic bacteria (c), Gram-positive and Gram-negative bacteria (d), the top four phyla (e) and the top five genera (f).
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increased from birth until discharge and from day 30 was the most 
abundant genus. Escherichia and Klebsiella, both Gram-negative 
organisms from the Proteobacteria phylum, increased in relative 
abundance over the first month of life before gradually declining in 
relative abundance (Fig. 1d,e,f).

Dirichlet’s multinomial mixture (DMM) modelling of bacte-
rial species determined five clusters to be optimal, herein termed 
PGCTs. PGCTs were numbered 1–5 based on the average age of 
samples within that cluster and richness and Shannon diversity 
expectedly increased through each PGCT (Extended Data Fig. 2).  
Enterococci (Enterococcus faecalis and E. faecium) and staphy-
lococci (Staphylococcus epidermidis and S. haemolyticus) dis-
criminated PGCT-1; Escherichia spp. (E. coli and an unclassified 
species) discriminated PGCT-2; Klebsiella spp. (K. oxytoca and an 
unclassified species) discriminated PGCT-3; several bifidobacteria  
(B. longum, B. bifidum and B. animalis) and lactobacilli (L. acidophi-
lus and L. rhamnosus) discriminated PGCT-4; and a single species, 
B. breve, discriminated PGCT-5 (Extended Data Fig. 2c).

Factors shaping the preterm gut microbiome. Shannon diversity 
was significantly associated with DOL, probiotics (no probiotic/
Infloran/Labinic), receipt of MOM (never/during/after), breast 
milk fortifier (BMF, never/before/during/after) and antibiotics 
(antibiotic in past 7 d, no/yes) (Extended Data Table 2). The direc-
tion of the effect is described further in later sections. To deter-
mine co-variates significantly associated with overall bacterial 
profiles, univariate permutational multivariate analysis of variance 
(PERMANOVA) was performed using ‘adonis’. DOL explained 4% 
of the total variance (effect size) in bacterial profiles (P < 0.001) and 
post-conceptional age explained 3.5% (P < 0.001), while unique 
patient identifier explained 1.8% of the variance (P = 0.016).

Antibiotics, MOM, BMF and probiotics were significantly asso-
ciated with bacterial taxonomy at one or more timepoints (Fig. 2a). 
Probiotics were statistically the most significant (all P < 0.05) and 
were associated with the bacterial community at all timepoints, 
except days 0–9 (P = 0.351) which contained samples collected 
largely before administration began on day 7 (Extended Data Table 1).  
Complementary analysis on the functional metabolic capacity of the 
microbiome revealed only probiotics to be significantly associated, 
at days 10–14, 25–29, 30–34, 35–39 and 50–69 (Fig. 2b). Notably, 
gestational age, birthweight, birth mode, formula milk and sex were 

not associated with overall bacterial community composition at the 
taxonomic or functional level.

We further sought to validate these results using a previously 
published metagenomic study by Olm et al.14 containing 86 control 
preterm infants (n = 513 stool samples), not receiving probiotics. 
Although feeding information was less granular than in our study, 
the results were generally consistent between cohorts with no sig-
nificant association of any tested co-variate on the gut microbiome 
(Extended Data Fig. 3).

Role of probiotics in shaping the gut community. Binomial 
mixed-effects models showed that infants who did not receive pro-
biotics were significantly more likely to transition into the Klebsiella 
spp.-enriched PGCT-3 (P = 0.021), which was also associated with a 
lower gestational age at birth (P = 0.043; Fig. 3a and Supplementary 
Table 1). Infants receiving Infloran were significantly more likely 
to transition into PGCT-5 and those receiving Labinic to PGCT-4 
(both P < 0.001; Fig. 3a and Supplementary Table 1). Samples from 
PGCT-4 and PGCT-5 were from a significantly higher DOL (both 
P < 0.001; Supplementary Table 1) and thus reflected the oldest 
infants. PGCT-5 was dominated by B. breve and associated with a 
higher gestational age (P = 0.008; Supplementary Table 1). PGCT-4 
was generally dominated by the species present in Labinic, includ-
ing B. longum, B. bifidum and L. acidophilus, but also B. animalis 
(Extended Data Fig. 2c).

Multivariate Association with Linear models 2 (MaAsLin2) anal-
ysis confirmed that the relative abundance of genera (Supplementary 
Table 2) and species (Supplementary Table 3) present in each pro-
biotic was significantly higher in infants receiving that probiotic. 
Notably, B. breve was significantly associated with Infloran (P < 0.001, 
q = 0.007) and B. animalis was the most significant taxa associ-
ated with Labinic (P < 0.001, q < 0.001), despite these species not 
being named as present in the probiotics (Supplementary Table 3).  
Using culture-based approaches, we were unable to culture B. breve 
from Infloran but were consistently able to culture B. animalis from 
Labinic. Given these results, we considered B. animalis to be present 
in Labinic in subsequent analyses.

Aside from probiotic species, the influence of probiotics on 
other naturally occurring taxa showed a significant increase in the 
relative abundance of E. faecium (P < 0.001, q = 0.004), and a sig-
nificant decrease in the relative abundance of Veillonella parvula 
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(P < 0.001, q = 0.022) and Propionibacterium acnes (P = 0.001, 
q = 0.030) in infants supplemented with Infloran (Supplementary 
Table 3). No non-probiotic species were significantly increased 
or decreased in infants supplemented with Labinic (all q > 0.05; 
Supplementary Table 3).

Strain-level analyses to detect the presence of B. longum subsp. 
infantis was conducted using the B. infantis human milk oligosac-
charide (HMO) gene clusters (H1, H2, H3, H4, H5 and urease), 
whereby samples with >90% of the genes present in those clusters 
were classed as having B. infantis27. B. infantis was detected in 672 
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samples, of which 666 (>99%) were from infants receiving Labinic. 
Additional analysis on the B. infantis HMO gene clusters identified 
homologues present in B. breve, B. bifidum and B. pseudocatenula-
tum (Fig. 3b and Extended Data Fig. 4a). Bifidobacterium spp. were 
also present naturally within the population, with B. breve, B. den-
tium and B. longum identified in infants who never received probi-
otics (Extended Data Fig. 4b).

The impact of the different probiotics is further demonstrated by 
significantly higher Shannon diversity in infants receiving Labinic 
compared with infants receiving no probiotic (P = 0.035) and over-
all microbiome profiles (Fig. 3c,d). We next sought to determine 
the impact on prevalence (defined as a binary yes/no) and persis-
tence (defined as two consecutive samples where the corresponding 
species was detected) of the species contained within each probi-
otic (Methods). Compared with DOL-matched infants who never 
received probiotics, the probiotic species were significantly more 
prevalent before, during and after administration of the respective 
probiotic (Fig. 3e). Comparing between the probiotic groups, the 
prevalence of B. bifidum was significantly higher in Infloran com-
pared with Labinic during (P < 0.001) and after (P < 0.001), but L. 
acidophilus prevalence was comparable before, during and after (all 
P > 0.05). Although not present in Infloran, B. longum was signifi-
cantly more prevalent compared with DOL-matched infants who 
received no probiotic during Infloran treatment (P < 0.001), and  
B. animalis prevalence was highly specific to Labinic exposure  
(Fig. 3e). The analysis of persistence of B. bifidum and L. acidophilus 
after treatment showed further strain-specific differences between 
the probiotics, with no clinical co-variates other than probiotic type 
being significantly associated with the persistence of either spe-
cies (P = 0.001 and P = 0.019, respectively). Analyses also showed 
increased persistence of Bifidobacterium spp. compared with  
L. acidophilus. L. acidophilus did not persist in any infant receiv-
ing Infloran and only in a minority of those receiving Labinic, 
whereas B. bifidum persisted in all infants receiving Infloran 
with non-persistence observed in infants receiving Labinic only 
(Extended Data Fig. 4d,e).

In accordance with taxonomic profiles, probiotics were found 
to be the only co-variate significantly associated with the over-
all functional Enzyme Commission (EC) profile at any timepoint 
(Fig. 2b). However, unlike taxonomic composition where probiotic 
groups were more dissimilar to each other than the no-probiotic 
group (Fig. 3d), functional profiles for infants who took either prod-
uct were more similar than for infants who never took probiotics 
(Fig. 3f), suggesting similar functional potential regardless of which 
probiotic was used. MaAslin2 analysis corroborated these findings, 
with 346/754 (46%) significant EC numbers found to be commonly 
associated with both probiotic products (Supplementary Table 4). 
Among the significantly positively associated EC numbers, a large 
number of glycosylases and ligases involved in forming carbon–
oxygen and carbon–nitrogen bonds were identified. In contrast, the 
relative abundance of numerous oxidoreductases acting on a sulfur 
group and other nitrogenous compounds as donors were found to 
be negatively associated with probiotics.

Functional implication of PGCTs. We next sought to understand 
whether the PGCTs, defined based on microbial taxonomy, were 
associated with the functional capacity of the gut microbiome. 
Analysis of the EC number showed that PGCTs significantly dif-
fer in their overall composition (P = 0.001; Fig. 4a); however, no 
single enzyme or pathway was found to discriminate PGCTs from 
each other. To further explore the functional impact of PGCTs, 
we selected a subset of ten stool samples representative of each 
PGCT (n = 49; one sample failed quality control (QC); Methods) 
and matched serum samples (n = 50) for untargeted metabolo-
mics (Extended Data Table 3). Overall, stool metabolite profiles 
were found to significantly differ between samples based on PGCT 

(P = 0.043; Fig. 4b), whereas matched serum metabolite profiles did 
not (P = 0.151; Fig. 4c).

We next explored specific metabolites significantly enriched 
in PGCT-3 (associated with no probiotic infants) compared with 
PGCT-4/-5 (associated with probiotic infants) and vice versa 
(Supplementary Table 5). In stool, a single unknown metabo-
lite was found to be significantly enriched in PGCT-3 compared 
with PGCT-4/-5 (P < 0.001, q = 0.0493; Supplementary Table 5). 
In serum, a single metabolite, lysophosphatidylcholine 20:3, was 
found to be significantly enriched in PGCT-4/-5 compared with 
PGCT-3 (P < 0.001, q = 0.01; Supplementary Table 6) and there was 
no metabolite correspondingly enriched in both stool and serum.

Last, to explore the impact of small molecules from each PGCT 
on preterm epithelial barrier function, we employed a preterm 
intestinal-derived organoid model from an infant at 25 weeks’ cor-
rected gestation under physiological oxygen conditions. The same 
ten stool samples from each PGCT used for metabolomics were 
used to create sterile faecal supernatants, before being added to dif-
ferentiated intestinal organoid monolayers for 24 h (Methods). We 
confirmed that monolayers remained viable and confluent based 
on the transepithelial electrical resistance (TER) after co-culture 
(median 3,215.5 Ω, IQR 3170.75–3,265.5 Ω) and microscopy 
(Extended Data Fig. 5). Transcriptome profiles from organoids 
revealed a specific host response to each PGCT faecal superna-
tant, with PGCT-4 and PGCT-5 clustering distinctly from the 
other conditions on the x axis (Fig. 4d). This is further supported 
by PGCT-4- and PGCT-5-exposed organoid monolayers showing 
the most differentially expressed genes (DEGs) compared with the 
media controls (Fig. 4e). Due to insufficient DEGs being identified 
for other PGCTs versus control, gene ontology (GO) and enrich-
ment analysis were carried out for PGCT-4- and PGCT-5-exposed 
monolayers only. Grouping genes upregulated in PGCT-4- and 
PGCT-5-exposed monolayers by GO revealed various biologi-
cal processes to be enriched, with a number of cellular and meta-
bolic processes, including cellular protein metabolic processes 
(Supplementary Table 7).

Modulation of the infant microbiome by diet and antibiotics. 
Receipt of BMF, MOM and antibiotics was significantly associ-
ated with Shannon diversity (Extended Data Table 2) and the gut 
microbiome profiles around 1 month of life only (Fig. 2). Shannon 
diversity was significantly higher after receipt of MOM compared 
with never receiving MOM (P = 0.012; Fig. 5a) and was significantly 
reduced in samples where antibiotics had been given in the previous 
7 d (P < 0.001; Fig. 5b).

Samples collected during BMF were more likely to belong to 
Escherichia spp.-dominant PGCT-2 (Supplementary Table 1), have 
higher Escherichia genus (Supplementary Table 2) and an unclas-
sified Escherichia sp. (Supplementary Table 3). Compared with 
infants who never received MOM, the relative abundance of bifi-
dobacteria was significantly higher in samples collected during 
(P = 0.013, q = 0.154) and after (P = 0.006, q = 0.09) receipt of MOM, 
and the relative abundance of staphylococci was significantly lower 
during (P = 0.013, q = 0.157) and after (P = 0.003, q = 0.053; Fig. 5c  
and Supplementary Table 2). Analysis at the species level did not 
find specific Bifidobacterium spp. to be significantly enriched with 
MOM, whereas lower staphylococci were primarily driven by  
S. aureus (Supplementary Table 3). Inverse associations were 
observed in infants who received antibiotics, where receipt of antibi-
otics in the previous 7 d significantly reduced the relative abundance 
of bifidobacteria (P < 0.001, q < 0.001) and increased staphylococci 
(P < 0.001, q < 0.001; Fig. 5d and Supplementary Table 2). At the 
species level, B. bifidum, B. longum and B. breve were significantly 
reduced (all P < 0.01, q < 0.1) and S. haemolyticus, S. warneri and 
S. lugdunensis were significantly increased (all P < 0.01, q < 0.2; 
Supplementary Table 3).
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At a functional level, the relative abundance of a single enzyme, 
a transaldolase (EC 2.2.1.2), was found to be the most significantly 
associated EC number both during and after receipt of MOM 
(Supplementary Table 4). The relative abundance of various other 
transferases was also found to be positively associated during and 
after receipt of MOM, particularly glycosyltransferases and those 
involved in the transfer of one-carbon- and phosphorus-containing 
groups. In contrast, the relative abundance of most of the EC num-
bers was negatively associated with receipt of antibiotics in the past 
7 d, such as enzymes involved in forming carbon–nitrogen bonds 
and transfer of one-carbon groups (Supplementary Table 4). EC 
numbers positively associated with antibiotics include oxidoreduc-
tases acting on sulfur groups and those acting on paired donors.

Discussion
We present the largest longitudinal metagenomic analysis of very 
preterm infants who did not develop intestinal complications 
or sepsis. Where administered, probiotics were the primary fac-
tor influencing the preterm gut microbiome, followed by receipt 
of antibiotics, MOM and BMF. Two different probiotic products 
altered the transition of the microbiome into different PGCTs, both 
characterized by samples collected at the oldest postnatal ages. The 
PGCTs were enriched in different Bifidobacterium spp. and showed 
differences in their functional implications and interaction with the 
host epithelium.

Other findings validated in the Olm et al.14 cohort highlight 
important differences in comparison to term infants2,28,29. Birth 
mode was not associated with the microbiome and the total variance 
explained by co-variates was around tenfold lower than observed in 
term infants1. This suggests that the NICU practices and environ-
ment dominate the preterm microbiome, which is important when 
interpreting findings from different settings.

Over this 10-year observational study, we were able to investigate 
the impact of two different probiotic products that were used during 
discrete time periods and before probiotics were ever used. Once a 
probiotic was in use, probiotic species were detected in stool before 
deliberate administration. This ‘unit cross-contamination’ has been 
seen in previous studies30–32 and has important implications for  
probiotic trial design.

Previous studies in preterm infants have shown probiotics to 
alter the gut microbiome24–26,33,34. In the present study, the probiotic 
product was identified as the main driver in shaping the bacterial 
community at both a taxonomic and a functional level. We showed 
that supplementation of either Infloran or Labinic was associated 
with transition into two different Bifidobacterium spp.-enriched 
PGCTs (PGCT-4 and -5), both of which reflected samples obtained 
from the oldest infants. Previous studies have found Bifidobacterium 
spp.-enriched PGCTs to be associated with positive health out-
comes13, but the functional implications of this have not previously 
been explored.
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To determine the relevance of PGCTs on host–microbe inter-
action, we performed metabolomics on matched stool and serum 
samples, and used an experimental preterm intestinal organoid 
model. Overall, metabolite profiles of stool, but not serum, were 
associated with the PGCT. In addition, sterile faecal supernatants 
containing the metabolites and other components of stool were 
found to impact preterm epithelial response in a PGCT-specific 
manner. Of note, although a healthy section of tissue was used for 
organoid generation, intestinal organoid models derived from pre-
term infants require a patient to have a clinical complication need-
ing surgery (in this case NEC) and so are not healthy individuals. 
The intestinal region (that is, small or large intestine) and maturity 
of the patient may also impact host transcription35. Although further 
work is needed to determine the potential biological significance of 
the functional changes resulting from probiotic administration, this 
demonstrates that transition into different PGCTs, driven by probi-
otic use, has associated functional implications.

It is important to note that excretion of supplemented strains in 
stool collected during treatment does not necessarily imply intes-
tinal colonization. We therefore included assessment of the per-
sistence of strains after stopping probiotics. Several studies have 
shown individual differences in probiotic and transient microbe 
colonization36–38, as well as differences in the persistence of probiotic 
species after treatment, particularly higher persistence of bifidobac-
terial strains compared with lactobacilli24–26. We also observed indi-
vidualized differences in probiotic colonization. All Bifidobacterium 
spp. showed higher persistence compared with L. acidophilus and 
the persistence of B. bifidum and L. acidophilus (that is, the two 
strains present in both probiotics) was dependent on the probiotic 

used. The lower persistence of L. acidophilus may reflect the pre-
term gut ecosystem not being optimal for this species, because it 
is not a commonly abundant or persistent member of the preterm 
gut microbiome24,26,33,39. These results highlight altered short- and 
long-term colonization depending on the probiotics/strains used, 
emphasizing the importance of better understanding of short- and 
long-term impacts at the strain level.

Despite the apparent importance of probiotics in this population 
in providing an early source of Bifidobacterium spp., we also iden-
tified natural Bifidobacterium colonizers, namely B. breve, B. den-
tium and B. longum subsp. longum. It has been widely reported that 
MOM has a bifidogenic effect through the provision of HMOs40–43. 
All Bifidobacterium spp. detected in this preterm cohort have been 
previously shown to utilize HMOs for growth, with notable varia-
tion at the strain level40. Notably, we identified MOM to be asso-
ciated with an increased relative abundance of bifidobacteria and 
decreased relative abundance of staphylococci, whereas antibiotics 
were associated with a decreased relative abundance of bifidobacte-
ria and increased relative abundance of staphylococci.

In summary, we show, in a large and extensively longitudinally 
sampled population of preterm infants, that the choice of probiotic 
product impacted development of the gut microbiome in different 
ways, accelerating transition into Bifidobacterium spp. -dominant 
PGCT-4 or -5, which reflected bacterial communities of the oldest 
samples. In addition, these PGCTs showed differences in their func-
tional implications and interaction with the host epithelium. These 
results help provide a framework and identify important aspects for 
consideration when designing interventional trials targeting the gut 
microbiome of preterm infants.
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Methods
Cohort and study design. The present study included 123 preterm infants born 
at <32 weeks’ gestation without congenital anomaly, early onset sepsis, LOS, 
NEC, focal intestinal perforation or other intestinal pathology. These morbidities 
were excluded because they are most strongly associated with changes in the gut 
microbiome. No statistical methods were used to predetermine sample size,  
but our sample size is larger than those reported in previous publications. As  
an observational, retrospective study, no subject randomization was required.  
Data collection and analysis were not performed blind to the conditions of  
the experiments.

Infants were recruited to the Supporting Enhanced Research in Vulnerable 
Infants Study (SERVIS) with written parental consent covering data and sample 
collection. The study protocol was approved by Newcastle Hospitals NHS 
Foundation Trust, NRES Committee North East and N. Tyneside 2 10/H0908/39, 
and the research complies with all relevant ethical regulations. All work with 
clinical samples, including organoids, is covered within these ethical approvals.

All infants were cared for in the NICU of the Royal Victoria Infirmary, 
Newcastle, with standardized feeding and antibiotic and antifungal guidelines 
(prophylactic fluconazole). The earliest included infants were born in 2011 and 
probiotics were introduced into routine use in 2013. Between 2013 and 2016, 
infants received the probiotic Infloran (B. bifidum 1 × 109 c.f.u. and L. acidophilus 
1 × 109 c.f.u.); then, due to lack of availability, after mid-2016 Labinic (B. bifidum 
0.67 × 109 c.f.u., B. longum subsp. infantis 0.67 × 109 c.f.u. and L. acidophilus 
0.67 × 109 c.f.u.) was used. Stool samples used in the analysis were collected 
longitudinally (n = 1,431) from day 0 until day 120, alongside extensive clinical 
metadata for each infant, including demographics and treatments such as  
feed exposures.

Variables that are fixed through time (for example, gestational age, birth 
mode, sex) are described on a per-infant basis and are thus constant for all 
samples from a given infant. Other variables were categorized to reflect exposure 
in relation to time (for example, antibiotics, receipt of MOM), and therefore are 
on a per-sample basis. Specifically, the clinical variables used were gestational age 
at birth (continuous; range 23–31), birthweight (continuous; range 500–2,000 g), 
birth mode (vaginal/caesarean), sex (male/female), season at birth (winter/spring/
summer/autumn), intravenous antibiotics in the past 7 d (no/yes), day of full feed 
(continuous; range 6–39), MOM (never/during/after), BMF (never/before/during/
after), formula (never/before/during/after), probiotics (no probiotic/Infloran/
Labinic) and weight z-score difference between birth and discharge (continuous; 
range −5.4 to 1.1).

For the persistence analysis (described in more detail in Statistical analysis), all 
co-variates needed to be on a per-infant basis, restricting this analysis to gestational 
age, birthweight, birth mode, sex, season, total number of antibiotic courses, day of 
full feed, BMF ever (no/yes), formula ever (no/yes), probiotics and weight z-score 
change. MOM could not be included in this particular analysis because there was 
only one baby who did not receive MOM in this subset.

Metagenomic shotgun sequencing, taxonomic and functional profiling. DNA 
was extracted from ~0.1 g of stool using the DNeasy PowerSoil Kit (QIAGEN) 
following the manufacturer’s protocol, and sequencing was performed on the 
HiSeq X Ten (Illumina) with a read length of 150-bp paired-end reads. Taxonomic 
profiling of metagenomic samples was performed using MetaPhlAn v.2.0 (ref. 44) 
(bacterial, archaeal and fungal taxonomic classification) and VirMAP v.1.0 (ref. 45)  
(viral taxonomic classification) based on default settings. Functional profiling 
was performed using HUMAnN v.2.0 (ref. 46) based on default settings. Microbial 
enzymes (level-4 EC categories) were quantified by summing the abundances 
of individual gene families mapping to each EC number based on UniRef90-EC 
mapping from UniProt47.

Untargeted metabolomics on stool and serum samples. A subset of ten stool 
samples representative of each PGCT and matched serum were selected for 
untargeted liquid chromatography–mass spectrometry (LC–MS). As PGCTs 
were strongly associated with DOL at sampling, samples were primarily chosen 
to match for DOL between PGCTs to mitigate confounding by age at sampling. 
Other clinical variables were matched in addition, including gestational age, 
birthweight, birth mode and sex. Based on these criteria, no clinical variable 
was significantly different between PGCTs (all P > 0.05; Supplementary Table 5). 
Metabolites from these samples were extracted using a methanol solvent solution, 
supplemented with 1 µM MS internal standards (CAPS, CHAPS and PIPES) and 
5 µM 2,6-di-tert-butyl-4-methylphenol. Serum samples were centrifuged at 800g 
for 5 min, supernatants were collected and the solvent solution was added at a 4:1 
ratio. Samples were shaken for 1 h at 4 °C, centrifuged at 14,000g for 10 min and 
supernatants collected. Liquid from stool samples was evaporated using a Speedvac 
(Thermo Fisher Scientific) and a solvent solution was added at a ratio of 300 µl per 
10 µg. Samples were shaken for 1 h at 4 °C, followed by centrifugation at 14,000g for 
20 min, and supernatants were collected.

The LC–MS data were acquired on a Dionex Ultimate 3000 RS 
high-performance liquid chromatography system (Thermo Fisher Scientific) 
coupled with a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific). 
Chromatographic separation was performed on a ZIC-pHILIC column (5 µm, 

polymeric, 150 × 4.6 mm2, SeQuant, Merck). Mobile phase (A) was 20 mM 
ammonium carbonate and (B) acetonitrile. The gradient programme started at 
80% (B) and reduced to 50% (B) over 15 min, then reduced to 5% (B) over 3 min, 
where washing occurred for 3 min; finally there was an 80% (B) re-equilibration for 
8 min. The flow rate was 0.3 ml min−1 and the column compartment temperature 
was 40 °C. Total run time was 32 min with an injection sample volume of 10 µl. The 
mass spectrometer operated in positive and negative polarity, switching at 35,000 
resolution and 200 m/z with detection range of 85–1,275 m/z in full-scan mode. An 
electrospray ionization source (HESI) was set to 3.5 kV voltage for positive mode 
and 4.0 kV for negative mode, sheath gas was set to 50 and aux gas to 20 arbitrary 
units, capillary temperature 300 °C and probe heater temperature 120 °C. Serum 
samples were analysed as a single batch, as were stool samples. Each sample set 
was randomized to account for system drift. Mixtures of pure authentic standards 
containing approximately 320 metabolites were acquired as separate injections and 
used to confirm retention times.

The raw LC–MS data of both serum and stool samples were independently 
processed as stated in the metabolome–lipidome–MS-DIAL pipeline (Code 
availability) using MS-DIAL v.4.8 (ref. 48). Metabolomic processing was conducted 
in positive and negative ion mode. Default parameters were applied unless 
otherwise stated. Peak detection parameters included a minimum peak amplitude 
of 100,000. Peaks were identified using the MassBank database v.2021.02 (ref. 49) 
with a retention time tolerance (RTT) of 0.1 min, accurate mass tolerance (AMT) 
of 0.002 Da and identification score cut-off of 80%. Peaks were aligned using an 
RTT of 0.3 min and AMT of 0.002 Da, with gap filling by compulsion. MS/MS was 
exported and further processed for secondary annotation using the Global Natural 
Products Social Molecular Networking feature-based molecular networking tool50.

Peak intensity tables were exported from MS-DIAL and the R package pmp 
v.1.6.0 (ref. 51) was used for the following QC and pre-processing steps. Peaks 
were filtered for intensities at least fivefold higher than LC–MS blanks, samples 
with >80% missing values, features with >20% missing values and peaks filtered 
based on the percentage of variation in the QC samples with a maximum relative 
s.d. of 25%. Based on this, one stool sample from PGCT-2 was excluded. Data 
were normalized using probabilistic quotient normalization, followed by Random 
Forest missing data imputation using the missForest R package v.1.4 (ref. 52) and 
subsequent generalized logarithmic (glog) transformation. MS1 data were further 
annotated using the human metabolome database (HMDB, v.4, July 2021)53, with 
an AMT of 0.002 Da. Any unannotated features were removed. The remaining 
dataset was subject to manual feature curation in MS-DIAL, where poor quality 
spectral features were removed.

Preterm intestinal organoid co-culture. A human intestinal organoid line was 
generated from preterm intestinal ileum tissue after surgical resection for NEC54. 
The infant was a boy born at 24 weeks’ gestation and had surgery on DOL 10.

Intestinal organoids (n = 3 technical replicates) were exposed to pooled 
faecal supernatants representing each PGCT and a control containing no faecal 
supernatant. Sterile faecal supernatants were prepared using a modified method 
described elsewhere55. Briefly, ~0.25 g of stool (n = 10) was pooled for each PGCT 
and diluted in 25% (w/v) sterile phosphate-buffered saline before being vortexed 
for 20 min with glass beads. Faecal slurries were centrifuged for 20 min at 1,600g 
and 4 °C, the supernatant was re-centrifuged for 10 min at 14,000g and 4 °C, 
and the resulting supernatant was serially filtered (0.45 µm and 0.22 µm). Faecal 
supernatant was stored at −80 °C until use.

Intestinal organoids were seeded as monolayers on 0.4 µm Transwells 
(Corning) and, after reaching confluence (~2 d), were differentiated for 4 d56.

Co-culture of preterm intestinal organoid monolayers with sterile faecal 
supernatants was performed for 24 h using the organoid anaerobe co-culture 
(OACC) model57. The sterile faecal supernatants were added apically, 
corresponding to the intestinal lumen. The OACC model was used to recapitulate 
the steep oxygen gradient across the epithelium and mimic the low oxygen 
gradient of the ileum. TER was measured at the end of the experiment to confirm 
that all monolayers remained intact and cells were contiguous.

RNA-seq. After 24 h of exposure, RNA was extracted from organoid monolayers 
using the RNeasy kit (QIAGEN) before undergoing RNA-sequencing (RNA-seq) 
at the Newcastle University Genomics Core Facility. One sample from the 
PGCT-5 exposure failed QC and was not included in the subsequent analysis. 
Briefly, stranded messenger RNA-seq libraries were prepared using the TruSeq 
Stranded mRNA kit (Illumina) and IDT for Illumina TruSeq RNA UD Index 
adapters following the manufacturer’s protocol. Libraries were quantified using a 
TapeStation 4200 (Agilent Technologies) and Qubit 4 (Thermo Fisher Scientific) 
and equimolar pooled. The pooled library was sequenced at ~50 million 100 bp  
single-reads per sample on a NovaSeq 6000 using an S2 100 cycle flow cell 
(Illumina). Data for individual samples were demultiplexed into separate FASTQ 
files using Illumina’s bcl2fastq software.

QC of raw reads was performed using fastq_quality_trimmer from the FASTX 
Toolkit v.0.0.14 before being mapped to the human transcriptome (GRCh38.p13) 
using Salmon v.0.13.1 (ref. 58) to estimate transcript abundance. Estimated count 
data were aggregated at the gene level by tximport59 for downstream analysis. 
DESeq2 v.1.32.0 (ref. 60) was used to normalize RNA-seq count data and identify 
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DEGs between PGCT and control replicates. Genes were considered differentially 
expressed if they displayed an absolute positive or negative fold-change of ≥1.5 
and a false discovery rate (FDR)-adjusted P < 0.05. A Venn diagram of DEGs was 
produced using the VennDiagram package v.1.7.1 (https://cran.r-project.org/web/
packages/VennDiagram/index.html).

Statistical analysis. All statistical analyses were performed in R v.4.0.2 (https://
www.r-project.org). Unless stated otherwise, all visualizations were plotted using 
the ggplot2 package v.3.3.2 (ref. 61). Where necessary, data were formally tested for 
normality and equal variances. Shannon diversity and richness were calculated 
for each sample using the vegan package v.2.5-7 (https://cran.r-project.org/web/
packages/vegan/index.html). Both Shannon diversity and relative abundance data 
were modelled using LOESS (locally weighted estimated scatterplot smoothing) 
regression and plotted with 95% confidence intervals (CIs). All permutation tests 
(that is, PERMANOVA) were conducted with 10,000 permutations.

Determining PGCTs. DMM was used to cluster samples on the basis of microbial 
community structure62 and to determine the PGCTs for all samples. Five PGCTs 
were found to be optimal on the basis of the lowest Laplace approximation score. 
PGCTs were manually ordered from the youngest (PGCT-1) to the oldest (PGCT-5), 
based on the average DOL of samples within each PGCT.

The linear discriminant analysis effect size method63 was used to determine 
the bacterial species and EC numbers that discriminated each cluster using 
MicrobiomeAnalyst64,65.

PERMANOVA. To determine which co-variates were associated with metagenome 
profiles while accounting for repeated measures, multiple cross-sectional analyses 
using the ‘adonis’ function from the vegan package were performed. Data were split 
into nine specific time windows based on DOL, which were chosen to both maximize 
the number of samples within each window and reflect the progression of enteral 
feed independence as follows: establishing enteral feeds (0–9), reaching full feeds 
(10–14), independent of parenteral nutrition (15–19) and maturation on full enteral 
feeds (20–24, 25–29, 30–34, 35–39, 40–49, 50–69). For the univariate analysis, too few 
infants/samples were available beyond this timepoint. Only a single sample per infant, 
the earliest available, was included within each time window. The association of 12 
clinical variables (defined in the cohort section) on the metagenome and functional 
profiles was tested, based on Bray–Curtis dissimilarity. Each test was performed in 
a stepwise manner and subsequent P values were adjusted for multiple comparisons 
using FDR adjustment (Benjamini–Hochberg procedure66).

To assess whether there was a statistically significant difference in serum 
and stool metabolite profiles based on PGCT assignment, PERMANOVA was 
performed in MetaboAnalyst v.5.0 (ref. 67).

Ordination. For metagenomic and RNA-seq analysis, ordinations were performed 
on all data using non-metric multidimensional scaling (NMDS). NMDS plots were 
based on Bray–Curtis dissimilarity matrices for both taxonomic and functional 
data and Euclidean distance on regularized logarithm (rlog), transformed, 
normalized RNA-seq count data, using the ‘metaMDS’ function from the vegan 
package. The mean centroid for each group was calculated and plotted.

For metabolite analysis of stool and serum samples, ordinations were 
performed on all data using partial least-squares discriminant analysis using 
MetaboAnalyst v.5.0 (ref. 67).

LMMs and GLMMs. Various linear mixed models (LMMs) and generalized  
LMMs (GLMMs) were fit to the data using the glmmTMB package v.1.0.2.1  
(ref. 68) or, alternatively, the logistf package v.1.24 (https://cran.r-project.org/web/
packages/logistf/index.html), which was used to fit logistic regressions using Firth’s 
bias-reduced penalized likelihood, when there was quasi-complete or complete 
separation. To detect separation and infinite maximum likelihood estimates in 
binomial logistic regression models, the ‘detect_separation’ and ‘check_infinite_
estimates’ functions from the brglm2 package v.0.7.1 (https://cran.r-project.org/
web/packages/brglm2/index.html) were used. Model validity was assessed using 
diagnostic residual plots, generated by the DHARMa package v.0.3.3.0 (https://
cran.r-project.org/web/packages/DHARMa/index.html). Diagnostic residual plots 
were not generated for models fit by logistf. The general formula for each of the 
LMMs fitted was as follows:

Y ≈ X1 + X2 + … + Xn + (1|SubjectID).

To find out which co-variates were significantly associated with Shannon 
diversity, mixed-effects models were fit using the Gaussian distribution. All 12 
co-variates included in the ‘adonis’ analysis plus DOL were included as fixed effects 
and subject ID was included as a random group intercept.

To determine which co-variates were significantly associated with the five 
PGCTs, individual mixed-effects binomial logistic regression models were fit, 
one for each cluster versus all other clusters. Each model contained the same 12 
co-variates plus DOL as fixed effects and subject ID as a random group intercept. 
Mixed-effects binomial logistic regression models were also fit to assess the 
prevalence of probiotic species. DOL had an effect on the relative abundance of 
probiotic species, so the before, during and after probiotic groups are nested in 

time. To account for this, the control group of samples from infants who had taken 
no probiotic was subset into three distinct time bins. These specific time bins were 
based on the mean start DOL for probiotics (8 DOL) and the mean stop DOL for 
probiotics (44 DOL). Mixed-effects binomial logistic regressions were fit separately 
within groups (before, during and after probiotics) for each probiotic species. They 
were also fit separately between groups (Infloran and Labinic) for each species.

Where used, global P values for fixed effects from the final models were 
obtained by analysis of variance (type II Wald’s χ2 test) from the car package69 
v.3.0-10. All post-hoc analysis was performed using either pairwise comparisons 
(Tukey’s highly significant difference (HSD) method) or treatment versus control 
comparisons (Dunnett’s test), both adjusting for multiple comparisons, using the 
emmeans package v.1.5.4 (https://cran.r-project.org/web/packages/emmeans/
index.html).

Analysis of probiotic ‘persisters’ to determine significant co-variates. Persistence 
analysis included all infants receiving probiotics that had at least two samples at 
least 7 d after probiotics were stopped, and included an additional 22 samples taken 
after 120 DOL. Persistence of B. bifidum and L. acidophilus was assessed, because 
these two species were found in both Infloran and Labinic, allowing for a larger 
sample size (n = 52). Infants were classed as ‘non-persister’ for a species if there 
were two consecutive samples with a relative abundance of 0. This criterion was 
found to be optimal and babies could be separated quite clearly into ‘persisters’ and 
‘non-persisters’. Binomial logistic regressions were fit for each probiotic species 
to determine which co-variates were significantly associated with persistence, 
using the logistf package as previously described. The models both included the 
subject-level co-variates as described.

MaAsLin analysis to determine significant taxa and EC numbers associated 
with each co-variate. The MaAsLin2 package v.1.2.0 (ref. 70) was used to determine 
significant taxa and EC numbers associated with co-variates, while adjusting for 
potential confounders. MaAslin2 was run on both genus- and species-level relative 
abundance data and EC number relative abundance data. All co-variates used in 
the ‘adonis’ analysis plus DOL were included as fixed effects in the analysis and 
subject ID was included as a random effect. The arcsin square root transformation 
was performed on relative abundance data and default MaAsLin2 parameters were 
used. All P values were adjusted by MaAsLin2 for multiple comparisons using FDR 
adjustment (Benjamini–Hochberg procedure) and the default q-value cut-off of 
0.25 was used to identify significant results.

Analysis of B. infantis HMO gene clusters. B. infantis HMO genes (as previously 
described27) were quantified by first identifying the corresponding UniRef90 gene 
families and then utilizing B. longum-stratified gene quantifications (quantifying 
UniRef90 gene families) from HUMAnN v.2 (ref. 71). Samples with >90% of the 
genes in these six genomic loci (H1, H2, H3, H4, H5 and a urease gene cluster) 
were classed as having B. infantis.

Significance analysis of microarrays and metabolites, GO and enrichment 
analysis. Significance analysis of microarray (SAM) was used in MetaboAnalyst67 
with a Delta threshold of 1.0 to identify specific metabolites discriminating PGCT-
3 from PGCT-4/-5 and vice versa in both stool and serum.

GO and enrichment analysis. GO and enrichment analysis were performed using 
the gprofiler2 package v.0.2.1 (ref. 72), with default parameters and a customized 
genetic background. The top 25 most significant GO biological processes for 
PGCT-4 and PGCT-5 were reported.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available in a public, open access repository. All metagenomic 
sequencing data generated and analysed in the present study have been deposited 
in the European Nucleotide Archive under study accession no. PRJEB49383. 
RNA-seq data generated and analysed in the present study have been deposited 
in the Sequencing Read Archive under study accession no. PRJNA859176. MS 
metabolomics data have been deposited in the EMBL-EBI MetaboLights database73 
with the identifier MTBLS5406. Source data are provided with this paper.

Code availability
Source code for metabolomics data processing can be obtained at https://github.
com/respiratory-immunology-lab/metabolome-lipidome-MSDIAL.
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Extended Data Fig. 1 | Sampling overview. Samples used in the study from birth to day 120. Dashed lines represent the overall mean start and stop day of 
probiotic treatment.
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Extended Data Fig. 2 | DMM clustering into PGCTs. a, Heatmap of all samples (n = 1431) showing the relative abundance of the most dominant species, 
coloured by phyla, stratified by PGCT. b, Box plots showing the alpha diversity (richness and Shannon diversity) for each PGCT. The centre line denotes the 
median, the box limits denote the inter-quartile range (IQR) and whiskers extend to the limits. c, LEfSe identifying discriminatory features of each PGCT 
based on Linear Discriminant Analysis (LDA). Coloured bars denote PGCTs.
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Extended Data Fig. 3 | Explained variance of 7 clinical co-variates at different timepoints to validate the findings in this study, using a published 
metagenomic dataset from Olm et al14., modelled by ‘adonis’. Bubbles show the amount of variance (R2) explained by each covariate at a given timepoint. 
NA values are used when analyses could not be carried out, due to only 1 level of the variable existing in that given timepoint. No results were found to be 
significant based on taxonomic profiles at the species level.
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Extended Data Fig. 4 | The individual impact of probiotics and probiotic species on the gut microbiome. a, Heatmap showing the relative abundance 
of B. infantis HMO genes and homologs in other species, coloured by species and stratified by probiotic type. b, Locally weighted scatterplot smoothing 
(LOESS) fit (95% confidence intervals shaded in grey) over time for the top 5 most dominant Bifidobacterium spp. c, Percentage persistence of probiotic 
species in Infloran® and Labinic™. d, Per-infant per-strain longitudinal abundance of probiotic species in Infloran® and Labinic™ following the cessation  
of probiotics.
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Extended Data Fig. 5 | Evidence that monolayers generated from preterm intestinal-derived organoids are differentiated and entirely cover the 
transwell. a, Three technical replicates (R1, R2, R3) of alcian blue stained organoid monolayers on transwell inserts. Goblet cells and mucus layer are 
stained blue indicating the cells have differentiated and the goblet cells are secreting mucus apically. This further demonstrates that the monolayers are 
polarised and entirely cover the transwell. b, Scanning electron microscopy image at different magnifications showing microvilli resulting from enterocyte 
differentiation and that cells are contiguous (that is, no holes in monolayer). c, We performed regular visual inspection of the monolayers using light 
microscopy, and for all monolayers used in this experiment the monolayers showed full confluence across the entirety of the transwell insert.
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Extended Data Table 1 | Demographics of the analytical cohort

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles Nature MicrobiologyArticles Nature Microbiology

Extended Data Table 2 | Association of clinical co-variates with Shannon diversity

Global P values and Wald’s χ2 test statistic for fixed effects are based on type II analysis of variance on the fitted linear mixed-effects model

Nature Microbiology | www.nature.com/naturemicrobiology
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Extended Data Table 3 | Clinical data for samples chosen for metabolomics and organoid experiments

P values are based on test for categorical data and Kruskal–Wallis test for continuous data

Nature Microbiology | www.nature.com/naturemicrobiology
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software were used for data collection.

Data analysis For analyses carried out using R, V.4.3.1 was used in R Studio V4.0.2  
 
Metagenomic data profiling:  
Functional profiling: HUMAnN 2.0  
Taxonomic profiling: MetaPhlAn 2.0  
Viral profiling: VirMAP 1.0 
 
Metabolomics data processing:  
Sample processing: MS-DIAL V.4.8 (see code availability)  
QC: R pmp V.1.6.0  
Normalisation: R missForest package V.1.4  
 
Transcriptomic data processing:  
Processing: Illumina’s bcl2fastq software 
QC: FASTX Toolkit V.0.0.14  
Read mapping: Salmon V.0.13.1  
Normalise count data and find DEGs: R DESeq2 package V.1.32.0  
 
Statistical analysis of all omic data:  
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Alpha diversity, 'adonis' PERMANOVA analysis and NMDS ordinations: R vegan package V.2.5-7  
Visualisations: R ggplot package v.3.3.2  
Linear and generalised linear mixed effects models: R glmmTMB package v.1.0.2.1  
Logistic regression models when there was quasi complete or complete separation of data: R logistf package v.1.24 Diagnostic residual plots 
for models: R DHARMa package v.0.3.3.0  
ANOVA: R car package V.3.0-10  
Post-hoc tests: R emmeans package v.1.5.4 and   
LEfSe: MicrobiomeAnalyst  
MaAsLin2 v.1.2.0  
Venn diagram: R VennDiagram package V.1.7.1  
Mantel test: R ape package V.5.6-1  
PLS-DA, PERMANOVA and SAM: MetaboAnalyst 5.0  
GO and enrichment analysis: R gprofiler2 package V.0.2.1  
 
Code availability:  
Metabolomics processing: https://github.com/respiratory-immunology-lab/metabolome-lipidome-MSDIAL  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data are available in a public, open access repository. All metagenomic sequencing data generated and analysed in this study have been deposited in the European 
Nucleotide Archive under study accession number PRJEB49383. RNA-sequencing data generated and analysed in this study have been deposited in the Sequencing 
Read Archive (SRA) under study accession number PRJNA859176. Mass spectrometry metabolomics data have been deposited to the EMBL-EBI MetaboLights 
database with the identifier MTBLS5406. Source data for all figures and extended data figures are provided with this paper.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Not applicable.

Population characteristics Detailed population characteristics are described in Extended data table 1.

Recruitment Infants were recruited to the ‘Supporting Enhanced Research in Vulnerable Infants Study’ (SERVIS) with written parental 
consent covering data and sample collection. Infants born <32 weeks of gestation, who were not diagnosed with NEC, LOS, 
focal intestinal perforation, or other intestinal pathology, were included in the study. 

Ethics oversight The study protocol was approved by Newcastle Hospitals NHS Foundation Trust (NUTH), NRES Committee North East and N 
Tyneside 2 10/H0908/39, and the research complies with all relevant ethical regulations. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by sample availability in the present observational study. The overall study analysed 1431 longitudinal stool 
samples from 123 infants, sufficient for a descriptive study of this nature. A subset of samples (10 for each PGCT, n = 50) were chosen for 
metabolomics which ensured statistical power. One organoid line was used, each experiment being performed in triplicate (one RNA sample 
failing QC), which we deemed sufficient for a pilot experiment of this nature. 
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Data exclusions Some data was excluded from the study, this included samples taken before receipt of MOM (n = 6) because there was not sufficient power to 

draw any conclusions from these samples.

Replication No replication was used on metagenomic data as this was an observational study. Experimental data (organoid model) were performed in 
three technical replicates.

Randomization Randomization was not relevant to the current study due to the observational nature of the study. Covariates were controlled for in mixed 
models by including as fixed effects. 

Blinding No blinding was used as this was an observational study. For the organoid experiments, investigators were also not blinded.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) his study used a preterm intestinal-derived organoid model which was established in the Stewart Lab, Newcastle University 
using resected surgical ileum tissue that was obtained from the neonatal intensive care unit of the Royal Victoria Infirmary, 
Newcastle. Informed consent was obtained by parents.

Authentication The cell line was not authenticated.

Mycoplasma contamination Cell lines were not tested for mycoplasma authentication.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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