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Motion perception is essential for visual guidance of
behavior and is known to be limited by both internal
additive noise (i.e., a constant level of random
fluctuations in neural activity independent of the
stimulus) and motion pooling (global integration of local
motion signals across space). People with autism
spectrum disorder (ASD) display abnormalities in motion
processing, which have been linked to both elevated
noise and abnormal pooling. However, to date, the
impact of a third limit—induced internal noise (internal
noise that scales up with increases in external stimulus
noise)—has not been investigated in motion perception
of any group. Here, we describe an extension on the
double-pass paradigm to quantify additive noise and
induced noise in a motion paradigm. We also introduce
a new way to experimentally estimate motion pooling.
We measured the impact of induced noise on direction
discrimination, which we ascribe to fluctuations in
decision-related variables. Our results are suggestive of
higher internal noise in individuals with high ASD traits
only on coarse but not fine motion direction
discrimination tasks. However, we report no significant
correlations between autism traits and additive noise,
induced noise, or motion pooling in either task. We
conclude that, under some conditions, the internal noise
may be higher in individuals with pronounced ASD traits
and that the assessment of induced internal noise is a

useful way of exploring decision-related limits on
motion perception, irrespective of ASD traits.

Introduction
Although deficits in social, behavioral, and cognitive

functioning form the core symptomology of autism
spectrum disorder (ASD), sensory and perceptual
abnormalities have long been associated with the
condition (Asperger, 1944; Grandin, 1992; Kanner,
1943; Kern et al., 2006; O’Neill & Jones, 1997).
Sensory issues likely contribute to the complex
pattern of behaviors that define ASD, as they are
evident in social deficits (facial perception, gestural
interpretation, unusual eye contact, difficulties with
joint attention) and non-social deficits (light sensitivity,
repetitive/stereotyped behaviors) (Simmons, Robertson,
McKay, Toal, McAleer, & Pollick, 2009). Differences
in sensory processing may play a causative role in core
features of autism (Marco, Hinkley, Hill, & Nagarajan,
2011), such as language delay (auditory processing)
and difficulty with reading emotion from faces (visual
processing). Understanding the mechanisms of such
sensory deficits may therefore help to reveal the neural
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underpinnings of ASD (Zwaigenbaum, Bryson, Rogers,
Roberts, Brian, & Szatmari, 2005).

The etiology of sensory abnormalities in ASD is
unknown, but recent work has suggested that higher
levels of variability in neural response (internal noise)
could be a physiological basis for the condition.
Brain imaging studies have shown that individuals
with ASD have increased internal noise (Dinstein,
Heeger, Lorenzi, Minshew, Malach, & Behrmann,
2012; Domínguez, Velázquez, & Galán, 2013; Milne,
2011; Weinger, Zemon, Soorya, & Gordon, 2014).
Specifically, the variability (but not magnitude) of
evoked functional magnetic resonance imaging (fMRI)
response was larger in people with ASD, so that
signal-to-noise ratios were lower across visual, auditory,
and somatosensory cortices (Dinstein et al., 2012).
Similar differences in neural variability have been
reported using resting-state magnetoencephalography
(Domínguez et al., 2013), suggesting that high internal
noise may represent a fundamental physiological
difference in cortical processing of people with ASD
(but see Butler, Molholm, Andrade, & Foxe, 2017;
Coskun et al., 2009).

At a behavioral level, the impact of internal noise on
visual perception in ASD has mostly been investigated
in the motion and orientation domain (Manning,
Tibber, Charman, Dakin, & Pellicano, 2015; Manning,
Tibber, & Dakin, 2017; Park, Schauder, Zhang,
Bennetto, & Tadin, 2017; Zaidel, Goin-Kochel, &
Angelaki, 2015). Early evidence for motion processing
deficits in ASD indicated that people with ASD were
significantly poorer at reporting the perceived direction
of stimuli defined by contrast change than controls but
showed no differences with stimuli defined by luminance
change (Bertone, Mottron, Jelenic, & Faubert, 2003).

Later research has used motion coherence tasks
(Simmons et al., 2009) to measure the minimum
number of coherently moving dots (i.e., in a common
direction) within a population of randomly moving
dots required to support a reliable report of direction.
This work has shown higher motion coherence
thresholds in ASD compared with controls (Milne,
Swettenham, Hansen, Campbell, Jeffries, & Plaisted,
2002; Spencer & O’Brien, 2006), although not
consistently (Brieber, Herpertz-Dahlmann, Fink,
Kamp-Becker, Remschmidt, & Konrad, 2010; Jones et
al., 2011; Manning et al., 2015). Overall, ASD groups
exhibit more variable levels of performance compared
with controls, speaking to variability within ASD in
general (Milne, White, Campbell, Swettenham, Hansen,
& Ramus, 2006; Pellicano, Gibson, Maybery, Durkin,
& Badcock, 2005). Although behavioral data are
equivocal, there is evidence that, even when behavioral
impairments are absent, neural differences exist
between individuals with and without ASD (Brieber
et al., 2010; Freitag et al., 2008; Herrington et al.,
2007; Kaiser et al., 2010; McKay, Simmons, McAleer,

Marjoram, Piggot, & Pollick, 2012; Peiker et al., 2015).
Could internal noise contribute to such processing
differences?

There are two broad explanations for atypical
motion coherence thresholds in ASD. First, coherence
thresholds could be increased due to poor estimation
of local direction due to high levels of internal
noise (Barlow & Tripathy, 1997; Zaidel et al., 2015).
Second, coherence thresholds could be increased
due to impaired motion pooling (i.e., integration)
of local direction signals (Dakin, Mareschal, & Bex,
2005a). Pooling local motion signals would combat
external (and internal) noise on local motion signals so
that a deficit in this process would degrade direction
estimation (Dakin et al., 2005a; Manning et al., 2015).
A recent study investigated these processes in ASD
(Manning et al., 2015) and found no evidence for a
difference in internal noise between the two groups.
However, they did find a difference in motion pooling.
Contrary to expectation, individuals with ASD showed
more motion pooling when external noise was high,
causing ASD children to outperform controls. This
finding, however, was not confirmed in a subsequent
study, although combining both studies still showed
significantly more motion pooling (Manning et al.,
2017). These results are consistent with findings
of enhanced motion perception in ASD compared
to controls using a different experimental design
(Foss-Feig, Tadin, Schauder, & Cascio, 2013).

The equivocal nature of the literature suggests that
internal additive noise may not be a strong determinant
of motion processing in ASD. However, the ASD
literature to date has largely ignored the potential
interaction between external noise and internal noise
(but see a recent exception, Park et al., 2017, looking at
orientation perception). Internal noise can be divided
into at least two components: additive and induced
(Burgess & Colborne, 1988; Lu & Dosher, 2008).
Additive noise is the internal “baseline” level of noise,
which is constant across different amounts of input.
It is this type of noise that is measured by previous
paradigms (i.e., equivalent noise paradigms) (Dakin
et al., 2005a; Lu & Dosher, 2008). Induced noise,
on the other hand, is proportional to the amount of
noise present in the stimulus (Burgess & Colborne,
1988).1 Importantly, when external noise is low (and
thus induced noise is low), the main source of internal
noise is additive noise. As external noise increases,
induced noise increases also and becomes the main
source of internal noise. Figure 1a shows the impact
of different types of noise and pooling on thresholds
(as measured, for example, using equivalent noise
paradigms). As is clear from this figure, it is difficult
to distinguish between the different types of noise.
To a large degree (but not completely), the changes
in different types of noise are interchangeable; for
example, additive noise and induced noise together
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Figure 1. (a) Modeled threshold versus external noise curves, as measured with equivalent noise paradigms. As external (stimulus)
noise is increased, performance thresholds (i.e., observed noise) rise. When compared to a baseline (with a certain level of additive
but no induced noise), the following effects are observed: Reducing motion pooling leads to a uniform upward shift in the curve;
increasing additive noise increases thresholds but only at low levels of external noise; and induced noise increases thresholds,
especially at high levels of external noise. The vertical dashed line identifies the elbow in the baseline curve and quantifies the level of
additive noise according to the equivalent noise paradigm. (b) Internal noise versus external noise curves, as obtained with a
double-pass paradigm. When expressed in terms of the total amount of internal noise, there are clear differences between the
different manipulations. Increasing additive noise elevates the internal noise by the same amount independent of the external noise.
When induced noise is included, internal noise shows a strong dependence on external noise. Induced noise is the only variable that
causes an increase in internal noise in the internal versus external noise plot. In the original approach by Burgess and Colborne
(1988), motion pooling was not taken into account. When using this approach, motion pooling scales the curve up or down equally at
all external noise levels (causing misestimated noise levels, as shown in this figure). However, when explicitly including motion
pooling in the model, motion pooling would have no effect on internal noise estimates (as per our method).

may look like a change in motion pooling. It is thus
possible that previous studies of motion perception
using equivalent noise paradigms, for example, failed
to identify changes in induced noise because they were
interpreted as a change in motion pooling and additive
noise.

In this study we circumvent this problem by
obtaining measures of additive noise, induced noise,
and pooling using the double-pass paradigm (Burgess
& Colborne, 1988), which is considered to be a
direct way of estimating internal noise (Burgess &
Colborne, 1988; Lu &Dosher, 2008). In the double-pass
paradigm, identical noisy stimuli are presented twice
to individuals. A person with high internal noise might
perceive such identical stimuli as different (Green,
1964; Haigh, Heeger, Dinstein, Minshew, & Behrmann,
2015), but, because the stimuli are identical on both
presentations, any perceptual difference must be due
to internal processes (Green, 1964). The advantage of
the double-pass paradigm is that it does not assume
that all internal noise is additive and allows one to
distinguish the impact of induced noise from other

types of noise (Burgess & Colborne, 1988; Lu &
Dosher, 2008) (Figure 1b). The method has previously
been employed to measure internal noise correlations
with autism traits in the typically developing population
on three non-motion tasks (Vilidaite, Yu, & Baker,
2017), although no estimates of induced noise were
derived.

Because the double-pass paradigm has not been used
for motion discrimination, we here further develop it
to deal with circular variables. We further tested the
influence of additive and induced noise in both a coarse
and a fine motion direction discrimination task, because
these tasks may depend on different sensory decoding
rules (Jazayeri & Movshon, 2007) and thus may be
differently affected by noise. The difference between fine
and coarse motion judgments has not been previously
investigated in the context of ASD. However, as ASD
is often linked to a more detail-oriented processing,
comparing fine and coarse discrimination tasks is
potentially very revealing with regard to the underlying
mechanisms that are affected in motion processing in
ASD.
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Model development
The induced noise model has been extensively

described previously (Burgess & Colborne, 1988; Lu &
Dosher, 2008). Here, we briefly recapitulate the features
and assumptions of the model and describe details of
our version of the model. The model is descriptive,
setting out to determine the relative contributions of
different types of noise to performance. The model
assumes three independent normally distributed types
of noise that contribute to the overall noise (i.e., their
variances add). These types are additive noise (σ add),
external stimulus noise (σ ext), and induced noise (σ ind).
Their combined impact is determined by adding their
variances:

σ 2
total = σ 2

add + σ 2
ind + σ 2

ext (1)

where σ total is the total noise that determines the
sensitivity of the system (e.g., detection threshold).
Both additive noise and induced noise are internal to
the brain. Additive noise describes the combination of
all noises that together are independent of the level of
external noise. The induced noise describes all noise
components that together are proportional to the
external noise (Burgess & Colborne, 1988). There are
no assumptions about the order in which these sources
are added2.

Because σ ind is a proportion (m) of external noise
(σ ind = mσ ext), this can be rewritten as

σ 2
total = σ 2

add + (mσext)2 + σ 2
ext

= σ 2
add + (

1 + m2) σ 2
ext (2)

Performance often differs from this optimal
combination by a simple scaling factor, and
conventionally a constant denoting efficiency, or a
perceptual template gain (γ ), is included (Burgess &
Colborne, 1988; Lu & Dosher, 2008):

σtotal = 1
γ

√
σ 2
add + (

1 + m2
)
σ 2
ext (3)

In the current manuscript, we use a mathematically
equivalent form, where a constant n is interpreted as
motion pooling (Dakin, Mareschal, & Bex, 2005a; van
Boxtel, 2019):

σtotal =
√

σ 2
add + (

1 + m2
)
σ 2
ext

n
(4)

This formulation is similar to the central limit
theorem, with n describing the number of samples
that are taken to calculate the mean. The model

assumes independence of noise, linear addition of their
variances, and a linear and optimal detection process. In
our model, we do not include an assumption of noisy
motion pooling. This is because simulations showed
that assuming noisy motion pooling (i.e., pooling over
different numbers of moving dots on different trials)
does not materially affect internal noise estimates (see
Simulations in https://osf.io/4gdkt/). Increasing noise
in the motion pooling increases estimates of average
motion pooling, suggesting that it is not possible to
separate average motion pooling from variation in
motion pooling.

Experiment 1. Coarse motion
direction discrimination
In the first experiment, we investigated the

dependence of motion direction discrimination
thresholds on additive and induced noise in a coarse
direction discrimination task. We used the double-pass
paradigm to estimate both sources of noise and develop
an experimental approach to estimation of motion
pooling.

Method

Participants
Ethics approval was obtained from the Monash

University Human Research Ethics Committee, and
written informed consent was obtained from all
participants prior to participation. This study was
completed in accordance with approved guidelines.
Participants—45 healthy adults (31 female, 14 male),
ranging in age from 18 to 40 years old (Mage = 22.07,
SDage = 4.96)—were recruited from the Monash
University Clayton campus. All participants were
proficient in English and had normal or corrected-
to-normal vision, fulfilling our inclusion criteria.
Participants received monetary compensation for their
participation. Participants were excluded if the internal
noise model (explained below; Equation 5 fitted with an
R2 < 0.5). One participant was excluded based on this
exclusion criterion.

Materials
The Autism Spectrum Questionnaire (AQ) was used

to measure self-reported autistic traits (Baron-Cohen,
Wheelwright, Skinner, Martin, & Clubley, 2001). The
AQ is comprised of 50 items on a four-point Likert
scale (definitely agree, slightly agree, slightly disagree,
definitely disagree) and was administered and scored on
a computer.

https://osf.io/4gdkt/
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Figure 2. Screenshot of visual motion task stimuli (a) and response screen (b). Participants viewed the stimuli and then gave a
response by clicking on a wedge in the response screen indicating whether the dots were moving clockwise or anticlockwise of
vertical and how confident they were in their response.

We also collected data from the Kaufman Brief
Intelligence Test Second Edition (KBIT-2) (Kaufman &
Kaufman, 2004). Because our cohort included a large
proportion of non-native English speakers, this test
did not provide accurate estimates of the intelligence
quotient, but all individuals scored >70.

Apparatus
This study was completed in an experimental room

without external lights. Artificial lights were turned on,
which we expect had no impact on our results because
stimuli were displayed far above detection threshold.
Participants sat comfortably in front of the computer,
with their head stabilized by a chin rest. The experiment
was displayed on a VIEWPixx/3D monitor (VPixx
Technologies, Saint-Bruno-de-Montarville, Canada),
which had a refresh rate of 120 Hz and a resolution of
1920 × 1200 pixels and was viewed from a distance of
114 cm. All experimental displays (including stimuli
and AQ administration and scoring) were created using
MATLAB (MathWorks, Natick, MA) and OpenGL
with Psychtoolbox extensions (Brainard, 1997; Pelli,
1997).

Stimuli
We used random-dot motion stimuli (Figure 2),

made up of 200 circular dots (100 black, 100 white;
diameter, 0.07°) moving within a circular aperture,
which was outlined in black against a gray background.
A red fixation mark was provided (diameter, 0.35°),
which was surrounded by a 0.67° exclusion zone in
which no dots were drawn in order to decrease potential
pursuit eye movements. Each individual dot moved
(speed = 2.38°/s; lifetime = 8 frames) in a direction
randomly chosen from a wrapped normal Gaussian

distribution (mean 22° clockwise or anticlockwise from
vertical, with standard deviations of 0°, 35°, 45°, 60°,
70°, 80°, 90°, or 100°). A noise level of zero means that
all dots moved in the same direction (22° clockwise or
anticlockwise of upward motion).

Participants were required to indicate the perceived
direction of the motion stimuli using a response screen
(Figure 2b). This consisted of a confidence wheel
comprised of eight numbered wedges. The four wedges
on the left or right were used to indicate that the dots
were, on average, perceived to move anticlockwise or
clockwise of vertical, respectively. Each of the wedges
was numbered (1 = not at all sure, 4 = very sure) and
shaded (1 = lightest, 4 = darkest), and the confidence
screen was flipped upside down every 100 trials.

Procedure
Participants performed the KBIT-2, which took

approximately 40 minutes, then the visual motion task,
and finally the AQ questionnaire.

In the motion task, stimuli (Figure 2a) were
presented for 0.75 seconds followed by the response
screen (Figure 2b). Participants were instructed to focus
their gaze on the fixation point (red dot) at the center
of the screen during stimulus presentation and were
asked to judge the average direction of the moving
dots. Participants indicated their decision by a clicking
on a wedge in the response screen which served to
indicate if they thought dots were moving clockwise or
anticlockwise of vertical and how confident they were
in this judgment (Figure 2b).

Our study employed a double-pass paradigm, similar
to that used by Burgess and Colborne (1988), which is a
method whereby two identical presentations (passes) of
each stimulus are made over two separate trials. There
were 100 unique stimuli and therefore 200 trials in total
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Figure 3. Relationship between accuracy and consistency, dependent on different ratios of σ int/σ ext. (a) Colored lines were calculated
using a wrapped Gaussian distribution, and the dashed gray lines are based on Gaussian distributions used by Burgess and Colborne
(1988). The line for σ int/σ ext = ∞ is the case without external noise. (b) Schematic of how data were analyzed for two example data
points. Internal noise for the data falling above the σ int/σ ext = ∞ curve (e.g., square) was estimated by finding the nearest point on
the σ int/σ ext = ∞ curve, and the internal noise associated with that point was taken as the measured internal noise. For all other
data (circle), the best fitting line determined σ int/σ ext.

for each noise level. The first passes were run first in
random order, and the second passes were then run in
the same order. Participants were given self-timed breaks
after every 100 trials. A total of 1600 trials were run.

Data Analysis

Analyses were run in MATLAB, and Bayesian
statistics were performed using the jsq module from
JASP run in jamovi (jamovi, 2020; JASP Team, 2018).

We employed a double-pass paradigm to quantify
internal noise (Burgess & Colborne, 1988). Values for
internal additive and induced noise and motion pooling
were calculated based on participants’ performance on
the visual motion task. Internal noise can be estimated
by examining the accuracy (over individual trials) and
consistency (between the two passes) of a person’s
response (Burgess & Colborne, 1988). For this task, a
person is accurate if the dots are moving left (or right)
and the participant responds “left” (or “right”). A
person is consistent if they choose the same direction on
both test and retest presentations of a trial, regardless
of whether or not they were correct (and regardless of
their reported confidence).

Internal noise
When noise levels are expressed as a ratio of

internal over external noise (σ int/σ ext), there exists a

fixed (nonlinear) relationship between accuracy and
consistency at different levels of σ int/σ ext (Burgess
& Colborne, 1988). These relationships are shown
in Figure 3a for different ratios of σ int/σ ext (gray
dashed lines). Internal noise values can be calculated by
fitting such a curve to experimental data and finding
the ratio σ int/σ ext that best captures the data. Then,
because σ ext is known, σ int can be calculated. Because
this approach will not work for circular variables, we
calculated the curves numerically for wrapped circular
distributions. Figure 3a shows a comparison of the
noncircular (colored lines) and circular (gray dashed
lines) approaches, using identical parameters. When
noise is large (toward the lower side in the plot), circular
data deviate from the noncircular data. The curving
toward the point where accuracy and consistency are
both 50% occurs because, when external noise levels are
large, dots at the extreme end of the distribution will be
wrapped around the circle (or more than once). Some
information remains as long as internal noise is not
heavily wrapped around, but because it is a proportion
of external noise it will also wrap around at large
values of external noise. The distribution will approach
a uniform distribution on a circle. At that point, the
stimulus is largely uninformative, and both accuracy
and consistency are random. An additional unfortunate
consequence of the circular nature of the data is that
the exact shape of the curves is dependent on the signal
strength. When the mean angle (i.e., signal) is small,
the data are well approximated by an approach using
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Gaussian distributions (only showing deviations at very
large noise values).

Instead of fitting the data, we constructed a large
lookup table for accuracy-versus-consistency curve
ratios σ int/σ ext. We used an ad hoc function to achieve
a reasonable coverage of ratios: (1.12q–1)/25, with
q ranging from 1 to 59 in steps of 0.5. Individual
data points were compared with these curves, and the
curve to which the data point showed the smallest
squared Euclidian distance was taken as the best
fit (Figure 3b). The squared distance was calculated
taking into account deviations in terms of both
accuracy and consistency. When the participant’s data
showed an accuracy below 50% it was adjusted to
(1-accuracy). This happened six times (out of 45 × 8
= 360 data points, or 1.67% of all data points). Note
that this correction does not materially change the data,
because the consistency–accuracy curves are mirror
symmetric along the line accuracy = 50%. However,
keeping all points above 50% accuracy simplifies the
fitting.

This procedure determined σ int/σ ext, as well as σ int
(as σ ext is known). In some cases, data points fell above
the curve σ int/σ ext = ∞ (e.g., square in Figure 3b). As
can be seen from Figure 3b, the data cannot be fit with
a theoretical curve. Because we have a limited amount
of trials per participant, some points in our dataset fell
in this region. The fact that the data lie in that region
indicates that the data was dominated by internal noise.
Therefore, for those points, internal noise was estimated
by fitting the σ int/σ ext = ∞ curve to the data; that is,
we found the point on this curve that was closest to the
data point (square in Figure 3b), where the squared
error (in both consistency and accuracy directions)
was smallest. The internal noise value that was
associated with that point on the curve was taken as the
internal noise estimate for our data point. Simulations
showed that this resulted in correct approximations
of internal noise levels (see Simulations in
https://osf.io/4gdkt/).

Determining additive and induced internal noise
In equivalent noise paradigms, the amount of

internal (additive) noise is determined by finding the
elbow in the curve in Figure 1a (dashed line). This
approach, however, ignores the possible contributions
of induced noise. Therefore, if induced noise influences
the task at hand, then estimates of additive noise can
be incorrect. For example, when introducing induced
noise in the data of Figure 1a, the elbow moves to
lower external noise values, thus underestimating the
amount of additive noise. Unfortunately, it is difficult to
determine from the plots in Figure 1a whether induced
noise is present, because the curves are very similar (and
can be made nearly overlapping by appropriately setting
additive noise and pooling parameters). However, using

the double-pass paradigm, one can plot the internal
noise versus external noise values (Figure 1b). Induced
noise can be derived from the increase in internal noise
that depends on the level of external noise, with a slope
of 0 indicating that there is no significant influence of
induced noise. This makes intuitive sense, as the internal
noise consists only of a fixed level of constant additive
noise, which is not changed by the level of external
noise, thus tracing a flat line in the internal versus
external noise plot.

As indicated, according to Burgess and Colborne
(1988), the induced noise σ ind is directly proportional
to the external noise; thus, σ ind = mσ ext. The total
internal noise is σ int = sqrt(σ add

2 + σ ind
2) = sqrt(σ add

2

+ m2σ ext
2).

The induced noise factor m can be derived in various
ways, and, because we had no a priori reason to assume
which one worked best, we performed a simulation
study (see the Appendix). This simulation study showed
that the best way to determine additive and induced
noise was to fit the following function to the collective
internal noise data per participant:

f (σext) =
√

σ 2
add + (m σext)2

n
(5)

where n is the number of motion samples that are taken
to estimate motion direction (i.e., motion pooling).
We fitted Equation 5 to individual participant data
after first independently estimating n from the data (see
below).

Determining motion pooling
Better performance in a task may result not only

from lower noise levels but also when the direction
information from multiple dots is combined. This is
called (global) motion pooling (Dakin et al., 2005a).
To derive motion pooling in our task, we plotted
iso-external noise lines (Figure 4). These lines trace,
for one value of external noise, the expected values of
consistency and accuracy without motion pooling.
Note that these lines are dependent on the parameters
of our stimulus and thus will be different in different
experiments, such as the fine discrimination task
below. Each data point will fall on only one curve,
and this curve indicates the observed external noise.
The data generally fall on a curve that has a lower
level of observed external noise than the amount of
external noise that was actually present in the stimulus,
indicating that information frommultiple dots is pooled
(see, for example, the data points from σ ext = 80,
which falls on the line of observed external noise = 30)
(Figure 4).

https://osf.io/4gdkt/
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Figure 4. Observed external noise and motion pooling. This plot
has the same layout as Figure 3 but also shows iso-external
noise lines: the accuracy and consistency expected for a given
external noise level without motion pooling (displayed on the
right). The black dots are experimental data for one participant,
and the external noise for each condition is indicated within the
dot. The external noise for each condition is higher than the
iso-external noise line on which it falls, suggesting that the
observed/effective external noise was lower than the actual
external noise, an indication that motion pooling was occurring.

The level of motion pooling is derived with a
characteristic of the central limit theorem that

σobs =
√

σ 2
int + σ 2

ext

nsamp
(6)

where σ obs is the observed standard deviation of the
response, and nsamp is the effective number of samples
that are combined to give a motion direction estimate
(i.e., motion pooling). In our case,

σobs =
√

σ 2
int + σ 2

ext

nsamp
=

√
s2int + s2ext (7)

where σ int and σ ext are the real internal and external
noise values, and sint and sext are observed values. The
observed values have the motion sampling already taken
into account, which is why nsamp does not appear on the
right-hand side of the equation. Because we know the

ratio (α) between internal and external noise and thus
σ int = α * σ ext, this equation can be rewritten as

√
α1s2ext + s2ext =

√
α2σ

2
ext + σ 2

ext
nsamp

(8)

and, rewriting, we obtain

√
(1 + α1) s2ext =

√
(1 + α2) σ 2

ext
nsamp

(9)

which can be rewritten as

nsamp = (1 + α2) σ 2
ext

(1 + α1) s2ext
(10)

Assuming that α1 = α2 (i.e., that the motion pooling
does not affect the ratio of internal to external noise),
we can derive motion pooling as

nsamp = σ 2
ext

s2ext
(11)

Because we know both σ ext (the external noise, or
standard deviation of directional noise) and sext (the
observed external noise), we can calculate the motion
pooling, nsamp. Simulations showed that this method of
estimation works but only for the lower noise levels (we
used 35°, 45°, and 60°) for our coarse discrimination
task and for the higher noise levels for the fine
discrimination task (3.71–51.19). These simulations can
be found in Simulations at https://osf.io/4gdkt/.

For data points that lay beyond the σ int/σ ext = ∞
curve, observed external noise could not be determined,
and these data points were consequently not used to
estimate motion pooling.

Results

Influence of external noise on accuracy, consistency, and
confidence

As external noise increased, accuracy, consistency,
and confidence ratings decreased, reflecting increased
task difficulty (Figure 5). In particular, both accuracy
and consistency decreased from near-perfect to
near-chance levels. This suggests that the spread of
noise levels measured both the upper and lower limits
of participant performance. Although we do not
present any further analysis of confidence ratings here,
confidence data have been deposited in a large, openly
available confidence database (Rahnev et al., 2020).

https://osf.io/4gdkt/
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Figure 5. Mean behavioral performance. (a) Accuracy, (b) consistency, and (c) confidence decreased as external noise level increased
but remained significantly above chance level at all noise levels. Error bars are standard errors of the mean calculated over
participants.

We investigated whether AQ had a significant effect
on the dependence of accuracy and consistency on
noise. Numerically, the accuracy and consistency were
lower in people with higher AQ scores. To test the
statistical significance of this finding, we constructed
an unrestricted linear model with AQ, noise level, and
their interaction as terms, and we compared them to
models without the interaction and models without
both the interaction and the AQ term. Likelihood
ratio tests revealed no significant differences between
unrestricted models and those excluding the interaction
[accuracy: χ2(1) = 0.07, p = 0.78; consistency: χ2(1)
= 0.68, p = 0.41] or between unrestricted models and
those excluding both AQ and the interaction [accuracy:
χ2(2) = 3.51, p = 0.17; consistency: χ2(2) = 4.08, p
= 0.13]. However, comparing the models with AQ
(but without interaction) and those with only external
noise showed near significant results [accuracy: χ2(1) =
3.44, p = 0.065; consistency: χ2(1) = 3.40, p = 0.065],
suggesting that AQ may have a small influence, but our
current experiment was not powerful enough to reveal
it. Overall, there appears to be no statistically significant
influence of AQ on the accuracy or consistency of
participants’ reports.

Internal noise
Internal noise was derived from the accuracy–

consistency plots (see Methods) and depended on the
external noise (Figure 6a). The plot shows that internal
noise values depend on external noise, a sign of the
involvement of induced noise. A repeated-measures,
one-way analysis of variance (ANOVA) with external
noise as the factor was significant [internal noise
transformed as log(σ int+1), F(2.27, 97.48) = 218.63, p
< 0.0001, ηp

2 = 0.84, Greenhouse–Geisser corrected].
When performing median split on the AQ scores
(median = 18), we obtained a group of n = 20 that
scored AQ < 18 and a group of n = 20 that scored

AQ > 18 (we discarded the subjects with a median
score for this analysis). The mixed-design ANOVA
with the factors external noise and group (low vs.
high AQ) showed a significant effect of external noise
[F(2.21, 83.78) = 202.81, p < 0.0001, ηp

2 = 0.84,
Greenhouse–Geisser corrected], and AQ group [F(1,
266) = 4.29, p = 0.045, ηp

2 = 0.10], with internal noise
increasing as external noise increased, and higher
internal noise for the high AQ group. The interaction
was not significant [F(7, 266) = 0.21, p = 0.98, ηp

2 =
0.005] (Figures 6b and 6c). A simple correlation over all
participants between AQ and internal noise (averaged
over external noise conditions) was also significant
(Kendall’s τ b = 0.21, p = 0.048).

Additive noise
We estimated additive and induced noise by

fitting Equation 5 to individual participant data.
Unfortunately, our design did not support accurate
estimation of additive noise, because the task was
too easy, resulting in (near) perfect performance. Our
simulations indicated that internal additive noise could
not accurately be estimated from this experiment, so we
did not perform statistical analyses on it. However, the
individual data are shown in Figure 7a.

Induced noise
Internal noise estimates increase with increasing

external noise (Figure 6), which is a sign of the
involvement of induced noise. To statistically
analyze this, we fitted Equation 5 to the collective
individual subject data in Figure 6, while setting
n to 1 to reduce free parameters. This model was
then compared with a model without the impact of
external noise (i.e., an intercept-only model). The
likelihood ratio tests whether or not the model that
incorporated a dependence on external noise was better
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Figure 6. Dependence of estimated internal noise on external noise for the coarse discrimination task. (a) Average results over all
participants. (b) Histogram depicting the distribution of AQ scores. (c) Internal noise after a median split for low- and high-AQ groups.
Error bars indicate ±SEM.

Figure 7. Correlations for the coarse discrimination task. (a) Additive internal noise, (b) induced noise factor m, and (c) motion
pooling, dependent on AQ. One outlier was removed in (c).

[χ2(1) = 190.66, p < 0.0001]. This emphasizes the
importance of induced noise within the model.

To obtain insight into whether this involvement
differs among individuals with different levels of AQ,
we estimated individual levels of induced noise by
fitting Equation 5. The average induced noise factor
over participants was 1.70 (median, 1.67). These values
did not correlate with the AQ measure (Kendall’s τ b
= 0.09, p = 0.39; Bayesian correlation Kendall’s τ =
0.094, BF10 = 0.29).

Motion pooling
We computed the motion pooling at each level of

external noise for each participant using Equation 11.

We then took the median value over the calculated
pooling values from the external noise conditions 35°,
45°, and 60°, discarding conditions in which pooling
could not be estimated. These particular external
noise values were chosen based on simulations (see
Methods and the Appendix). The median value was
13.73 samples, which was significantly higher than 1
(p < 0.0001, Wilcoxon signed-rank test) indicating
that participants were responding using direction
information from multiple dots. We also note that 13.73
is rather close to the square root of the number of
samples present (

√
200 = 14.14), which has previously

been proposed as a simple rule of thumb for estimating
effective sample size in averaging tasks (Dakin, 2001).
There was no correlation between the extent of motion
pooling and AQ (Kendall’s τ = –0.08, p = 0.45)
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(Figure 7c); one multivariate outlier was removed based
on its Mahalanobis distance being >13.8155; that is,
the data point deviated from the multivariate mean at a
p < 0.001. A Bayesian correlation suggested moderate
evidence for the null hypothesis (Kendall’s τ = –0.083,
BF10 = 0.27).

It would be intuitive to argue that motion pooling
should increase the larger the external noise; therefore,
we estimated internal noise at all levels of external
noise using the approach outlined above. Interestingly,
our behavioral data showed a very similar pattern
in estimated motion pooling to the simulations
(see Figure 12). This finding suggests that motion
pooling is independent of the amount of external noise
(as in our simulations).

Experiment 2. Fine discrimination
task
In the second experiment, we investigated how

performance in a fine direction discrimination task
depends on additive and induced noise, as well as on
motion pooling.

Methods

Participants
We recruited 37 healthy adults from the Monash

University Clayton campus. All participants were
proficient in English and had normal or corrected-
to-normal vision, fulfilling our inclusion criteria.
Participants received a monetary compensation for
their participation. Participants were excluded if the
internal noise model (Equation 5) fitted with an R2

< 0.5. Ten participants were excluded on this basis,
leaving 27 participants in the final sample (20 females,
seven males; age range, 18–32 years; Mage = 24.8; SDage
= 5.33).

Stimuli
Stimuli and methods were identical to the coarse

discrimination task except that the mean motion
direction was ±5° from vertical, and the standard
deviations of the Gaussian direction distributions were
0°, 2.2°, 3.7°, 6.3°, 10.6°, 17.9°, 30.3°, and 51.2°.

Analyses
All analyses were as in Experiment 1, except that

lookup tables for the analyses were recalculated for a
signal value of 5° from vertical.

Results

Influence of external noise on accuracy, consistency, and
confidence

As in the coarse discrimination task, the fine
discrimination task showed decreases in accuracy,
consistency, and confidence rating as external
noise increased, reflecting increased task difficulty
(Figure 8). Numerically, the accuracy and consistency
were lower in people with higher AQ scores. To test the
statistical significance of this finding, we constructed an
unrestricted linear model with AQ, noise level, and their
interaction as terms, and we compared them to models
without the interaction and models without both the
interaction and the AQ term. The likelihood ratio tests
revealed no significant differences between unrestricted
models (including AQ, noise level, and their interaction
as terms) and those excluding the interaction [accuracy:

Figure 8. Mean behavioral performance in the fine discrimination task. (a) Accuracy, (b) consistency, and (c) confidence all decreased
as external noise increased but remained significantly above chance at all noise levels. Error bars show the standard errors of the
mean over participants.
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Figure 9. (a) Dependence of mean (±SEM) internal noise on external noise for the fine discrimination task, averaged over
participants. (b) Histogram depicting the distribution of AQ scores. (c) Internal noise after a median split for low- and high-AQ groups.
Data points that were estimated as 0 internal noise were ignored.

χ2(1) = 0.068, p = 0.79; consistency; χ2(1) = 0.13,
p = 0.72] and unrestricted models and those excluding
AQ and the interaction [accuracy: χ2(2) = 0.07, p =
0.96; consistency: χ2(2) = 1.15, p = 0.56]. Comparing
the models with AQ (but without the interaction) to
those with only external noise showed no significant
effects, either [accuracy: χ2(1) = 0.007, p = 0.93;
consistency: χ2(1) = 1.02, p = 0.31]. Overall, there
appears to be no influence of AQ on the accuracy or
consistency in our fine motion discrimination task.

Internal noise
Internal noise in the fine discrimination task

depended on the external noise (Figure 9a), which is
consistent with the involvement of induced noise. A
repeated-measures, one-way ANOVA with external
noise as the factor was significant [internal noise
transformed as log(σ int+1), F(2.92, 75.99) = 152.04, p
< 0.0001, ηp

2 = 0.85, Greenhouse–Geisser corrected].
When performing median split on the AQ scores
(median = 17), we obtained a group of n = 13 that
scored AQ < 17 and a group of n = 12 that scored
AQ > 17, discarding the subjects with a median score
for this analysis. The mixed-design ANOVA with the
factors external noise and group (low vs. high AQ)
showed a significant effect of external noise [F(7, 161)
= 131.40, p < 0.0001, ηp

2 = 0.85] but not AQ group
[F(1, 161) = 0.34, p = 0.56, ηp

2 = 0.01]. The interaction
was not significant [F(7, 161) = 0.21, p = 0.57, ηp

2 =
0.03] (Figures 9b and 9c). A simple correlation over all

participants between AQ and internal noise (averaged
over external noise conditions) was not significant
(Kendall’s τ b = 0.035, p = 0.82).

Additive noise
In contrast to Experiment 1, we were able to obtain

individual additive noise estimates from participants
performance of the fine discrimination task. Additive
noise mean was 15.24 ± 1.27 (median = 14.17;
confidence interval [CI], 12.83–18.00). There was no
significant correlation between our individual additive
noise estimates and corresponding AQ scores (Kendall’s
τ = –0.07; p = 0.63; BF10 = 0.28) (Figure 10a).

Induced noise
The influence of induced noise was again shown

by an increase in internal noise with increasing
external noise (Figure 9). To explore this further, we
fitted Equation 5 to the collective individual subject
data in Figure 9 while setting n to 1 to reduce free
parameters. This model was then compared to a model
that did not incorporate this influence of external noise
(i.e., an intercept-only model). The likelihood ratio tests
determined whether the model with dependence on
external noise was better [χ2(1) = 105.89; p < 0.0001]
and showed a significant impact of induced noise.

When fitting individual subject data with Equation 5,
we found that the induced noise factor, m, over
participants was 1.72 (median, 1.49). These values were
not correlated with the AQ measure (Kendall’s τ b =
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Figure 10. Estimates of (a) additive internal noise, (b) the induced noise factorm, and (c) motion pooling from the fine direction
estimation task plotted against AQ.

0.019; p = 0.911; BF10 = 0.25; one multivariate outlier
was removed) (Figure 10b).

Motion pooling
Mean pooling was 18.56 samples (median, 14.24),

which was significantly higher than 1 (Wilcoxon
signed-rank test, p < 0.0001). There was no significant
correlation with AQ (Kendall’s τ = –0.13, p = 0.35;
one multivariate outlier was removed) (Figure 10c).
A Bayesian correlation suggested that there was not
sufficient data to support the absence of a correlation
(BF10 = 0.39).

We also estimated motion pooling at every external
noise level separately. As with the coarse discrimination
task, the behavioral data showed the expected pattern
for a constant motion pooling, independent of external
noise (see Figure 12).

Comparing fine and coarse discrimination tasks
From Figures 6 and 9, it appears that the internal

noise is larger in the fine discrimination task than
in the coarse discrimination task. We compared
internal noise between the two tasks at similar external
noise conditions and found that internal noise was
significantly larger in two of the three comparisons
(Wilcoxon rank-sum test; at σ ext = 0, Z = 2.06 and p =
0.039; at fine σ ext = 30.5 and coarse σ ext = 35, Z = 1.11
and p = 0.27; at fine σ ext = 51.2 and coarse σ ext = 45, Z
= 5.80 and p < 0.0001).

In terms of the dependence of internal noise on
AQ, the analyses above indicated a significant effect
in the coarse task but not in the fine task; however,
even the fine task showed a numerically larger internal
noise in the high AQ group compared with the low
AQ group. In fact, over the two experiments, 14
out of the 16 noise conditions showed this overall
difference. The probability of finding this difference 14

or more conditions by change is 0.0021 (binomial test),
suggesting a significant effect overall.

Mean induced noise was not different between the
two tasks (Z = 1.04; p = 0.30, Wilcoxon rank-sum test).
Comparing the motion pooling data between coarse
and fine discrimination tasks showed no significant
difference (Z = 0.05; p = 0.96, Wilcoxon rank-sum
test).

Discussion
We investigated how fine and coarse motion

discrimination is limited by internal noise (both
additive and induced) and by pooling (or multiplicative
noise), and we also examined if these limits were
correlated with ASD traits in a typically developed
adult population. We found evidence for higher internal
noise in ASD when performing a coarse discrimination
task but not in a fine discrimination task. However,
in neither the coarse nor fine discrimination task
were additive noise, induced noise, or motion pooling
correlated with ASD traits.

Additive noise influences on motion perception

Several studies have reported high internal
noise in ASD populations compared with control
groups using brain-imaging techniques such as
fMRI (Dinstein et al., 2012; Haigh et al., 2015),
electroencephalography (Milne, 2011; Weinger et
al., 2014), and magnetoencephalography (Ishikawa,
Shimegi, & Sato, 2006; Peiker et al., 2015). These results
led us to anticipate a positive correlation between AQ
score and additive noise which we did not observe in
the fine discrimination task and which we were unable
to estimate in the coarse discrimination task. Additive
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noise has not been previously investigated across AQ
in a typically developed population, and our results
suggest that additive noise does not vary with traits
of ASD in the general population. These results are
consistent with other research that has not found
significant differences in additive noise between ASD
and control groups, in both behavioral (Manning et al.,
2015) and brain-imaging (Coskun et al., 2009) studies.

Aside from the lack of a link to autism traits, our
results do speak to the involvement of additive noise
in the perception of motion. We found considerable
differences in the amount of additive internal noise
between individuals. These individual differences in
noise were correlated with (and, in fact, calculated
from) differences in performance measures (accuracy
and consistency) in a motion discrimination task. This
suggests that internal additive noise can determine task
performance differences among individuals, although at
the moment it appears that it cannot stratify individuals
along the broader ASD spectrum.

Induced noise

We identified a strong influence of induced noise
on motion direction discrimination. In motion tasks,
induced noise has not been previously investigated
in relation to ASD, either between ASD and control
groups or across AQ score within the broader spectrum.
Instead, studies have investigated internal noise
without splitting it into additive and induced noise.
For example, Manning et al. (2015) varied the amount
of external noise in a motion discrimination task
but only looked at two levels of noise. Overall, they
found better performance at high noise levels for
individuals with ASD relative to the control group
but no difference at low noise levels. The authors
tentatively attributed performance differences at
high noise levels to differences in motion pooling
(Manning et al., 2015), but, because motion pooling
should also affect performance at low noise levels, this
explanation was speculative. However, differences in
induced noise provide an alternative explanation for
this difference. For example, lower induced noise yields
better performance at high external noise levels but not
at low external noise levels (see Figure 1b), which is
consistent with experimental findings in ASD (Manning
et al., 2015; Manning et al., 2017). Our results do not
directly support this interpretation, however, as we did
not find a correlation between induced noise and AQ.
Perhaps we lacked enough individuals with high AQ
scores to show a clear dependence. Alternatively, large
differences in induced noise may only appear when
comparing a control group to a group with a clinical
diagnosis of ASD.

Burgess and Colborne (1988) concluded, using a
model introduced by Wilcox (1968), that induced

noise could be explained by fluctuations in a decision
variable if the standard deviation of the fluctuations
(i.e., noise) in the decision variable is proportional to
the signal-to-noise ratio (and thus to external noise
when σ ext >> σ int). This relationship can be derived as
follows: variability in the decision variable (σ dec) adds
to the variability in the response (and thus increases
threshold), just like additive noise does. Thus, total
noise would be

√
σ 2
add + σ 2

dec. Now, if we assume that
σ dec is proportional to the external noise, then total
noise is

√
σ 2
add + (m σext)2, which includes the definition

of induced noise.
This analysis suggests that induced noise could

reflect fluctuations in a decision variable (e.g., the
criterion, or an internal standard). It rests on the
assumption that the decision variable is proportional
to the signal-to-noise ratio, but is that warranted?
Past research has shown that decision/criterion noise
increases when, within an experiment over trials, a
wider range of stimulus values is tested (Gravetter &
Lockhead, 1973). We reason that a wider stimulus
range over trials may have similar effects to a wider
stimulus range within a trial (that is, stimulus noise),
which implies that more stimulus noise would translate
into more decision/criterion noise. This is supported
by research that shows that more noisy stimuli lead to
less decision confidence (which is probably related to
criterion noise), even when performance (in terms of d′)
is equated (Spence, Dux, & Arnold, 2016).

Past research in non-motion tasks (Vilidaite et al.,
2017) is consistent with the interpretation that induced
noise may be linked to decision noise. It was found
that internal noise measured through the double-pass
paradigm correlated strongly in three quite different
tasks (contrast, face discrimination, and a mathematical
task), and the principle component across the internal
noise measures from these three tasks was correlated
with AQ. These data suggest a supramodal, potentially
decision-based, source of this noise.

Overall, our discussion suggests that a major
difference between people with ASD and typically
developing people may be in their decision process
during perceptual decision-making tasks, which can be
quantified using induced noise measurement, although
other sources of noise will likely contribute.

Performance levels

We show no evidence for a uniformly impoverished
motion processing in individuals with increased levels of
autism traits, which is consistent with the literature. We
found that accuracy was generally lower in individuals
with higher levels of autism traits, but this finding
was not significant. In the literature, there is evidence



Journal of Vision (2022) 22(10):19, 1–21 Orchard, Dakin, & van Boxtel 15

for both increased (Foss-Feig et al., 2013; Manning et
al., 2015) and decreased (e.g., Koldewyn, Whitney, &
Rivera, 2010; Milne et al., 2002; Spencer & O’Brien,
2006) motion perception in ASD (see also Simmons et
al., 2009).

There is a stronger case for impoverished motion
perception in a particular type of global motion
perception—namely, biological motion processing.
Here, too, there is evidence both in favor of (e.g., Blake,
Turner, Smoski, Pozdol, & Stone, 2003; Koldewyn
et al., 2010; van Boxtel, Dapretto, & Lu, 2016; van
Boxtel, Peng, Su, & Lu, 2017) and against (e.g., Cleary,
Looney, Brady, & Fitzgerald, 2014; Cusack, Williams,
& Neri, 2015; Saygin, Cook, & Blakemore, 2010)
a deficit in processing, but a recent meta-analysis
found that there was a small decrement in ASD versus
typically developing individuals (Van der Hallen,
Manning, Evers, & Wagemans, 2018). It may therefore
be worthwhile to look at the influence of internal noise
on biological motion (as done in van Boxtel & Lu,
2015) while focusing on the link to ASD.

Motion pooling

Previous literature has provided both evidence for
and against a difference in motion pooling in ASD
versus typically developing individuals (Manning et al.,
2015; Pellicano et al., 2005). We found no significant
correlation between motion pooling across AQ score,
and Bayesian statistics suggest that there was moderate
evidence for the absence of a correlation in both
discrimination tasks. As mentioned above, the increased
motion pooling in ASD, reported in previous studies
(Manning et al., 2015; Manning et al., 2017), is instead
potentially attributable to decreased induced noise (or
increased noise exclusion).

Coarse versus fine discrimination tasks

A reduction of induced noise in individuals with
more autism traits is consistent with recent reports
of superior motion perception in ASD (Foss-Feig
et al., 2013; Manning et al., 2015). However, several
other reports show inferior performance in ASD (e.g.,
Koldewyn et al., 2010; Milne et al., 2002; Spencer &
O’Brien, 2006), especially in motion coherence tasks
(Simmons et al., 2009). These differences could be due
to the large variability across individuals falling on the
autism spectrum, but they could also be due to the
different parameters used in the various studies. Indeed,
our results support the suggestion that small parameter
differences can impact the results, as we found that,
although internal noise was higher for individuals with
more autism traits in the coarse discrimination task,
this was not the case in the fine motion discrimination.

What are the processing differences that could
underlie the different findings in our fine and coarse
discrimination tasks? Because the stimuli in our two
experiments were nearly identical, the difference cannot
be attributed to some general motion perception deficit
or other commonly suggested deficits in ASD, such as
a dorsal stream deficit (Grinter, Maybery, & Badcock,
2010; Spencer et al., 2000), a magnocellular dysfunction
(Sutherland & Crewther, 2010), or difficulty with
complex stimuli (Bertone et al., 2003; Bertone, Mottron,
Jelenic, & Faubert, 2005).

Rather, our results do align with the more general
notions that individuals with ASD are more “detail
focused” (Happé & Frith, 2006; Mottron, Dawson,
Soulieres, Hubert, & Burack, 2006) and only show
increased internal noise in the coarse discrimination
task. An alternative, not mutually exclusive, account is
that different “decoding rules,” or decision rules, are
used for fine and coarse discrimination tasks (Jazayeri
&Movshon, 2007), and that they are differently affected
by noise and autism traits. This suggestion is supported
by our comparison of internal noise values between the
two tasks. We found that internal noise was larger in
the fine discrimination task. Our data suggest that the
type of task influences the amount of internal noise,
even with near identical stimuli. Caution is warranted,
however, as we used different participants in both
experiments.

Conclusions
This research is the first to attempt to relate AQ

scores to estimates of additive and induced noise limits
on motion direction discrimination. We have shown
the influences of additive and induced noise, as well as
motion pooling, on motion perception. Our results are
suggestive of an increase in internal noise in individuals
with more autism traits in some conditions, but the
individual noise measures of additive noise, motion
pooling, and induced noise do not correlate with ASD
traits. This suggests that a combination of these three
(and potentially other) factors, increases internal noise
and that there is no individual type of noise that is
solely responsible for the overall increase in internal
noise.

We ascribe induced noise to variability in decision
making and argue that this could provide an
alternative explanation of past results indicating
superior motion averaging in ASD. The involvement
of induced noise in motion perception is very
relevant to ASD research, because induced noise
affects the perception of suprathreshold stimuli,
as opposed to additive noise which mostly affects
perithreshold perception. This suggests internal
and specifically induced noise as an explanation for
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(perceptual) atypicalities in ASD, including hyper- and
hyposensitivity.

Keywords: autism, motion perception, internal noise,
double-pass
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Footnotes
1Induced noise may also be interpreted in terms of noise exclusion (i.e.,
the ability to have external noise not influence internal noise). In this
article, we do not distinguish between these different processes. Another
type of noise mentioned in the literature is multiplicative noise, which
scales both signal and noise. In our paradigm, this behavior is interpreted
as motion pooling.
2We use the simplest descriptive model that describes our data. It is
possible to construct more complex hierarchal models. But, even if they
are better descriptions of the different components of noise, those models
are underdetermined by our current dataset. This does mean, however,
that the exact values of our estimates from the simple model are probably
not reflective of any single source of noise in the brain.

References
Asperger, H. (1944). Die “Autistischen Psychopathen”

im Kindesalter. Archiv für Psychiatrie und
Nervenkrankheiten, 117(1), 76–136.

Barlow, H., & Tripathy, S. P. (1997). Correspondence
noise and signal pooling in the detection of
coherent visual motion. Journal of Neuroscience,
17(20), 7954–7966.

Baron-Cohen, S., Wheelwright, S., Skinner, R.,
Martin, J., & Clubley, E. (2001). The autism-
spectrum quotient (AQ): Evidence from Asperger
syndrome/high-functioning autism, males and
females, scientists and mathematicians. Journal of
Autism and Developmental Disorders, 31(1), 5–17.

Bertone, A., Mottron, L., Jelenic, P., & Faubert, J.
(2003). Motion perception in autism: A “complex”
issue. Journal of Cognitive Neuroscience, 15(2), 218–
225, https://doi.org/10.1162/089892903321208150.

Bertone, A., Mottron, L., Jelenic, P., & Faubert, J.
(2005). Enhanced and diminished visuo-spatial

information processing in autism depends on
stimulus complexity. Brain, 128(10), 2430–2441.

Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S.
L., & Stone, W. L. (2003). Visual recognition of
biological motion is impaired in children with
autism. Psychological Science, 14(2), 151–157.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10(4), 433–436.

Brieber, S., Herpertz-Dahlmann, B., Fink, G. R.,
Kamp-Becker, I., Remschmidt, H., & Konrad,
K. (2010). Coherent motion processing in autism
spectrum disorder (ASD): An fMRI study.
Neuropsychologia, 48(6), 1644–1651, https:
//doi.org/10.1016/j.neuropsychologia.2010.02.007.

Burgess, A. E., & Colborne, B. (1988). Visual signal
detection. IV. Observer inconsistency. Journal of
the Optical Society of America A: Optics and Image
Science, 5(4), 617–627.

Butler, J. S., Molholm, S., Andrade, G. N., & Foxe, J. J.
(2017). An examination of the neural unreliability
thesis of autism. Cerebral Cortex, 27(1), 185–200,
https://doi.org/10.1093/cercor/bhw375.

Cleary, L., Looney, K., Brady, N., & Fitzgerald, M.
(2014). Inversion effects in the perception of the
moving human form: A comparison of adolescents
with autism spectrum disorder and typically
developing adolescents. Autism, 18(8), 943–952,
https://doi.org/10.1177/1362361313499455.

Coskun, M. A., Varghese, L., Reddoch, S., Castillo, E.
M., Pearson, D. A., & Loveland, K. A., …Sheth,
B. R. (2009). Increased response variability in
autistic brains? NeuroReport, 20(17), 1543–1548,
https://doi.org/10.1097/WNR.0b013e32833246b5.

Cusack, J. P., Williams, J. H., & Neri, P. (2015). Action
perception is intact in autism spectrum disorder.
Journal of Neuroscience, 35(5), 1849–1857, https:
//doi.org/10.1523/JNEUROSCI.4133-13.2015.

Dakin, S. C. (2001). Information limit on the spatial
integration of local orientation signals. Journal
of the Optical Society of America A: Optics,
Image Science, and Vision, 18(5), 1016–1026,
https://doi.org/10.1364/josaa.18.001016.

Dakin, S. C., Mareschal, I., & Bex, P. J. (2005a).
Local and global limitations on direction
integration assessed using equivalent noise
analysis. Vision Research, 45(24), 3027–3049,
https://doi.org/10.1016/j.visres.2005.07.037.

Dinstein, I., Heeger, D. J., Lorenzi, L., Minshew, N. J.,
Malach, R., & Behrmann, M. (2012). Unreliable
evoked responses in autism.Neuron, 75(6), 981–991,
https://doi.org/10.1016/j.neuron.2012.07.026.

Domínguez, L. G., Velázquez, J. L. P., & Galán, R. F.
(2013). A model of functional brain connectivity
and background noise as a biomarker for cognitive

https://doi.org/10.1162/089892903321208150
https://doi.org/10.1016/j.neuropsychologia.2010.02.007
https://doi.org/10.1093/cercor/bhw375
https://doi.org/10.1177/1362361313499455
https://doi.org/10.1097/WNR.0b013e32833246b5
https://doi.org/10.1523/JNEUROSCI.4133-13.2015
https://doi.org/10.1364/josaa.18.001016
https://doi.org/10.1016/j.visres.2005.07.037
https://doi.org/10.1016/j.neuron.2012.07.026


Journal of Vision (2022) 22(10):19, 1–21 Orchard, Dakin, & van Boxtel 17

phenotypes: Application to autism. PLoS One,
8(4), e61493.

Foss-Feig, J. H., Tadin, D., Schauder, K. B., &
Cascio, C. J. (2013). A substantial and unexpected
enhancement of motion perception in autism.
Journal of Neuroscience, 33(19), 8243–8249.

Freitag, C. M., Konrad, C., Haberlen, M., Kleser, C.,
von Gontard, A., Reith, W., . . . Krick, C. (2008).
Perception of biological motion in autism spectrum
disorders. Neuropsychologia, 46(5), 1480–1494,
https://doi.org/10.1016/j.neuropsychologia.2007.12.
025.

Grandin, T. (1992). An inside view of autism. In: E
Schopler, & G. B. Mesibov (Eds.), High-functioning
individuals with autism (pp. 105–126). Boston:
Springer.

Gravetter, F., & Lockhead, G. (1973). Criterial range
as a frame of reference for stimulus judgment.
Psychological Review, 80(3), 203.

Green, D. M. (1964). Consistency of auditory detection
judgments. Psychological Review, 71, 392–407.

Grinter, E. J., Maybery, M. T., & Badcock, D. R. (2010).
Vision in developmental disorders: is there a dorsal
stream deficit? Brain Research Bulletin, 82(3–4),
147–160.

Haigh, S. M., Heeger, D. J., Dinstein, I., Minshew, N.,
& Behrmann, M. (2015). Cortical variability in
the sensory-evoked response in autism. Journal of
Autism and Developmental Disorders, 45(5), 1176–
1190, https://doi.org/10.1007/s10803-014-2276-6.

Happé, F., & Frith, U. (2006). The weak coherence
account: detail-focused cognitive style in
autism spectrum disorders. Journal of Autism
and Developmental Disorders, 36(1), 5–25,
https://doi.org/10.1007/s10803-005-0039-0.

Herrington, J. D., Baron-Cohen, S., Wheelwright, S.
J., Singh, K. D., Bullmore, E. T., Brammer, M., . . .
Williams, S. C. R. (2007). The role of MT+/V5
during biological motion perception in Asperger
syndrome: An fMRI study. Research in Autism
Spectrum Disorders, 1(1), 14–27.

Ishikawa, A., Shimegi, S., & Sato, H. (2006).
Metacontrast masking suggests interaction
between visual pathways with different spatial
and temporal properties. Vision Research, 46(13),
2130–2138.

jamovi. (2020). The jamovi project. Retrieved from
https://www.jamovi.org/.

JASP Team. (2018). JASP (Version 0.9) [Computer
software]. Retrieved from https://jasp-stats.org/.

Jazayeri, M., & Movshon, J. A. (2007). A new
perceptual illusion reveals mechanisms of
sensory decoding. Nature, 446(7138), 912–915,
https://doi.org/10.1038/nature05739.

Jones, C. R., Swettenham, J., Charman, T., Marsden,
A. J., Tregay, J., & Baird, G., …Happe, F. (2011).
No evidence for a fundamental visual motion
processing deficit in adolescents with autism
spectrum disorders. Autism Research, 4(5), 347–357,
https://doi.org/10.1002/aur.209.

Kaiser, M. D., Hudac, C. M., Shultz, S., Lee, S.
M., Cheung, C., & Berken, A. M., …Pelphrey,
K. A. (2010). Neural signatures of autism.
Proceedings of the National Academy of
Sciences, USA, 107(49), 21223–21228, https:
//doi.org/10.1073/pnas.1010412107.

Kanner, L. (1943). Autistic disturbances of affective
contact. Nervous Child, 2(3), 217–250.

Kaufman, A., & Kaufman, N. (2004). KBIT-2:
Kaufman Brief Intelligence Test Second Edition.
London: Pearson.

Kern, J. K., Trivedi, M. H., Garver, C. R., Grannemann,
B. D., Andrews, A. A., & Savla, J. S., …Schroeder,
J. L. (2006). The pattern of sensory processing
abnormalities in autism. Autism, 10(5), 480–494,
https://doi.org/10.1177/1362361306066564.

Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The
psychophysics of visual motion and global form
processing in autism. Brain, 133(Pt. 2), 599–610,
https://doi.org/10.1093/brain/awp272.

Lu, Z. L., & Dosher, B. A. (2008). Characterizing
observers using external noise and observer
models: Assessing internal representations with
external noise. Psychological Review, 115(1), 44–82,
https://doi.org/10.1037/0033-295X.115.1.44.

Manning, C., Tibber, M. S., Charman, T., Dakin, S.
C., & Pellicano, E. (2015). Enhanced integration
of motion information in children with autism.
Journal of Neuroscience, 35(18), 6979–6986, https:
//doi.org/10.1523/JNEUROSCI.4645-14.2015.

Manning, C., Tibber, M. S., & Dakin, S. C. (2017).
Visual integration of direction and orientation
information in autistic children. Autism &
Developmental Language Impairments, 2, 1–16.

Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S.
S. (2011). Sensory processing in autism: A review of
neurophysiologic findings. Pediatric Research, 69(5,
Pt. 2), 48R–54R.

McKay, L. S., Simmons, D. R., McAleer, P., Marjoram,
D., Piggot, J., & Pollick, F. E. (2012). Do distinct
atypical cortical networks process biological motion
information in adults with Autism Spectrum
Disorders? NeuroImage, 59(2), 1524–1533,
https://doi.org/10.1016/j.neuroimage.2011.08.033.

Milne, E. (2011). Increased intra-participant
variability in children with autistic spectrum
disorders: Evidence from single-trial analysis
of evoked EEG. Frontiers in Psychology, 2, 51,
https://doi.org/10.3389/fpsyg.2011.00051.

https://doi.org/10.1016/j.neuropsychologia.2007.12.025
https://doi.org/10.1007/s10803-014-2276-6
https://doi.org/10.1007/s10803-005-0039-0
https://www.jamovi.org/
https://jasp-stats.org/
https://doi.org/10.1038/nature05739
https://doi.org/10.1002/aur.209
https://doi.org/10.1073/pnas.1010412107
https://doi.org/10.1177/1362361306066564
https://doi.org/10.1093/brain/awp272
https://doi.org/10.1037/0033-295X.115.1.44
https://doi.org/10.1523/JNEUROSCI.4645-14.2015
https://doi.org/10.1016/j.neuroimage.2011.08.033
https://doi.org/10.3389/fpsyg.2011.00051


Journal of Vision (2022) 22(10):19, 1–21 Orchard, Dakin, & van Boxtel 18

Milne, E., Swettenham, J., Hansen, P., Campbell, R.,
Jeffries, H., & Plaisted, K. (2002). High motion
coherence thresholds in children with autism.
Journal of Child Psychology and Psychiatry and
Allied Disciplines, 43(2), 255–263.

Milne, E., White, S., Campbell, R., Swettenham, J.,
Hansen, P., & Ramus, F. (2006). Motion and form
coherence detection in autistic spectrum disorder:
Relationship to motor control and 2:4 digit ratio.
Journal of Autism and Developmental Disorders,
36(2), 225–237.

Mottron, L., Dawson, M., Soulieres, I., Hubert,
B., & Burack, J. (2006). Enhanced perceptual
functioning in autism: an update, and eight
principles of autistic perception. Journal of
Autism and Developmental Disorders, 36(1), 27–43,
https://doi.org/10.1007/s10803-005-0040-7.

O’Neill, M., & Jones, R. S. (1997). Sensory-perceptual
abnormalities in autism: A case for more research?
Journal of Autism and Developmental Disorders,
27(3), 283–293.

Park, W. J., Schauder, K. B., Zhang, R., Bennetto, L.,
& Tadin, D. (2017). High internal noise and poor
external noise filtering characterize perception in
autism spectrum disorder. Scientific Reports, 7(1),
17584, https://doi.org/10.1038/s41598-017-17676-5.

Peiker, I., Schneider, T. R., Milne, E., Schöttle, D.,
Vogeley, K., & Münchau, A., …David, N. (2015).
Stronger neural modulation by visual motion
intensity in autism spectrum disorders. PLoS One,
10(7), e0132531.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10, 437–442.

Pellicano, E., Gibson, L., Maybery, M., Durkin, K., &
Badcock, D. R. (2005). Abnormal global processing
along the dorsal visual pathway in autism:A possible
mechanism for weak visuospatial coherence?
Neuropsychologia, 43(7), 1044–1053, https:
//doi.org/10.1016/j.neuropsychologia.2004.10.003.

Rahnev, D., Desender, K., Lee, A. L. F., Adler,
W. T., Aguilar-Lleyda, D., & Akdogan, B.,
…Zylberberg, A. (2020). The Confidence
Database. Nature Human Behaviour, 4(3), 317–325,
https://doi.org/10.1038/s41562-019-0813-1.

Saygin, A. P., Cook, J., & Blakemore, S. J.
(2010). Unaffected perceptual thresholds
for biological and non-biological form-
from-motion perception in autism spectrum
conditions. PLoS One, 5(10), e13491, https:
//doi.org/10.1371/journal.pone.0013491.

Simmons, D. R., Robertson, A. E., McKay,
L. S., Toal, E., McAleer, P., & Pollick,
F. E. (2009). Vision in autism spectrum

disorders. Vision Research, 49(22), 2705–2739,
https://doi.org/10.1016/j.visres.2009.08.005.

Spence, M. L., Dux, P. E., & Arnold, D. H. (2016).
Computations underlying confidence in visual
perception. Journal of Experimental Psychology:
Human Perception and Performance, 42(5),
671.

Spencer, J., O’Brien, J., Riggs, K., Braddick, O.,
Atkinson, J., & Wattam-Bell, J. (2000). Motion
processing in autism: evidence for a dorsal stream
deficiency. NeuroReport, 11(12), 2765–2767.

Spencer, J. V., & O’Brien, J. M. (2006). Visual
form-processing deficits in autism. Perception,
35(8), 1047–1055, https://doi.org/10.1068/p5328.

Sutherland, A., & Crewther, D. P. (2010). Magnocellular
visual evoked potential delay with high autism
spectrum quotient yields a neural mechanism for
altered perception. Brain, 133(Pt. 7), 2089–2097,
https://doi.org/10.1093/brain/awq122.

van Boxtel, J. J. A. (2019). Modeling stochastic
resonance in humans: The influence of
lapse rate. Journal of Vision, 19(13), 19,
https://doi.org/10.1167/19.13.19.

van Boxtel, J. J. A., Dapretto, M., & Lu, H. (2016).
Intact recognition, but attenuated adaptation, for
biological motion in youth with autism spectrum
disorder. Autism Research, 9(10), 1103–1113,
https://doi.org/10.1002/aur.1595.

van Boxtel, J. J. A., & Lu, H. (2015). Joints and
their relations as critical features in action
discrimination: Evidence from a classification
image method. Journal of Vision, 15(1):20, 1–17,
https://doi.org/10.1167/15.1.20.

van Boxtel, J. J. A., Peng, Y., Su, J., & Lu, H. (2017).
Individual differences in high-level biological
motion tasks correlate with autistic traits. Vision
Research, 141, 136–144.

Van der Hallen, R., Manning, C., Evers, K., &
Wagemans, J. (2018). Global motion perception
in ASD: A meta-analysis. Paper presented at the
International Society for Autism Research 2018
Annual Meeting, May 9–12, 2018, Rotterdam,
Netherlands.

Vilidaite, G., Yu, M., & Baker, D. H. (2017).
Internal noise estimates correlate with autistic
traits. Autism Research, 10(8), 1384–1391,
https://doi.org/10.1002/aur.1781.

Weinger, P. M., Zemon, V., Soorya, L., & Gordon,
J. (2014). Low-contrast response deficits and
increased neural noise in children with autism
spectrum disorder. Neuropsychologia, 63, 10–18.

Wilcox, G. (1968). Inter-observer agreement and models
of monaural auditory processing in detection tasks.
Ann Arbor, MI: University of Michigan.

https://doi.org/10.1007/s10803-005-0040-7
https://doi.org/10.1038/s41598-017-17676-5
https://doi.org/10.1016/j.neuropsychologia.2004.10.003
https://doi.org/10.1038/s41562-019-0813-1
https://doi.org/10.1371/journal.pone.0013491
https://doi.org/10.1016/j.visres.2009.08.005
https://doi.org/10.1068/p5328
https://doi.org/10.1093/brain/awq122
https://doi.org/10.1167/19.13.19
https://doi.org/10.1002/aur.1595
https://doi.org/10.1167/15.1.20
https://doi.org/10.1002/aur.1781


Journal of Vision (2022) 22(10):19, 1–21 Orchard, Dakin, & van Boxtel 19

Zaidel, A., Goin-Kochel, R. P., & Angelaki, D.
E. (2015). Self-motion perception in autism
is compromised by visual noise but integrated
optimally across multiple senses. Proceedings of
the National Academy of Sciences, USA, 112(20),
6461–6466.

Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts,
W., Brian, J., & Szatmari, P. (2005). Behavioral
manifestations of autism in the first year of
life. International Journal of Developmental
Neuroscience, 23(2–3), 143–152, https:
//doi.org/10.1016/j.ijdevneu.2004.05.001.

Appendix

We performed a simulation study to investigate which
approach best estimates the different sources of internal

noise and motion pooling. We used 100 double-pass
trials (200 trials total), just as for our experimental
data. We set additive noise, induced noise, and motion
pooling to reasonable values. If the final activity (that
is, signal plus noise) was larger than zero, a “right”
response was recorded; otherwise, a “left” response
was recorded. Accuracy and consistency values were
calculated and then fitted with the same procedures as in
the experiment. This resulted in internal noise estimates
at each external noise level. Using the following
simulations, we aimed to determine which method was
best able to extract the original additive noise, induced
noise, and motion pooling values. The code for these
simulations can be found at https://osf.io/4gdkt/.

The first approach was to fit one function to the
whole internal noise versus external noise curve (like our
data in Figures 6 and 9). According to the definition of
induced noise (Burgess & Colborne, 1988) total internal
noise is equal to

√
σ 2
add + (m σext)

2. This definition,

Figure 11. Simulation results for different fitting procedures for the fine direction discrimination experiment. Results show histograms
of estimated model parameters from 500 simulated runs. The red lines indicate the true values. (a) Full fit in which additive noise,
induced noise, and motion pooling were all individually fit. (b) Fit without pooling (WOP) in which additive noise and induced noise
were fitted, but the pooling parameter was estimated directly from the data. (c) Estimated induced noise, the median induced noise
value for the five largest external noise conditions. (d) Estimated induced noise taken from a single fit through the five largest external
noise conditions.

https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://osf.io/4gdkt/
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Figure 12. Estimated motion pooling sample size. (a) Estimates based on Equation 2 from one of the simulations. Estimates for the
fine direction discrimination task were accurate for larger external noise values used in the experiment. (b) Boxplots for the coarse
direction discrimination task; these estimates were accurate for the lower external noise values used in the experiment. (c, d)
Experimentally obtained motion pooling estimates for fine (c) and coarse (d) discrimination tasks. The box of the boxplots contains the
25th to 75th percentiles; the whiskers show the most extreme values not considered outliers, and the red markers show the outliers.

however, does not include the possible effect of motion
pooling, which we observed in our data, so we used the
following function (see Equation 5):

σint (σext) =
√

σ 2
add + (m σext)2

n

We tested several ways of fitting this function.
First, we let all parameters (σ add, m, and n) vary
freely. Second, we estimated n from our data using
Equation 11 and estimated only σ add and m. The third
and fourth approaches were based on the following
approximation: as σ ext becomes large, σ int approaches

mσ ext, which means that m = σ int/σ ext, or the σ int/σ ext
ratio that we measure with the double-pass paradigm.
This method ignores the influence of motion pooling,
which can be included and would lead to the following
estimate: m = √

n ∗ σint/σext. We found, however, that
this latter estimate severely overestimates m, and we do
not discuss it here. The third method derived σ int/σ ext by
fitting σ int/σ ext curves through each of the data points
from the largest five external noise values and taking the
median value of these fits. The fourth method derived
σ int/σ ext, fitting one σ int/σ ext curve (Figure 4) through
the data from the largest five external noise values
only, and this ratio was taken as the induced noise
factor m.
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Each simulation performed 500 runs, resulting in
a distribution of extracted values for additive noise,
induced noise, and motion pooling. We then performed
different simulations and checked which approach
overall appeared to give the best estimates of the
inputted additive noise, induced noise, and motion
pooling.

Figure 11 shows the results for one of these
simulations for the small-angle experiment. It shows
(as most simulations did) that the best approach was to
estimate pooling from the data and fit additive noise
and induced noise (Figure 11b; the WOP fit, which
is the fit without motion pooling). The approach in
which all parameters were fitted was very dependent
on initial conditions (this was because many parameter
combinations led to virtually identical fits). The other
two approaches overestimated induced noise (and did
not provide estimates for additive noise and pooling).
The simulations for the large-angle data showed similar
findings but also indicate that additive noise could not

be estimated very well for this experiment (not shown).
We therefore decided not to do statistics on the additive
noise measures for the large-angle experiment.

These simulations also indicated that motion pooling
could be estimated from raw data using Equation 2, but
only for higher external noise values for the small angle
experiment (Figure 12a) and for the lower external noise
values for the large-angle experiment (Figure 12b).
In these simulations, we used a fixed level of motion
pooling (dashed horizontal line), but systematic
underestimation occurred at various external noise
levels. Therefore, we decided to use only conditions
with external noise being 35°, 45°, or 60° for our coarse
discrimination task and 3.71° to 51.19° for the fine
discrimination task.

Interestingly, when we used the motion pooling
estimation approach on all our experimental data
(Figures 12c and 12d) the same pattern as in our
simulation appeared, strongly suggesting that motion
pooling is constant across external noise levels.


