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Multi-context genetic modeling of tran-
scriptional regulation resolves novel
disease loci

Mike Thompson 1 , Mary Grace Gordon2,3,4, Andrew Lu5, Anchit Tandon6,
Eran Halperin1,7,8,9, Alexander Gusev10,11, Chun Jimmie Ye 2,3,12,13,14,
Brunilda Balliu9 & Noah Zaitlen 1,15

Amajority of the variants identified in genome-wide association studies fall in
non-coding regions of the genome, indicating their mechanism of impact is
mediated via gene expression. Leveraging this hypothesis, transcriptome-wide
association studies (TWAS) have assisted in both the interpretation and dis-
covery of additional genes associated with complex traits. However, existing
methods for conducting TWAS do not take full advantage of the intra-
individual correlation inherently present in multi-context expression studies
and do not properly adjust for multiple testing across contexts. We introduce
CONTENT—a computationally efficient method with proper cross-context
false discovery correction that leverages correlation structure across contexts
to improve power and generate context-specific and context-shared compo-
nents of expression. We apply CONTENT to bulk multi-tissue and single-cell
RNA-seq data sets and show that CONTENT leads to a 42% (bulk) and 110%
(single cell) increase in the number of genetically predicted genes relative to
previous approaches. We find the context-specific component of expression
comprises 30% of heritability in tissue-level bulk data and 75% in single-cell
data, consistent with cell-type heterogeneity in bulk tissue. In the context of
TWAS, CONTENT increases the number of locus-phenotype associations dis-
covered by over 51% relative to previous methods across 22 complex traits.

A large portion of the signal discovered in genome-wide associations
studies (GWAS) has been localized to non-coding regions1. In light of
this, researchers have developed post-GWAS approaches to elucidate
the functional consequences of variants and their impact on the
etiology of traits2. One notable approach has been to generate genetic
predictors of gene expression and leverage these predictors with
GWAS data to associate genes with traits of interest3,4. These
transcriptome-wide association studies (TWAS) have not only shown
great promise in terms of discovery and interpretation of association
signals but have also helped prioritize potentially causal genes for
complex diseases5. Nonetheless,methods like TWAS are limited by the

accuracy and power of the genetic predictors generated in training
datasets6–11.

The original TWAS methodology builds genetic predictors of
expression on a context-by-context basis. For example, in a study with
RNA-seq and genotypes collected across multiple tissues, the expres-
sion of each tissue would be modeled independently3,4. More recent
methods model multiple contexts simultaneously and leverage the
sharing of genetic effects across contexts8–10,12. However, these
approaches do not maximize predictive power because they ignore
the intra-individual correlation of gene expression across contexts
inherent to studies with repeated sampling, e.g., the Genotype-Tissue
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Expression (GTEx) project13 (Supplementary Fig. 1) or single-cell RNA-
Sequencing (scRNA-Seq) experiments (Supplementary Fig. 2). More-
over, they build predictorswhich aremixtures of both context-specific
and context-shared (pleiotropic) genetic effects, making it difficult to
distinguish the relevant contexts for a disease gene, and are often
computationally inefficient9. A recent approach by Wheeler et al.14

does model correlated intra-individual noise with a linear-mixed
model, but does not produce combined predictions of expression,
reducing overall power. Finally, existing methods, with the goal of
maximizing the number of discoveries made, may employ multiple
testing strategies that either fail to control for all tests performed, (e.g.,
by controlling the false discovery rate (FDR) within each context
separately4,15), or limit their discoveries as they are based on con-
servative FWER control (e.g., by using Bonferroni adjustment across all
contexts15). Together, these shortcomings reduce power and inter-
pretability of TWAS.

Here, we introduce CONTENT—CONtexT spEcific geNeTics—a
method that leverages the correlation structure of multi-context stu-
dies to efficiently and powerfully generate genetic predictors of gene
expression. Briefly, CONTENT decomposes the gene expression of
each individual across contexts into context-shared and context-
specific components16, builds genetic predictors for each component
separately, and creates a final predictor using both components. To
identify genes with significant disease associations, CONTENT
employs a hierarchical testing procedure (termed “hFDR”; see Sup-
plementary Fig. 3)17,18. CONTENT has several advantages over existing
methods. First, it explicitly accounts for intra-individual correlation
across contexts, boosting prediction performance. Second, by build-
ing specific and shared predictors, it can distinguish context-shared
from context-specific genetic components of gene expression and
disease. Third, it employs a recently developed hierarchical testing
procedure18 to not only adequately control the FDR across and within
contexts, but boost power in cases where a gene has a significant
association to disease in multiple contexts. Fourth, this adjustment
procedure allows for inclusion of other TWAS predictors3,4,8–10,12,
enabling approaches to be complementary in discovering associa-
tions. Finally, CONTENT is orders of magnitudemore computationally
efficient than several previous approaches.

We evaluate the performance of CONTENT over simulated data
sets, GTEx2,11,13, and a single-cell RNA-Seq data set19–21. We show in
simulations that CONTENT captures a greater proportion of the heri-
table component of expression than previous methods (at minimum
over 22% more), and that CONTENT successfully distinguishes the
specific and shared components of genetic variability on expression. In
applications to GTEx, CONTENT improves over previous context-by-
context methods both in the number of genes with a significant heri-
table component (average 42% increase in significant gene-tissue pairs
discovered) as well as the proportion of variability explained by the
heritable component (average increase of 28%)3,4. Consistent with
complex cell-type heterogeneity within tissues22–25, we find that in
applications to the single-cell data, genetic predictors at the cell-type
level have substantially more context-specific heritability than the
tissue-level models. We perform TWAS across 22 phenotypes using
weights trained on GTEx and scRNA and find that CONTENT discovers
over 51% additional independent, significantly associated loci relative
to previous approaches. We provide CONTENT gene expression
weights for both GTEx and the single-cell dataset at the TWAS/FUSION
repository (http://gusevlab.org/projects/fusion/).

Results
Methods overview
We developed CONTENT, a method for generating genetic predictors
of gene expression across contexts for use in downstream applications
such as TWAS. Briefly, for each individual, CONTENT leverages our
recently developed FastGxC method16 to decompose the gene

expression across C contexts into one context-shared component and
C context-specific components (Fig. 1). Next, CONTENT builds genetic
predictors for the shared component and each of the C context-
specific components of expression using penalized regression. We
refer to these predictors as the CONTENT(Shared) and CON-
TENT(Specific) models. In addition, CONTENT generates genetic pre-
dictors of the total expression in each context by combining the
context-shared and context-specific genetic predictors with linear
regression.We refer to these predictors as the CONTENT(Full)models.
A givengenemayhaveCONTENT(Specific), CONTENT(Shared), and/or
CONTENT(Full) models depending on the architecture of genetic
effects.

We residualized the expression of each gene in each context over
their corresponding covariates (e.g. PEER factors, age, sex, batch
information) prior to decomposing and then fitting an elastic net with
double ten-fold cross-validation for both CONTENT(Shared) and
CONTENT(Specific). We examined the number of significantly pre-
dictedgenes aswell as theprediction accuracy (in termsof adjustedR2)
between the cross-validation-predicted and true gene expression per
gene-context pair. Toproperly control the FDR for eachmethod across
contexts and genes, we employed a hierarchical FDR correction17,18

(Supplementary Fig. 3 and Methods). We note that groups of contexts
may comprise additional sources of pleiotropy (e.g., in GTEx the group
of brain tissues may have their own shared effects in addition to the
overall tissue-shared effects). The decomposition of CONTENT is
flexible and can account for both levels of pleiotropy among contexts
(see Supplementary Methods).

CONTENT is powerful and well-calibrated in simulated data
We evaluate the prediction accuracy of CONTENT in a series of simu-
lations and compare its performance to the context-by-context
approach3,4, which builds predictors by fitting an elastic net in each
context separately, as well as UTMOST9, which builds predictors over
all contexts simultaneously using a group LASSO penalty. Implicitly,
we compare to the method from14 which decomposes expression into
orthogonal context-shared and context-specific components, as the
CONTENT(Shared) and CONTENT(Specific) models are related to
these components (SeeMethods).Weomit comparison to other TWAS
methods as many of them are built on the same framework as the
context-by-context approach, or require external data, such as curated
DNase I hypersensitivity measurements8,10,12.

We used simulation parameters from GTEx, the largest multi-
context eQTL study to-date, as a guideline. Specifically, we generated
gene expression and genotype data such that context-specific genetic
effects mostly lie on the same loci as context-shared eQTLs, and
context-specific eQTLs without context-shared effects are rare2,16.
Intuitively, this framework assumes that, most often, SNPs affect
expression of a gene in all contexts, but to a different extent in each
context (rather than, for example, acting as an eQTL in only a single
context). We varied the proportion of contexts with context-specific
heritability, the number of context-specific eQTLs without a context-
shared effect, the number of causal SNPs, and the intra-individual
residual correlation while keeping the number of genes (1000), con-
texts (20), cis-SNPs (500) and the proportion of context-shared and
context-specific heritability constant (0.3 and 0.1 respectively).

Throughout our simulations, CONTENT significantly out-
performed the context-by-context and UTMOST approaches in terms
of prediction accuracy of the total genetic contribution to expression
variability (Fig. 2A, Supplementary Fig. 4). The average increase in
adjustedR2 between the true genetic component of expression and the
CONTENT(Full) predictor was 0.22 over UTMOST (p < 2e-16 paired
two-way t-test) and 0.48 over the context-by-context approach (p < 2e-
16 paired two-way t-test). Across nearly the entirety of parameter set-
tings, CONTENT generated context-specific components that were
uncorrelated with the true context-shared components (mean
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Fig. 2 | CONTENT is powerful andwell-calibrated in simulated data.Accuracy of
each method to predict the genetically regulated gene expression of each gene-
context pair for different correlations of intra-individual noise across contexts.
Mean adjusted R2 across contexts between the true (A) full (context-specific +
context-shared),B shared, and (C) specific genetic componentsof expression and
the predicted component for each method and for different levels of intra indi-
vidual correlation. The context-by-context approach and UTMOST output only a
single predictor, and we show the variability captured by this predictor for each

component of expression. CONTENT, however, generates predictors for all three
components of expression, and notably, CONTENT(Specific) and CON-
TENT(Shared) capture their intended component of expression without captur-
ing the opposite (i.e., the predictor for CONTENT(Specific) is uncorrelated with
the true shared component of expression and vice versa). We show here the
accuracy for each component and method on gene-contexts with both context-
shared and context-specific effects, but show in Supplementary Fig. 4 the accu-
racy for all gene-contexts pairs.

Fig. 1 | An overview of the CONTENT approach. CONTENT first decomposes the
observed expression for each individual into context-specific and context-shared
components following16. Then, CONTENT fits predictors for the context-shared
component of expression aswell as each context-specific component of expression

(e.g., liver). Finally, for a given context, CONTENT combines the genetically pre-
dicted components into the full model using a simple regression. Icons were
created with BioRender.com.
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adjusted R2 = 0.023, and vice versa 0.026; Fig. 2B, C). This property is
central to the objective as it reduces confounding from pleiotropy in
downstream applications such as context fine-mapping. As expected,
the previous methods failed to disentangle the context-specific and
context-shared components (Fig. 2B, C), since they were not devel-
oped with this property in mind. Our results were consistent under
different values of the simulation parameters (Supplementary
Figs. 5–8).

CONTENT improves prediction accuracy over previousmethods
in the GTEx and CLUES datasets
We next evaluated CONTENT, the context-by-context approach, and
UTMOST in terms of prediction accuracy and power across 22,447
genes measured in 48 tissues of 519 European individuals in the bulk
RNA-seq GTEx data set2,11,13. Due to computational issues (Supple-
mentary Fig. 9), UTMOST was examined only on 22,307 genes rather
than the entire data set of 22,447 genes.We show a comparison on this
smaller set of genes in Supplementary Fig. 10. We also examined, for
the first time in a large-scale TWAS context, a single-cell RNAseq data
set from the California Lupus Epidemiology Study (CLUES)19,20. The

CLUES data set contained 9592 genes measured in 8 cell types in
peripheral blood from 90 individuals.

In GTEx, CONTENT identified more gene-tissue pairs with a sig-
nificantly predictable genetic component of expression (278,101 over
20,506 genes) than the context-by-context approach (195,607 over
17,723 genes) and UTMOST (167,865 over 11,442 genes) at an hFDR of
5% for all approaches. These results also held when using the tradi-
tional FDR approachwithin each context separately for all approaches
(Supplementary Table 1 and Supplementary Fig. 11).We also compared
the performance of each method on the union of genes that were
significantly predicted (hFDR ≤ 5%) by at least one method. As CON-
TENT can generate up to three models (Shared, Specific, Full) for a
givengene-tissuepair, andbecause eachgenemayhave its ownunique
architecture (i.e. different proportions of specific or shared herit-
ability), we selected the model that achieved the greatest cross-
validated adjusted R2. CONTENT greatly outperformed the context-by-
context and UTMOST approaches across all tissues (average 28% and
22% increase in adjusted R2 across tissues and genes; Fig. 3; Supple-
mentary Figs. 10, 12). Further, for genes with significant CON-
TENT(Shared), CONTENT(Specific), and CONTENT(Full) predictors,
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Fig. 3 | CONTENT outperforms existing approaches in the GTEx and scRNA-seq
CLUES datasets. A,DNumber of genes with a significantly predictable component
(hFDR ≤ 5%) in GTEx (A) and CLUES (D); the sample sizes for each context are
included in parentheses. B, E Ratio of expression prediction accuracy (adjusted R2)
of the best-performing cross-validated CONTENT model over the context-by-

context (green) and UTMOST (blue) approaches (median across all genes sig-
nificantly predicted by at least either method). Numbers above one indicate higher
adjustedR2 and thus prediction accuracy for CONTENT.C, F Prediction accuracy of
CONTENT(Full) and CONTENT(Shared) when a gene-tissue has a significant shared,
specific, and full model.
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prediction accuracy increases substantially with the addition of the
context-specific component to the context-shared component (aver-
age gain of CONTENT(Full) over CONTENT(Shared) adj. R2 of 55.92%),
emphasizing the need to extend previous approaches14 with CON-
TENT(Full) to build a powerful predictor.

Within the single-cell CLUES data set, CONTENT again out-
performed the context-by-context (in this case, cell type-by-cell type)
and UTMOST approaches, discovering 9080 heritable gene-cell type
pairs (5067 genes) whereas the context-by-context model and
UTMOST found 4314 (2355 genes) and 804 (288 genes) respectively.
The average improvement in adjusted R2 of CONTENT over the
context-by-context model was 13.6%. In gene-cell type pairs with sig-
nificant CONTENT(Full), CONTENT(Specific), and CONTENT(Shared)
models, CONTENT(Full) improved the adjusted R2 over CON-
TENT(Shared) by 104.09%. Once more, the improvement in variability
explained when including both the cell type-specific and cell type-

shared components highlights the need to consider both components
simultaneously when building a predictor.

CONTENT discovers significant context-specific components of
expression in bulk multi-tissue and single-cell datasets
Given the ability of CONTENT to disentangle context-shared and
context-specific variability, we examined the context-specific compo-
nents of expression inGTExandCLUES. InGTEx, CONTENTdiscovered
128,985 gene-tissue pairs (19,765 genes) with a significant context-
specific genetic component of expression (Fig. 4; Supplementary
Fig. 13). Aswith previous reports16,26, we found that testis was the tissue
with the greatest number of tissue-specific genetic components.
Nonetheless, we observe that the tissues with larger sample sizesmore
frequently had significant context-specific components. Consistent
with previous works that have discovered extensive eQTL sharing
across tissues2,26,27, we found that in gene-tissue pairs with a
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Fig. 4 | Contribution of context-specific genetic regulation in GTEx and CLUES.
A, C Number of genes with a significant (FDR ≤ 5%) CONTENT(Specific) model of
expression in GTEx (A) and CLUES (C). Color indicates sample size of context.

B, D Proportion of expression variance of CONTENT(Full) explained by CON-
TENT(Specific) and CONTENT(Shared) for genes with a significant
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CONTENT(Full) model, the variability explained was dominated by
CONTENT(Shared) model—across tissues, the context-shared compo-
nent explained on average 70% of the variability explained by
CONTENT(Full).

In the CLUES data set, CONTENT discovered 7466 gene-cell type
pairs (4658 genes) with a significant cell type-specific component of
expression (hFDR ≤ 5%). We found that all cell types had a similar
number of cell type-specific components, and emphasize that the
sample size across all cell types was equivalent. In genes with a CON-
TENT(Full) model, the variability was often dominated by the cell type-
specific variability (average 75% of the explained variability), unlike
GTEx, in which the average tissue-specific variability explained only
30% of total variance. Consequently, we found that within the 20,433
genes in GTEx with any genetic component, 51.50% (10,522) had a
significant shared component, whereas of the 5067 genes in CLUES
with a genetic component, only 14.25% (722) had a shared component.
This is consistent with complex celltype heterogeneity in bulk tissues28

since there ismorepower to discover eQTLswith pleiotropy across the
underlying cell types.

CONTENTmore accurately distinguishes disease-relevant genes
than traditional TWAS approaches in simulated data
We performed a simulation study in which we evaluated the
sensitivity, specificity, and power of CONTENT, UTMOST, and
context-by-context to implicate the correct gene in TWAS. In our
experiments, we simulated a phenotype in which 20% of the
variability was composed of the genetically regulated expression
of 300 randomly selected gene-context pairs (100 genes and 3
contexts each). We simulated gene expression for 1000 genes
across 20 contexts as before, however, to capture a range of

genetic architectures in the simulation, for each gene, we sam-
pled from a standard uniform distribution to determine the
proportion of shared variability. We varied the heritability of gene
expression and considered power as a method’s ability to dis-
cover the correct genes associated with a phenotype. To compare
power, we calculated the area under receiver-operating curve
(AUC) using the maximum association statistic for a given gene
across contexts.

Across simulations, CONTENT(Full) was the highest powered in
terms of gene discovery (Fig. 5). CONTENT(Shared) performed very
similarly to CONTENT(Full) in the setting with the lowest heritability,
however, our simulations show the necessity for CONTENT(Full) as it
substantially outperforms both CONTENT(Specific) and CON-
TENT(Shared) across a range of heritabilities. Moreover, CON-
TENT(Full) significantly outperformed both the context-by-context
approach and UTMOST. Specifically, the range of percent change in
AUC of CONTENT(Full) over previous methods was as follows: CON-
TENT(Shared) 1.9–9.9%; CONTENT(Specific) 13.6–22.4%; UTMOST
2.2–8.6%; context-by-context 1.2–10.6%. Generally, we observed that
CONTENT(Full) was its most powerful for genes in which there was
both shared and specific effects, UTMOST was its most powerful in
settings with high sharing, and the context-by-context approach was
its most powerful in settings with low sharing and high specificity of
genetic effects within contexts.

9

Application of CONTENT to TWAS yields additional discoveries
over previous methods
We performed TWAS across 22 complex traits and diseases collected
from a variety of GWAS29–42 using weights trained by CONTENT,
UTMOST and the context-by-context approach on GTEx and CLUES.
We passed forward weights to FUSION-TWAS3—a software that per-
forms TWAS using GWAS summary statistics, user-specified gene
expressionweights, and anLD reference panel—for a gene-context pair
if the pair’s expression was predicted at a nominal p-value less than 0.1
(See Methods; Supplementary Fig. 16).

Across all traits at anhFDRof 5%,CONTENTdiscoveredamedianof
51% (range of 5–178%) and 135% (51–400%) more associations (unique
TWAS loci) than the context-by-context approach and UTMOST
respectivelywithGTExweights, and 62% (0–289%) and 101% (47–600%)
more loci than the context-by-context approach and UTMOST respec-
tively with weights built from the CLUES dataset (Table 1). We find that,
with GTEx weights, the associations implicated by the context-by-
context approach hadmore overlapwith the associations implicated by
CONTENT(Specific) (median Jaccard similarity (JS) across traits = 0.419)
than CONTENT(Shared) (JS = 0.234). This is consistent with our simu-
lation results in which the context-by-context approach was most
powerful in cases of high context-specificity and low context-sharing
(Supplementary Figs. 14, 15). Conversely, the associations discoveredby
UTMOST, which leverages pleiotropy, had slightly higher overlap with
CONTENT(Shared) (JS =0.221) than CONTENT(Specific) (JS = 0.177).
With CLUES weights, the context-by-context approach again had
greater similarity with CONTENT(Specific) (JS =0.291) than CON-
TENT(Shared) (JS =0.098), however UTMOST discovered TWAS genes
that had similar overlap between CONTENT(Shared) (JS =0.119) and
CONTENT(Specific) (JS = 0.135). As UTMOST, CONTENT, and the
context-by-context approach discovered both overlapping and unique
associations, we suggest that the approaches complement—rather than
replace—one another.

We next compared the different CONTENTmodels to understand
their properties in real data. With GTEx weights, CONTENT(Full)
replicated an average of 98.3% and 67.3% of the associations dis-
covered by CONTENT(Shared) and CONTENT(Specific) respectively
(hFDR ≤ 5%). CONTENT(Full) replicated an average of 81.2% and 61.6%
of the associations discovered by CONTENT(Shared) and
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CONTENT(Specific) respectively with the CLUES weights. Notably,
CONTENT(Full) is thebest predictor out of all theCONTENTmodelson
average, particularly when there exist both shared and specific effects.
Consequently, across all traits, the inclusion of CONTENT(Full) with
CONTENT(Shared) and CONTENT(Specific) led to an average increase
of 12% and 21% in the number of genes with significant TWAS asso-
ciations with GTEx weights and CLUES weights respectively.

We investigated the genes implicated by CONTENT(Full) that
were not significant in CONTENT(Shared) or CONTENT(Specific)
and found that many of the discoveries replicated known gene-
trait associations. For example, CONTENT(Full) discovered a sig-
nificant association of fasting glucose levels and CAMK2
(p = 2.44e-23, brain cortex), a gene responsible for calcium sig-
naling and regulation of hepatic glucose production43, as well as
BLVRA (4.21e-06, CD8 T cell), a gene involved in insulin signaling
and likely metabolic syndrome44. Furthermore, CCL2, which is
thought to be involved in HDL internalization and cholesterol
efflux45, was not implicated by either CONTENT(Shared) or
CONTENT(Specific), but was implicated in the TWAS of HDL with
CONTENT(Full) (p = 2.30e-08, small intestine terminal ileum).
CONTENT(Full) also discovered a significant association of F2
(prothrombin) and primary biliary cirrhosis (PBC) (1.47e-07,
liver), whereas CONTENT(Shared) and CONTENT(Specific) did
not; PBC patients have been shown to have higher prothrombin
times than controls46. Moreover, CONTENT(Full) discovered an
association of GIT1—a gene involved with synaptic transmission
and plasticity47,48—with bipolar disorder (BIP; B cell, p = 3.20e-06)
as well as an association of GSDMB—a gene involved with airway
remodeling and airway-hyperresponsiveness49—and asthma (CD4
T cell, p = 1.25e-20).

Moreover, the genes implicated by CONTENT but neither
UTMOST nor the context-by-context approach (at an hFDR of 5%)
replicated previously associated gene-trait pairs, several of which
with known biological relationships to the trait of interest. Within
Alzheimer’s disease, these genes included VGF50, FZD451, and
TRPV6 (a transient receptor potential channel)52,53 with the GTEx
weights, as well as IRF754 and GANC55 with CLUES weights. Addi-
tionally, in Crohn’s disease, CONTENT implicated the following
genes, whereas previous methods did not: STAT356 and CTBP257

with GTEx weights, as well as ATG16L58 and PKAR2A59 using CLUES
weights. For major depression disorder (MDD), CONTENT impli-
cated SYN2M60 and CYB56AD161 using GTEx weights, and GAB162,
TLR461 and ARL363 using CLUES weights.

As the individuals comprising the GTEx and CLUES datasets are
disjoint, we also investigated whether using both datasets could
highlight relevant biological genes (akin to a replication study). We
first examined LDL genes and found SORT1, which alters plasma LDL
levels (GTEx min. p = 2.15e-251, CLUES min. p = 2.41e-19)64–66. We next
found an association between S100A4, S100A8, S100A10, S100A11 as
well as S100A12 (part of the epidermal differentiation complex) and
Eczema using both datasets (S100A10 p = 2.78e-41, p = 2.90e-11)67,68.
Additionally, when we looked at discoveries made with GTEx and
CLUESweights forAlzheimer’s disease,we foundMARK4 (p = 8.72e-20,
p = 6.39e-63), a gene associated with tau phosphyrlation in granulo-
vacuolar degeneration bodies69. Finally, both sets of weights produced
a significant association of immune checkpoint gene CTLA4 (p = 1.71e-
11, p = 2.28e-21) with Rheumatoid Arthritis70.

While CONTENT discovered substantially more loci and genes
than previous approaches, we also wished to verify that it does not
enrich for false positives. To do so, we performed an analysis similar to
one carried out by Ndungu et al.71. Briefly, Ndungu et al. evaluated the
extent to which TWAS associations may be driven by horizontal
pleiotropy or linkage disequilibrium by examining TWAS associations
for a set of genes with a known causal relationship to a set of meta-
bolites. In our analyses, we examined the within-locus (±1Mb) rank of

the causal TWAS gene with its suspected metabolite when using
weights built by CONTENT and the context-by-context approach on
the GTEx dataset. To order genes within a method, we first filtered for
statistically significant gene-context-metabolite associations, then
sorted genes by their maximum absolute TWAS association statistic
between a given metabolite across contexts (and models for CON-
TENT). In line with our applications of TWAS to GTEx and CLUES,
CONTENT discovered additional loci that were not discovered by the
context-by-context approach (39 compared to 36 of 58 known gene-
metabolite pairs; Supplementary Table 3). Moreover, despite having
moremodels built per locus, CONTENT ranked the known causal gene
similarly to the context-by-context approach on the intersection of
gene-metabolite pairs discovered by both methods (CONTENT aver-
age rank of 2.257 compared to context-by-context rank of 2.371, where
a ranking of 1 is ideal).

Discussion
In this work, we introduce CONTENT, a computationally efficient and
powerfulmethod to estimate the genetic contribution to expression in
multi-context studies. CONTENT can distinguish the context-shared
and context-specific components of genetic variability and can
account for correlated intra-individual noise across contexts. Using a
range of simulation and real studies, we showed that CONTENT out-
performs previous methods in terms of prediction accuracy of the
total genetic contribution to expression variability in each context. We
also found that when there exists a gene with a genetic component of
expression, the heritability is often dominated by the context-specific
effects at the single-cell level, but at the tissue level, the heritability is
dominated by the context-shared effects. Finally, CONTENT was more
powerful, specific, and sensitive than previous approaches in applica-
tions to TWAS.

Usingweights trained byCONTENT, UTMOST and the context-by-
context approach, we discovered 12,150 unique gene-trait associations
through TWAS. To our knowledge, we present the first application of
TWAS trained on a single-cell RNAseq dataset for a collection of 90
individuals’ PBMCs. For both the weights generated by GTEx and
CLUES, CONTENT was largely more powerful than UTMOST and the
context-by-context approach in TWAS. However, we emphasize that
the approaches often capture genes unique to each approach. Each
methodmay therefore complement each other andmay be combined
in TWAS to maximize the number of discoveries made as different
methods are likely favorable under different genetic architectures.
Though we show that CONTENT may be useful in fine-mapping the
specific tissue relevant for a TWAS association in simulations, we note
that fine-mapping to the correct tissue in real data is a particularly
difficult task. For example, throughout this manuscript, we assume
that the causal tissue is included in the measured tissues, however,
when this is not the case, CONTENT and all TWAS approaches may
associate an incorrect, correlated tissue. For example, in the case of
chronic kidney disease, CONTENT implicated GATM—a gene thought
to be involved with kidney disease and GFR levels72–74—however, the
significant association was within the thyroid. This may be due to the
fact that kidney expression is not measured in this version of the GTEx
dataset. Future workmay explore using the CONTENT-trained weights
and jointly fitting all TWAS Z scores, or otherwise accounting for
missingness.

We also leveraged recently developed methodology for
controlling the false discovery rate when summarizing sig-
nificantly predicted genes, gene-contexts, and TWAS
associations17,18. This approach has been shown to effectively
control the FDR across contexts in eQTL studies, and to our
knowledge, it is the first time such an approach has been used to
effectively control the FDR when predicting expression values
and when making discoveries using TWAS. While our analyses
focused on the comparison of CONTENT, UTMOST, and the
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context-by-context approach, we emphasize that by using this
type of false discovery correction, all methods can be used in
combination with one another, rather than in replacement of one
another. For downstream analyses, combining all prediction
methods is crucial, as certain genes or gene-context pairs may be
(better) predicted by one method and not others. In the GTEx
data for example, when we included models built by UTMOST and
the context-by-context approach to the correction scheme for
CONTENT, the number of genes for which there was a significant
model for a given tissue increased on average by 7.56%.

Importantly, neitherUTMOSTnor the context-by-contextmethod
distinguishes the context-specific and context-shared components of
genetic effects on expression. Implicitly, by modeling all contexts
independently, the context-by-context fit is best-suited for cases in
which there is no effect-sharing across contexts (Supplementary
Fig. 12). As UTMOST considers all contexts simultaneously, its power is
maximized in cases where the genetic effects are mostly shared
(Supplementary Fig. 12). Additionally, these methods do not account
for the shared correlated residuals between samples, thus they do not
maximize their predictive power.

While a previous approach proposed by Wheeler et al.14 does
model the correlated intra-individual noise, CONTENT offers several
advantages. The previous decomposition does not include an option
to leverage both the context-shared and context-specific components
of expression to form a final predictor of the observed expression for a
given context. We show that this is especially crucial in the context of
single-cell data wherein the prediction accuracy for a given gene-
context increases drastically when using both components (Fig. 3).
Further, without properly combining both components (e.g. via
regression), the context-specific genotype-expression weights pro-
duced by the previous decomposition may have the incorrect sign, as
they are considered residuals of the context-shared component and
are not properly re-calibrated to the observed expression. Unlike the
decomposition proposed by CONTENT, this previous approach also
does not intuitively allow for additional sources of pleiotropy or
effects-sharing (see Supplementary Information for discussion of
brain-level sharing in GTEx; Supplementary Figs. 17–20 and Table 4).
Finally, the decomposition used in the previous method is based on a
linear mixed model fit on a per-gene basis, and is therefore less com-
putationally efficient.

Notably, a limitation of TWAS methods in general is interpret-
ability, as associations may be confounded by linkage disequilibrium
or horizontal pleiotropy71,75. We emphasize that CONTENT discovered
substantially more independent loci than previous methods, however,
since CONTENT is more powerful than previous methods, it may build
more models within a given locus relative to previous approaches. We
performed a brief set of analyses in line with Ndungu et al.71, in which
we evaluated the ability of TWAS approaches to associate the sus-
pected causal gene to a collection of metabolites. Despite CONTENT
building more models than the context-by-context approach, it
prioritized suspected genes the same as or better than the context-by-
context approach in addition to discovering several more loci than did
the context-by-context approach (Supplementary Table 3). We there-
fore conclude that, similarly to GWAS fine-mapping studies, resolution
of downstream TWAS fine-mapping methods (e.g., FOCUS75) should
increasewith the use of our models, as our gain in performance is akin
to that expected from an increase in sample size. Moreover, since
CONTENT discovers additional loci over previous approaches, it
undoubtedly will present additional useful information for such
studies.

In this manuscript we focused on prediction of the total genetic
contribution to expression as well as the context-shared and context-
specific components of expression.Nonetheless, futureworkusing the
methodology presented here can be extended to a wide variety of
problems. Primarily, the decomposition can be used to efficiently

estimate Gene ×Context heritability using existing software for herit-
ability estimation, e.g., GCTA76, on the decomposed components
offering computational speed up over existing methods for cross-
context heritability estimation27. Additionally, the decomposed com-
ponents fromCONTENTmay also be included in previous approaches,
e.g. UTMOST, to gain further power. Further, by training each method
on the single-cell level data, we offer researchers the means to pursue
their own association analyses at a lower level of granularity than was
previously available.

Notably, we found that single-cell data may have lower levels
of effects-sharing than tissue-level data. While this may be due to
genuine biological differences in genetic regulation, this finding
is also consistent with a large degree of sharing of cell types
across contexts. For example, endothelial cells can be found in
tissues such as breast, endometrium, esophagus, eye, heart
muscle, liver, lung, ovary, pancreas, placenta, prostate, skeletal
muscle, and skin and often make up a substantial fraction of the
collected tissue77,78. We believe our work is consistent with this
observation: Primarily, the proportion of eGenes (genes with a
heritable component of expression) that also have a shared
component is substantially lower at the single cell level compared
to the proportion at the bulk, tissue level. What’s more is that the
ability to discover context-specific components of expression is
indeed related to sample size in the GTEx dataset. Despite the
above, and having a lower number of individuals in the single-cell
data, we discover a greater proportion of genes with a context-
specific component than in GTEx. Further, when there exists a
CONTENT(Full) model, it is dominated by the specific variability
at the single-cell level, whereas it is dominated by the shared
variability at the tissue level. Nonetheless, as this finding, to our
knowledge, was previously unappreciated, it warrants further
investigation.

In summary, we present an approach for generating context-
shared and context-specific predictors that is much simpler than pre-
vious approaches14,16. Moreover, unlike previous methods, we offer a
way to combine both predictors, as well as extend the decomposition
to additional levels of pleiotropy. Finally, we show utility of existing
hierarchical FDR correction methods to properly adjust for analyses
that take advantage ofmultiplemethods aswell as investigate genes in
the space of multiple contexts. The increased prediction accuracy,
specificity, computational speed, and hierarchical testing framework
of CONTENTwill be paramount to unveiling context-specific effects on
disease as well as uncovering the mechanisms of context-specific
genetic regulation.

Methods
An overview of the CONTENT model
In this section, we detail the assumed generative model and objectives
of CONTENT. CONTENT is based on the methodology and decom-
position of a previousworkby Lu et al. FastGxC16. In brief, like FastGxC,
we assume that the expression of an individual in a given gene and
context is a combination of a context-shared genetic component that
is shared across different contexts and a context-specific genetic
component that is specific to a context, that is

Ec = E
Shared
G + ESpecific

G,c + εc ð1Þ

EShared
G =gβ ð2Þ

ESpecific
G,c =gγc ð3Þ

where Ec denotes the expression of the individual at the gene in con-
text c, EShared

G and EShared
G,c denote the components of the expression due

to context-shared and context-specific genetic effects respectively, β
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and γc represent the context-shared and context-specific cis-genetic
effects respectively, g the individual’s cis-genotypes and εc ~Nð0,σ2

c Þ
represents the environmental effects (and non-cis-genetic effects) on
the individual’s gene expression.

The objective of CONTENT is to build a genetic predictor of
context-specific phenotypes. While previous work has focused on
building powerful genetic models for Ec, we aim to build unbiased
models that partition and estimate the context-shared gβ and context-
specific terms gγc. Specifically, we aim to maximize the power to
detect the context-specific terms, allowing some leniency in the
accuracy of context-shared terms, as we are interested in context-
specific effects. Moreover, as a context-specific predictor can be used
in downstream analyses to identify the specific context(s) through
which genetic variation manifests its effect on the phenotype and
disease risk, we also aim to minimize the correlation between the
predicted context-specific component and the true context-shared
component. Finally, ourmethodmust account for the correlated intra-
individual noise across contexts, and do so in a computationally effi-
cient manner.

Decomposing multilevel data
Many genomic datasets, such as those of GTEx, have a multilevel
nature; first the individuals are sampled, and second an individual is
measured in each context. To take the multilevel structure of the data
into account, the observed expression on gene j can be decomposed
into an offset term, a between-individual component and a within-
individual component79. That is, if Eijcdenotes the observed expression
level for individual i (i = 1,…, I) on gene j (j = 1,…, J) and context c (c =
1,…,C), Eijc can be decomposed as

Eijc = E :j: + ðEij: � E :j:Þ+ ðEijc � Eij:Þ ð4Þ

where E :j: =
1

I ×C

PI
i = 1

PC
c= 1 Eijc the mean expression of gene j com-

puted over all (I) individuals and all (C) contexts, and Eij: =
1
C

PC
c = 1 Eijc

the mean expression of individual i on gene j, computed over all
contexts. In (4), E.j. is a term that is constant across individuals and
contexts for each gene, (Eij. − E.j.) is the between-individuals deviation,
and (Eijc − Eij.) is the within-individual deviation of the expression on
gene j in context c.

Variables that differ between but not within individuals, e.g. sex
and genotype, will have an effect on (Eij. − E.j.) but not on (Eijc − Eij.). On
the other hand, variables that change within individuals but are the
same between individuals, e.g. the genetic effect on a specific context,
will have an effect on (Eijc − Eij.) but not on (Eij. − E.j.).

In the context of estimation, we first center and scale the
expression of gene j in each context c, i.e., 1

I

PI
i= 1 Eijc =0 and

1
I

PI
i= 1 E

2
ijc = 1. Therefore, E :j: =

1
I ×C

PI
i = 1

PC
c= 1 Eijc =0, and equation (4)

simplifies to:

Eijc = Eij:|{z}
EShared
ij

+ Eijc � Eij:

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ESpecific
ijc

ð5Þ

A formal description of CONTENT
We use the simplified decomposition in equation (5) to build genetic
predictors of context-specific effects while accounting for the corre-
lated intra-individual noise across contexts. Intuitively, the between-
individuals variability serves as the component of expression that is
shared across contexts, EShared, and the deviance from this shared
component (i.e. the within-individual variability) serves as the context-
specific component of expression, ESpecific. Moreover, treating the
context-specific component as a deviance from the context-shared
component leads the decomposition to have the property that as the
correlation of intra-individual noise across contexts increases, the

power to detect context-specificity also increases. In addition, the
decomposition generates context-shared and context-specific com-
ponents of expression that are orthogonal to each other. Further
rationale for using the decomposed expression is included Supple-
mentary Note 1 and the text by Lu et al.16. Lu et al. also include a
description of the decomposition’s equivalence to a linear
mixed model.

For a single gene j, CONTENT takes as input centered, scaled, and
residualized (over a set of covariates) expression measured across I
individuals in C contexts and an I ×m genotype matrix Gj with m
measured cis-SNPs for gene j. CONTENT then decomposes the
expression vectors into C context-specific components and a single
context-shared component by simply calculating the mean of
expression for each individual across contexts, and setting the
context-specific expression for context c as the difference between the
observed expression of context c and the calculated context-
shared (mean) expression. As it has been observed that cis-genetic
effectsmay be sparse and that the elastic netmayperformbest relative
to other penalized linearmodels in the context of genetically regulated
gene-expression4,14, CONTENT fits C + 1 penalized linearmodels for the
C + 1 expression components using an elastic net. Lastly, CONTENT
generates a final genetic predictor of expression by combining the
context-shared and context-specific components. Importantly, as the
context-specific component is a deviance from the context-shared
component, the sign of the context-specific component must be
properly realigned when combining both components of expression
to make a final predictor. We refer to this linear combination of
expression components as the “full”model of CONTENTandfit it using
a simple linear regression:
1. Obtain EShared

j and ESpecific
jc from the decomposition across all

individuals.
2. Generate cis-genetic predictors of each component using cross-

validated elastic net:
(a) Fit cross-validated elastic net regressions for the shared and

specific components:

EShared
j =αShared +Gjβ+ εShared ð6Þ

ESpecific
jc =αSpecific

c +Gjγc + ε
Specific
c ð7Þ

(a) Use the estimates to generate genetic predictors of each com-
ponent:

Ê
Shared
jG = α̂Shared +Gjβ̂ ð8Þ

Ê
Specific
jcG = α̂Specific

c +Gjγ̂c ð9Þ

3. Regress the expression of context c onto the context-shared and
context-specific components:

Ejc =α
Full
c + Ê

Sh:
jG wSh:

jc + Ê
Sp:
jcGw

Sp:
jc + εjc ð10Þ

Where “Sh.” and “Sp.” indicate “shared” and “specific” respec-
tively, α represents the offset within each regression„ and all ε are
assumed to be from a normal distribution with mean 0 and standard
deviation that is a function of the given outcome.

We save for each gene the set of estimated regression weights
ŵShared

jc and ŵSpecific
jc fromequation (10) for use in downstreamanalyses.

Namely, in TWAS, each context receives a single vector of weights, and
to test the association of a gene-context’s full model to a trait, we
simply use aweighted sumof the predictors learned fromequation (3),
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ŵSh:
jc β̂+ ŵSp:

jc γ̂c.We also use the sameprocedure for the context-specific
weight to ensure the correct directionality. To test for significance of
genetic effects (i.e. to call an eGene or eAssociation), we correlate each
component of expression—the context-shared, context-specific, and
full—to its corresponding genetically predicted value. More con-
cretely, we perform a likelihood ratio test with one degree of freedom
for the specific and sharedmodels, and a likelihood ratio test with two
degrees of freedom for the full model (the null model for all tests
contains no genetic predictors of expression).

Controlling the false discovery rate across contexts
Generally, methods for building genetic predictors of expression
or TWAS predictors leverage either Bonferroni correction or false
discovery rate (FDR). Nonetheless, using a Bonferroni correction
may be too stringent (for example, as tests across contexts may be
correlated), and using FDR within each context or across all
contexts simultaneously may lead to an inflation or deflation to
the false disovery proportion within certain contexts17.
To simultaneously control the FDR across all contexts at
once, a hierarchical false discovery correction—treeQTL—was
developed17. The treeQTL procedure leverages the hierarchical
structure of a collection of tests (e.g. gene level and gene-context
level) to properly control the FDR across an arbitrary number of
contexts and levels in the hierarchy as well as boost power in cases
where a gene has a significant association in multiple contexts6,17,18.
(See Supplementary Methods for further intuition.)

Notably, using CONTENT, our testing hierarchy contains 3
levels; (1) at the level of the gene, (2) at the level of the context,
and (3) at the level of the method or model (Supplementary
Fig. 3). Intuitively, a gene may contain a genetic component that
is shared across all contexts, or a given context may have its own
genetic architecture. In CONTENT, a given context may have its
own genetic predictor from either the context-specific compo-
nent or the full model. Using treeQTL with this structure is robust
across multiple contexts, and since the tree is structured such
that a specific method/model is at the final level of testing for a
context, it enables incorporation of additional models trained
from other approaches (such as those fit on a context-by-context
basis or by UTMOST). Moreover, we can add to the shared leaf an
additional level of tests to account for additional components of
effects-sharing, such as a brain tissue-shared component.

Comparison to other methods
We compared the prediction accuracy of CONTENT to a context-
by-context TWAS model3,4 in which the expression of each con-
text is modeled separately, and to UTMOST9, a method that
jointly learns the genetic effects on all contexts simultaneously.
Specifically the model based on TWAS fits a penalized linear
model for each context. UTMOST, on the other hand, employs a
group LASSO penalty across all contexts simultaneously, allowing
it to gain power over the context-by-context approach by con-
sidering all individuals and contexts in a study at once. As we
were we able to use a fast R package for penalized regression80,
we used 10-fold cross-validation to fit the context-by-context
model. Owing to UTMOST’s computational intensity, we used its
default value of 5 folds for cross-validation.

We also compared CONTENT to a previous approach by
Wheeler et al., orthogonal tissue decomposition (OTD)14. OTD is a
direct correlate of CONTENT(Shared) and CONTENT(Specific),
and is generated by fitting a mixed effects model across all con-
texts for a given individual. Namely, a mixed effects model is fit as
follows: an individual’s expression across all tissues is set as the
outcome, the shared expression is modeled as a random
individual-level intercept and is estimated using the posterior
mean, and the specific expression is treated as the residuals from

the fit model (after adjusting for covariates). Under infinite sam-
ple sizes, the components of OTD are equivalent to CON-
TENT(Shared) and CONTENT(Specific).

Evaluations on GTEx and CLUES
We residualized the expression of each gene in each context over
their corresponding covariates (e.g., PEER factors, age, sex, batch
information) prior to fitting UTMOST and an elastic-net model for
each context in the context-by-context approach. We did the
same residualization before decomposing and then fitting the
context-shared and context-specific components with an elastic
net for CONTENT. After generating cross-validated predictors for
each method, we examined the number of significantly predicted
genes as well as the prediction accuracy (in terms of adjusted R2)
between the cross-validation-predicted and true gene expression
per gene-context pair.

To properly control the false discovery proportion at .05 across-
contexts and within-methods, we employed a hierarchical FDR
correction17,18 separately for CONTENT, UTMOST, and the context-by-
context approaches. Notably, using this correction for all methods
provides a generous comparison to previous methods, as when there
exists at least one significantly heritable gene-context association for a
given gene, there is a relative gain in power over the context-by-
context FDR for other contexts tested within this gene17,18.

Application to TWAS
We performed transcription-wide association studies across 24
phenotypes using FUSION-TWAS3. FUSION-TWAS uses GWAS
summary statistics and user-specified gene expression weights
with an LD reference panel to perform the test of association
between genetically predicted gene expression and a phenotype
of interest. We tested a gene-context pair for association if the
pair’s expression was predicted at a nominal p-value of .1, and
note that this threshold does not substantially alter the number
of TWAS discoveries (Supplementary Fig. 16). Notably, previous
methods may use their own test of gene-context-trait association
or leverage set tests (e.g. Berk Jones9) to combine their associa-
tions across all contexts for a given gene and therefore increase
power. In this comparison, we report the association as output by
FUSION (a single gene-context-trait association) and corrected by
hierarchical false discovery without any sort of set test for the
sake of equality in the comparison. We ran FUSION-TWAS using
the default recommended settings, with reference data from the
1000 genomes project81. TWAS weights were trained on the GTEx
v7 dataset2 as well as the CLUES20 single-cell RNAseq dataset of
PBMCs. For a given gene-context-trio, we ran up to 5 TWAS—1)
context-by-context, 2) UTMOST, 3) CONTENT(Shared), 4) CON-
TENT(Specific), and 5) CONTENT(Full). Notably, we re-trained
each methods’ predictors on genetic variants that are present in
the LDREF cohort as well as GTEx or CLUES to ensure selected
expression weights had overlap with the reference panel (LDREF).

Simulations to evaluate prediction accuracy
To evaluate the properties of ourmethod relative to othermethodswe
perform a series of simulation experiments. We first simulate geno-
types for each individual, where each individual i and each locus
m (m = 1:M) is independent, and there are no rare SNPs:

Gim ~ Bin ð2,Unif ½0:05,0:50�Þ ð11Þ

We then draw both context-shared (βj.) and context-specific (βjc)
effect sizes for each SNP from a normal distribution with a Bernoulli
random variable Im controlling the probability that the mth SNP is
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causal (i.e. induce sparsity of genetic effects).:

Im ~ Bernoulli ð:05Þ, βm
j: ~ N 0,

h2

M*π

 !
× Im, and βm

jc ~ N 0,
h2
c

λ*M*π

 !
× Imλ

ð12Þ

Here, h2 and h2
c are the context-shared and context-specific

heritabilities of expression on gene j. In general, the SNPs with
nonzero context-specific effect sizes were subsampled from SNPs
with nonzero context-shared effect sizes. We additionally simu-
late for a subset of contexts some number of truly context-
specific eQTLs drawn from Poisson(λ = 1) for randomly selected
SNPs that were not eQTLs for the context-shared effects. Finally,
we simulate the expression of gene j as follows:

Ejc =Gjβj: +Gjβjc + εjc ð13Þ

ε ~N ð0, ΣÞ, Σ 2 RC ×C =

σ2
1 . . . σ1,C

..

. . .
. ..

.

σC,1 . . . σ2
C

2
664

3
775 ð14Þ

where ε 2 RI , represents the correlation of environment or intra-
individual noise across contexts, σ2

c = 1� h2 � h2
c is the variances of

each context c, and σc1 ,c2
=ρc1 ,c2

σc1
σc2

is the covariance of context c1
and c2. We generated data under varying levels of context-specific
heritability, truly context-specific eQTLs, causal SNPs, and correlation
of intra-individual noise across contexts. The number of contexts was
set to 20, and to replicate a setting similar to GTEx, the corresponding
sample sizes of each ranged from 75 to 410 where individuals were not
necessarily measured in every context. In our simulations, we
generated one train and one test data set using the above framework.
We evaluated the performance of eachmethod by comparing the true
and predicted expression in the test data set, using the predictor
learned from the training data set.

To assess the effect of additional sharing on a subset of contexts,
we also set up a simulation framework using the same generative
process as above, only that a subset of contexts also received addi-
tional genetic effects. More rigorously, for this subset of contexts
(acting as brain contexts in GTEx, for example), expression was gen-
erated as in equation (6) with an additional term:

Ejc =Gjβj: +Gjβjc +Gjβj _b + εjc, βm
j _b ~ N 0,

h2
_b

λ*M*π

 !
× Imλ ð15Þ

where each variable is simulated as before, βm
j _b corresponds to addi-

tional genetic effects that are subsampled from SNPs that have a
context-shared effect, and h2

_b is the brain-shared heritability.

Simulations of TWAS performance
Using the above generated genotypes and gene expression, we simu-
lated phenotypes to evaluate the performance of each method under
the assumed model in TWAS. For a given phenotype, we randomly
selected 300 gene-context pairs (100 genes, 3 contexts each) whose
expression would comprise a portion of a phenotype. Explicitly, we
generated a phenotype as follows:

yi = Eiδ + ε δ ~N 0,
σ2
ge

300

 !
, εi ~N 0,1� σ2

ge

300

 !
ð16Þ

Where Ei is the standardized genetic expression of the 300 gene-
context pairs for individual i, δ is the length-300 vector of effect
sizes for each gene-contexts’ expression, σ2

ge is the variance in the
phenotype yi due to cis-genetic gene expression, and εi corre-
sponds to environmental effects (or noise) as well as trans-

genetic effects for individual i. In our simulations, we varied the
heritability of gene expression and fixed variability in the
phenotype due to genetic gene expression to 0.2. To simulate a
wide range of genetic architectures, the proportion of heritability
of gene expression due to the context-shared effects was sampled
from a standard uniform distribution, and the proportion of
heritability due to context-specific effects was (1- the context-
shared proportion). Once we generated a phenotype, we
performed a TWAS using weights output from each method by
imputing expression into a simulated external, independent set of
10000 genotypes that followed the same generation process as in
the previous subsection.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GTEx v7 is a publicly available dataset through the GTEx portal (gen-
otypes must be accessed through dbGap permissions, and RNA
sequencing is available on the GTEx website; https://www.gtexportal.
org/home/datasets11). The CLUES dataset is also publicly available21 at
Gene Expression Omnibus accession number GSE174188 and dbGap
accession number phs002812.v1.p1. Trained weights for the GTEx v7
dataset and our in-house single-cell RNAseq are available at the TWAS/
FUSION repository (http://gusevlab.org/projects/fusion/). We provide
TWAS summary statistics for all three methods on both datasets (as
well as an indicator of whether the association was hierarchical FDR-
adjusted significant) at Zenodo accession https://doi.org/10.5281/
zenodo.5209239. We include summary statistics for the associations
within GTEx and CLUES at the above Zenodo link.

Code availability
The CONTENT software is freely available at https://github.com/
cozygene/CONTENT.We include in the same link an example script for
running hFDR.
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