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Abstract 

Background:  Protein histidine phosphorylation (pHis) plays critical roles in prokaryotic 
signal transduction pathways and various eukaryotic cellular processes. It is estimated 
to account for 6–10% of the phosphoproteome, however only hundreds of pHis sites 
have been discovered to date. Due to the inherent disadvantages of experimental 
methods, it is an urgent task for developing efficient computational approaches to 
identify pHis sites.

Results:  Here, we present a novel tool, pHisPred, for accurately identifying pHis sites 
from protein sequences. We manually collected the largest number of experimental 
validated pHis sites to build benchmark datasets. Using randomized tenfold CV, the 
weighted SVM-RBF model shows the best performance than other four commonly 
used classification models (LR, KNN, RF, and MLP). From ten thousands of features, 140 
and 150 most informative features were individually selected out for eukaryotic and 
prokaryotic models. The average AUC and F1-score values of pHisPred were (0.81, 0.40) 
and (0.78, 0.46) for tenfold CV on the eukaryotic and prokaryotic training datasets, 
respectively. In addition, pHisPred significantly outperforms other tools on testing 
datasets, in particular on the eukaryotic one.

Conclusion:  We implemented a python program of pHisPred, which is freely available 
for non-commercial use at https://​github.​com/​xiaof​engso​ng/​pHisP​red. Moreover, users 
can use it to train new models with their own data.

Keywords:  Histidine phosphorylation, Phosphohistidine site, Machine learning, pHis 
prediction, pHisPred
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Background
Protein phosphorylation, a reversible mechanism of posttranslational regulation, is criti-
cally important in most cellular processes including cell cycle, growth, apoptosis, and 
signal transduction pathways [1]. Of the 20 basic amino acids, nine can be phosphoryl-
ated. The most known phosphoamino acids are serine (Ser), threonine (Thr), and tyros-
ine (Tyr), which accounts for the majority of phosphorylation events. The histidine (His) 
residues in proteins also can be phosphorylated, which was once assumed to be rare in 
cells [2]. Recent studies, however, show that histidine phosphorylation is more common 
than previously thought, and it may account for as much as 6% of total eukaryotic phos-
phoamino acids [3–5].

Histidine phosphorylation has been extensively reported in prokaryotic signal trans-
duction pathways, particularly in the bacterial two-component regulatory systems 
(TCS) and phosphotransferase system (PTS) [6, 7]. A recent mass spectrometry-based 
proteomics study proved that prokaryotic histidine phosphorylation is widespread 
and abundant, and phosphohistidine (pHis) accounts for a remarkably high percent-
age (~ 10%) of the phosphoproteome [3]. In contrast, eukaryotic histidine phosphoryla-
tion remains largely unexplored and only two histidine kinases (NME1 and NME2) are 
well-investigated [8–10]. While not as well-characterized in higher eukaryotes, histi-
dine phosphorylation has been detected in a variety of cellular processes including sig-
nal transduction, proliferation, differentiation, development, apoptosis, cytokinesis, and 
dynamin-mediated endocytosis [11–13]. Recent evidence implicates that pHis signaling 
is involved in cancer and tumor metastasis [14–16].

Histidine phosphorylation sites are much less well recognized than Ser, Thr, and Tyr 
phosphorylation sites, despite histidine phosphorylation having been first discovered 
about 60 years ago [17]. A major reason is that histidine phosphate linkage is labile in 
acidic pH conditions, which reduced pHis half-life and make is hardly to be detected by 
the commonly used protocols in LC–MS/MS analysis [18–20]. Over the last few years, 
due to the development of histidine phosphate analogs and pHis monoclonal antibodies, 
diverse experimental methods have emerged for the detection of pHis sites and have led 
to a resurgence in the study of histidine phosphorylation [21]. To date, hundreds of novel 
pHis sites have been discovered in both eukaryotes (e.g., Homo sapiens, Danio rerio, and 
Bos taurus) and prokaryotes (e.g., E. coli) [3, 22–25].

The inherent disadvantages of experimental methods, however, make it an urgent 
task for developing efficient computational approaches to identify pHis sites, which can 
reduce the cost and time of experimental methods and provide a useful validation for 
biological experiment. There have been many computational predictors (e.g., GPS, Mus-
iteDeep, DeepPhos, and PPSP) for identifying phosphorylation sites [26–30], while only 
few ones were developed specifically for pHis sites. Awais et  al. proposed a computa-
tional model, iPhosH-PseAAC, using hundreds of pHis sites collected from the UniProt 
and dbPTM databases as benchmark data [31]. But, to our knowledge, only no more 
than 70 pHis sites are annotated with publications in UniProt and dbPTM, while most of 
the pHis sites are predicted according to several specific rules [32, 33]. As such, the pre-
dicting accuracy of iPhosH-PseAAC is questionable. Chen et al. used 244 pHis sites of 
E. coli validated by proteomic assay and developed an ensemble model, PROSPECT, for 
predicting pHis sites in bacteria [34]. This method showed a relatively good classification 
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performance, but challenges remain for accurately identifying prokaryotic pHis sites. 
Moreover, it is unclear that whether PROSPECT can be applied for predicting eukary-
otic pHis sites.

In this study, we developed a new powerful tool named pHisPred based on weighted 
support vector machine (WSVM) with radial basis function (RBF) kernel. In our bench-
mark dataset, the pHis sites were manually collected from literature and databases, and 
they were all validated by experimental methods. Numerous informative features were 
calculated for the local sequences around pHis and non-pHis sites, and further several 
different local sequence lengths were tested. Besides SVM, other four types of machine 
learning (ML) methods were also used for training classification models. Based on the 
performance of tenfold cross-validation, the optimal combination of local sequence 
length, feature set, and ML method were obtained to build classification models respec-
tively for eukaryotes and prokaryotes. Compared with PROSPECT, pHisPred performed 
much better both on the eukaryotic and prokaryotic testing datasets. Finally, we imple-
mented a python program of pHisPred, which is user-friendly and easy to use.

Results and discussion
Sequence analysis

For the pHis and non-pHis sites, we analyzed the occurrence frequencies of amino acids 
at each position of their flanking segments. Two Sample Logo with t-test (p value < 0.05) 
was used to determine the enriched and depleted amino acids flanking the eukaryotic 
and prokaryotic pHis sites [35]. As shown in Fig. 1A, Glycine (G) shows a higher occur-
rence frequency on the left and right sides (− 1 and + 1) of the central eukaryotic pHis 
site. His (H) is slightly enriched at the upstream positions (− 4 to − 2), while the other 
enriched amino acids are relatively scattered. As shown in Fig.  1B, H is significantly 
enriched at the left-nearest positions (− 4 to − 1) of the central prokaryotic pHis site, 
and Lysine (K) shows a slight enrichment at the downstream positions (+ 3 to + 12). 
Although the eukaryotic segments show less differentially used amino acids than the 
prokaryotic segments, the amino acid usage bias in some positions of the eukaryotic seg-
ments is larger than that in prokaryotic ones.

To investigate whether the eukaryotic and prokaryotic protein sequences could indeed 
possess differential amino acid preference, we compared the segments flanking the 

Fig. 1  Sequence characteristics of pHis sites in eukaryotes and prokaryotes. A and B Illustrate the 
significantly enriched and depleted amino acid residues around the eukaryotic and prokaryotic pHis sites, 
respectively. C The significantly enriched and depleted amino acid residues around eukaryotic pHis sites 
comparing with prokaryotic pHis sites. D The distributions of the sequential distances between pHis and 
non-pHis sites within the same protein sequences
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eukaryotic and prokaryotic pHis sites. As can be observed from Fig. 1C, there is an obvi-
ous amino acids usage bias between the segments around eukaryotic and prokaryotic 
pHis sites. The eukaryotic segments prefer to contain more serine (S), lysine (K), proline 
(P), glutamine (Q), and cysteine (C), while the prokaryotic segments prefer to contain 
more alanine (A). Interestingly, most of the preferred amino acids (S, K, Q, and C) flank-
ing the eukaryotic pHis sites can be phosphorylated, and S is the most commonly phos-
phorylated amino acid.

As shown in Fig. 1, the preference of His at the upstream positions flanking the cen-
tral pHis sites leads to an overlap between positive and negative samples, which would 
increase the difficulty of distinguishing pHis sites from non-pHis sites. To further exam-
ine this overlap, we thus analyzed the statistical distribution of the sequential distances 
between pHis sites and their nearest non-pHis sites within the same protein sequences 
(Fig. 1D). The distributions across the eukaryotic and prokaryotic datasets have a simi-
lar tendency, with about 26% of the sequential distances being less than 15 amino acids 
long. This observation indicates that there exists a considerable overlap between the 
positive and negative samples and further highlights the influence of the segment size on 
the classification performance when training models.

Performance evaluation of different feature subsets

To select an optimal feature sets for accurate prediction of pHis sites, we tested 150 
kinds of feature subsets with five different window sizes using tenfold cross-validation 
on the eukaryotic and prokaryotic training datasets. With the increase of the window 
size (21, 25, 31, 35, and 41) used for extracting flanking segments, the dimension of fea-
ture vector ranges from 26,368 to 37,326 (Additional file 1: Table S1). For each window 
size, features with zero variance were removed firstly, and then a specific number of fea-
tures with the best F-score was selected for training five different models. To find out the 
optimal number, the values range from 5 to 150 with interval 5 were all tested (Fig. 2).

In most cases, the classification performance (AUC and F1-score) initially increases 
with the number of features, and eventually become relatively stable without being 

Fig. 2  Performance of classifiers with different combinations of model, window size, and feature set. A and C 
The average AUC and F1-score of the tenfold cross validation on the eukaryotic training datasets, respectively. 
B and D The average AUC and F1-score of the tenfold cross validation on the prokaryotic training datasets, 
respectively
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affected by newly added features (Fig. 2). For different learning models, the best AUC 
and F1-score were achieved with different window size and feature sets. The window 
size seems to have a slight influence on the classification performance, especially for the 
prokaryotic dataset, which contains more sample data. And the optimal window sizes 
(31 and 35) for the eukaryotic models are larger than that (21 and 25) for the prokaryotic 
dataset. Unlike the other models, the RF model’s F1-score shows an opposite trend as 
the number of features increases. Among the five types of models, LR and SVM show 
the best performance.

As shown in the Fig. 2A and C, on the eukaryotic training dataset, the optimal combi-
nations of feature set and window size for the LR, KNN, SVM, RF, and MLP models are 
120 (WZ: 35), 50 (WZ: 25), 150 (WZ: 25), 20 (WZ: 21), and 120 (WZ: 25), respectively 
(Additional file 1: Table S2). The LR and SVM models achieve the best classification per-
formance. The AUC and F1-score of the LR model are 0.82 and 0.37, respectively; while 
the AUC and F1-score of the SVM model are 0.82 and 0.40, respectively. As shown in 
Fig. 2B and D, on the prokaryotic training dataset, the optimal combinations for the LR, 
KNN, SVM, RF, and MLP models are 150 (WZ: 31), 80 (WZ: 31), 100 (WZ: 25), 130 
(WZ: 31), and 100 (WZ: 25), respectively (Additional file 1: Table S3). Similarly, the LR 
and SVM models achieve the best classification performance. The AUC and F1-score of 
the LR model are 0.78 and 0.45, respectively; while the AUC and F1-score of the SVM 
model are 0.80 and 0.46, respectively.

Performance evaluation of different models

By using the optimal feature set of the five window sizes, we first built models based 
on different machine learning methods and compared their performance by performing 
tenfold cross-validation on the training datasets. As shown in Fig. 3A and B, using either 
window size, the LR and SVM models all achieve relatively better performance than the 
other models. And comparing with LR, SMV performs the best in most of the cases. 
On the eukaryotic dataset, it can be observed that the average AUC scores of the SVM 

Fig. 3  Performance of models with optimal feature set in each window size. A and B: the AUC values of 
tenfold cross validation on the eukaryotic and prokaryotic training datasets, respectively. The white dot 
in each bar represents the average AUC value. C and D The major performance metrics calculated on the 
eukaryotic and prokaryotic testing datasets
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models (WZ: 25, 31, and 35) and the LR models (WZ: 31 and 35) are obviously better 
than other models, but there is no significant difference between them. The remarkable 
difference between them is in the distribution of AUC score calculated with the tenfold 
cross-validation. The SMV model with window size of 31 outperforms other models as 
it has the minimum variance of AUC score. On the prokaryotic dataset, all the LR and 
SVM models have similar performance as measured by the average AUC score. How-
ever, if measured by the variance of AUC score derived from cross-validation, the SVM 
model with window size of 21 shows the best performance.

Next, to further compare the above models, we investigated their performance on the 
testing datasets. As shown in Fig. 3C and D, all the models achieve a good performance 
in the classification accuracy, even those models with lower AUC score on the train-
ing datasets (Fig. 3A, B). This mainly attributes to the imbalance of the testing datasets, 
which are dominated by negative samples. It can be observed that the models prefer to 
have good performance in the specificity and poor performance in the recall (also called 
sensitivity). In addition, the class imbalance also leads to an illusion of the high preci-
sion of some models, as only few samples were classified into the positive class. Thus, 
F1-score and MCC were mainly used to measure the models’ performance.

The SVM and LR models show the best performance in the recall, F1-score, and MCC 
(Fig. 3C, D). Under most of the window sizes, the SVM models outperform the corre-
sponding RF models. On the eukaryotic testing dataset, the SVM models with window 
sizes of 21 and 31 show the best performance in the F1-score and MCC, and their clas-
sification performances are nearly equal in all the metrics. However, the previous results 
show that under different feature sets, the SVM model with window size of 31 com-
monly outperforms that with window size of 21 (Fig. 2A, C). Thus, the SVM algorithm is 
chosen for building the eukaryotic classification model with 140 selected features, using 
the window size of 31.

On the prokaryotic testing dataset, the SVM models with window sizes of 31 and 35 
show the best performance in the F1-score and MCC. In addition, there are no signifi-
cant differences between their performance in any of the metrics, except for the recall 
value. The window size of 31 performs slightly better in the recall, and the window size 
of 35 performs slightly better in the specificity and accuracy. Although the previous 
results show that under different feature sets, the SVM model with window size of 25 
commonly outperforms that with window size of 31 (Fig. 2B, D), the SMV model with 
window size of 31 achieves the best performance on the training and testing datasets. 
Therefore, the SVM algorithm is also chosen for building the prokaryotic classification 
model with 150 selected features, using the window size of 31.

The same window size and machine learning method are chosen for building both the 
eukaryotic and prokaryotic classification models; however, the selected feature subsets 
are almost completely different from each other. Between the eukaryotic and prokary-
otic classification models, there are only 14 commonly used features in them (Additional 
file 1: Table S4). As shown in Table 1, for most of the feature groups, the eukaryotic and 
prokaryotic classification models show different feature usage frequency. For example, 
41 tripeptide composition (TPC) features were chosen for eukaryotic model, while only 
6 TPC features were used in prokaryotic model. Although comparable number of AA-
index features were used in the eukaryotic and prokaryotic models, the commonly used 
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features account for less than 12%. These results indicate that the eukaryotic histidine 
phosphorylation is different from the prokaryotic histidine phosphorylation, which is 
consistent with the observation in the Fig. 1.

Performance comparison with other state‑of‑art tools

Since the majority of known pHis sites were experimentally validated in recent years, 
currently only two tools exist for predicting pHis sites. The earliest tool, iPhosH-
PseAAC, was trained using pHis sites collected from the Uniprot and dbPTM data-
bases [31], while the most recent tool, PROSPECT, was trained using pHis sites of E. 
coli derived from a recently published proteomic assay [34]. The source codes of these 
two methods are not available, and both are provided as a webserver for users. As the 
website of iPhosH-PseAAC was not available, we only compared our method (pHis-
Pred) with the recent tool PROSPECT. Considering the potential overlap between our 

Table 1  A full list of features used in building classification models

The details of features used in pHisPred can be seen in Additional file 1: Table S4

Feature groups Descriptor Models

Eukaryotic Prokaryotic

Amino acid composition Amino acid composition (AAC) – 1

Enhanced amino acid composition (EAAC) 1 10

Composition of k-spaced amino acid pairs 
(CKSAAP)

8 4

Dipeptide composition (DPC) 3 1

Tripeptide composition (TPC) 41 6

Grouped amino acid composition Grouped amino acid composition (GAAC) 1 2

Enhanced grouped amino acid composition 
(EGAAC)

– 10

Composition of k-spaced amino acid group pairs 
(CKSAAGP)

6 18

Grouped dipeptide composition (GDPC) 2 2

Grouped tripeptide composition (GTPC) – 1

C/T/D Composition (CTD-C) 1 11

Distribution (CTD-D) – 1

Transition (CTD-T) – 11

Conjoint Triad Conjoint Triad (C-Triad) 2 2

Conjoint k-spaced Triad (CKS-Triad) 2 2

Quasi-sequence-order Sequence-order-coupling number (SOC-
Number)

– 2

Quasi-sequence-order descriptors (QS-Order) 1 4

Pseudo-amino acid composition Pseudo-amino acid composition (PAAC) 1 1

Amphiphilic PAAC (APAAC) 1 -

Autocorrelation Normalized Moreau-Broto (NM-Broto) – –

Moran 1 –

Geary 1 –

Binary Binary 3 5

AA-index AA-index 64 52

BLOSUM62 BLOSUM62 matrix – 4

Z-scale Z-scale 1 –
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prokaryotic testing dataset and the PROSPECT’s training dataset, we removed those 
samples derived from the same published assay to make a fair comparison.

To compare the comprehensive performance of pHisPred and PROSPECT, we plot-
ted their ROC curves. On the eukaryotic testing dataset, the area under the ROC 
curve of pHisPred is much larger than that of PROSPECT (Fig.  4A). The AUC of 
pHisPred is 0.86, while that of PROSPECT is only 0.53. In addition, we also plotted 
their precision-recall (PR) curves, because the ROC curve with the imbalanced data-
set may not work as well as with the balanced one. As shown in Fig.  4A, pHisPred 
shows a much better tradeoff between precision and recall for different thresholds 
than PROSPECT. The F1-score of pHisPred is 0.44, while that of PROSPECT is only 
0.13. Besides the ROC curve and the PR curve, we also compared these two methods 
with respects of several major metrics, including accuracy, recall, precision, F1-score, 
MCC, and specificity (Additional file 1: Table S5 and S6). As these metrics are directly 
related to the threshold (or cutoff ) value, we plotted threshold-metric curves to objec-
tively perform the comparison (Fig. 4C). It can be observed that pHisPred clearly out-
performs PROSPECT on all metrics. The worse performance of PROSPECT indicates 
that the model trained with prokaryotic data is not suitable for predicting eukaryotic 
pHis sites, as the usage bias of amino acids between eukaryotic and prokaryotic pro-
tein segments (Fig. 1C).

Besides the eukaryotic testing dataset, pHisPred also outperforms PROSPECT on 
the prokaryotic testing dataset. As shown in Fig.  4B, both ROC and PR curves of 
pHisPred clearly lie above that of PROSPECT. The AUC of pHisPred is 0.80, while 
that of PROSPECT is only 0.47; the F1-score of pHisPred is 0.58, while that of PROS-
PECT is 0.27. Unlike the results on the eukaryotic testing dataset, PROSPECT shows 
similar performance on the classification accuracy and specificity with pHisPred 
on the prokaryotic testing dataset. However, on the other metrics (recall, precision, 
F1-score, and MCC), PROSPECT performs worse than pHisPred (Fig. 4D). This result 
indicates that pHisPred is better at correctly classifying the positive samples (pHis 

Fig. 4  Performance comparison between our proposed method pHisPred and the state-of-the-art method 
PROSPECT for predicting pHis sites. A and B ROC and RP curves of both methods on the eukaryotic and 
prokaryotic testing datasets, respectively. C and D The major performance metrics vs. classification threshold 
on the eukaryotic and prokaryotic testing datasets, respectively
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sites). And the poor performance of PROSPECT may be due to the limited training 
dataset, which only contains pHis sites from a single species—E. coli.

Availability of pHisPred

To facilitate the community-wide prediction of pHis sites, we have implemented a 
python program of pHisPred based on the weighted SVM-RBF model with the optimal 
combination of window size and feature set. In pHisPred, there are two optional clas-
sification models respectively for predicting eukaryotic and prokaryotic pHis sites. The 
source code of pHisPred can be accessed at https://​github.​com/​xiaof​engso​ng/​pHisP​
red, and it is easy to operate and can be performed on any platform. In addition, pHis-
Pred also allows users to train their own models with new data. In the future, with the 
increase of newly validated eukaryotic or prokaryotic pHis sites, we will update the cor-
responding classification model in the pHisPred.

Conclusions
Although with a lot of research interest in pHis functions, there is lack of bioinformatic 
tools for identifying pHis sites, in particular the eukaryotic ones. Therefore, we curated 
a data set of histidine phosphorylation sites and developed a novel computational tool—
pHisPred, using carefully selected informative features and weighted SVM model with 
RBF kernel. pHisPred contains two classification models respectively for eukaryotic and 
prokaryotic proteins, and it is the first tool designed for eukaryotic pHis identification. 
Moreover, pHisPred outperforms other existing tools on the classification of prokary-
otic His sites. pHisPred should aid future pHis studies, especially efforts to elucidate the 
functions of histidine phosphorylation.

Material and methods
Overview

pHisPred is a novel computational tool for histidine phosphorylation site prediction, 
and the working flow for developing pHisPred is described in Fig.  5. First, all verified 
pHis sites supported by experimental evidence were used to construct the benchmark 
dataset. The dataset construction includes data collection and pre-processing (top 
panel). The following procedures consist of local sequence extraction, feature calcula-
tion, feature pre-screening, selection of the optimal combination of feature subsets and 
models, performance evaluation, and application of pHisPred. Finally, from hundreds of 
combinations, the weighted SVM-RBF model with 140 features and 31 window size was 
selected in pHisPred for identifying eukaryotic pHis sites, while the same model with 
150 features and 31 window size was selected for identifying prokaryotic pHis sites. The 
details were presented in the following sections.

Benchmark datasets

The high-quality pHis data were mainly collected from published literature (Fig. 5). Pub-
Med search was used with keywords: pHis, phosphohistidine, histidine phosphorylation, 
phosphorylated histidine, and histidine phosphoproteome [36]. From the retrieved lit-
erature, we manually screened out those with pHis verification experiments, and totally 
found 494 pHis sites after removing duplicates. Besides literature, we also collected 66 

https://github.com/xiaofengsong/pHisPred
https://github.com/xiaofengsong/pHisPred
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pHis sites with experimental evidence from UniProt, dbPTM, PhosPhoSitePlus [37], and 
other known databases of phosphorylation [38–40]. In final, 560 experimentally vali-
dated pHis sites were gathered to construct our dataset, in which 172 pHis sites come 
from eukaryotic proteins and 388 pHis sites come from prokaryotic proteins.

To build benchmark datasets, the pHis sites were used as positive samples, while the 
other His sites (non-pHis sites) in the same histidine-phosphorylated proteins were used 
as negative samples. A sliding window approach was used to extract local sequences cen-
tered around the pHis and non-pHis sites from corresponding protein sequences, which 
were downloaded from the UniProt database. The window size was set to 31, and if the 
left or right flanking sequences of His sites were short than 15 residues, the missing posi-
tions were filled with dummy amino acid—‘X’. To construct non-redundant datasets, the 
BLASTCLUST program (− L 0.9 and − S 0.9) [41] and CD-HIT (− c 0.9) [42] were per-
formed to reduce the number of samples with similar local sequences. Considering the 
possible amino acid usage bias in eukaryotes and prokaryotes, we classified samples into 
two groups and built two distinct benchmark datasets: the eukaryotic dataset (151 pHis 
sites and 2061 non-pHis sites) and the prokaryotic dataset (336 pHis sites and 1726 non-
pHis sites). For each dataset, 80% samples were randomly selected as training dataset, 
and 20% were remained as testing dataset.

Feature extraction

The local sequence context surrounding His sites is considered to harbor the most rel-
evant information for the pHis site prediction (Fig.  5). To investigate the optimal rel-
evant information, we extracted a series of His centered local sequences with different 

Fig. 5  The overall framework of this study. The top panel outlines the process of constructing eukaryotic 
and prokaryotic datasets. In total, 560 verified pHis sites with experimental evidence were manually collected 
as positive samples, and 7233 non-pHis sites from the same protein were extracted as negative samples. 
Based on the local sequences (31 aa) flanking His sites, BLASTCLUST and CD-HIT were used to reduce the 
data redundancy. The bottom panel illustrates the detailed procedures for constructing pHisPred. Five 
window sizes were used to extract local sequences flanking His sites. For each window size, ten thousands of 
features were calculated. Features with constant values were removed. Based on the performance evaluation, 
the optimal combinations of window size, feature number, and model were individually selected to build 
eukaryotic and prokaryotic classification models in pHisPred
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length (21, 25, 31, 35, and 41). A dummy residue—‘X’ was used to fill the flanking blank 
when the actual local sequence is shorter than the specific size. With these local seg-
ments centered around His, we extracted numerous informative features using the iFea-
ture tool [43]. These features are mainly divided into 11 groups, including amino acid 
composition, grouped amino acid composition, C/T/D, conjoint triad, quasi sequence 
order, pseudo amino acid composition, autocorrelation, binary, AA-index, BLOSUM62, 
and Z-scale.

Feature normalization and selection

As shown in Table 1, 26 feature encoding methods were applied to generate feature vec-
tors. Due to the difference in encoding strategies, features are shown to have different 
scales. We note the difference in feature scales will affect the convergence of the gradient 
descent-based algorithms (e.g., logistic regression and neural network) and impair the 
classification performance of distance-based algorithms (e.g., KNN, K-mean, and SVM). 
Therefore, to address this, the normalize class in the Python module ‘sklearn.preprocess-
ing’ was used to normalize the original values of each feature to the [0, 1] range.

Heterogeneous features extracted from different perspectives might be useful for 
characterizing pHis sites; however, too many features will also lead to ‘over-fitting’ that 
can undermine model performance. To reduce the dimension of the feature vector, we 
employed the class SelectKBest in the Python module ‘sklearn.feature_selection’. f_clas-
sif was used as the score function to calculate the ANOVA F-score for each feature. The 
F-score is defined as

where SSA denotes the sum of square between pHis and non-pHis sites and SSE denotes 
the sum of square error for all the His sites. To identify useful feature subsets from the 
initial feature set, k in SelectKBest class was set to a series of values that range from 5 to 
150 with interval 5.

Model training

Logistic regression

Logistic regression, or logit model has been widely used in bioinformatics for solving a 
number of classification tasks [44–46]. The goal of logistic regression is to find the best 
biologically reasonable model to describe the relationship between the dichotomous 
outcome and a set of explanatory variables. Here, the LogisticRegressionCV class in the 
Python module ‘sklearn.linear_model’ was used to build the logit model. When train-
ing the logit model, the fivefold cross-validator was used to automatically select the best 

(1)SSA =
2∑

i=1

ni(Xi − X)2

(2)SSE =
2

i=1

ni

j=1

(Xij − Xi)
2

(3)F−score =
SSA

SSE/(n− 2)
,
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hyperparameters, and the maximum number of iterations of the optimization algorithm 
was set to 5000. The “balanced” mode was used to adjust weights inversely proportional 
to class frequencies in the training dataset.

K‑nearest neighbors

KNN is simple and robust algorithm, which predicts new sample by a plurality vote of its 
closest k samples from the training dataset. Here, the KNeighborsClassifier class in the 
Python module ‘sklearn.neighbors’ was used to build the KNN classification model. The 
parameter k is important for the performance of KNN, and it was commonly set to the 
square root of the number of training samples. However, our datasets are imbalanced, if 
k was chosen with this empirical rule, the neighbors would contain more negative sam-
ples, reducing the prediction possibility of true positives. Thus, k was set to 20 according 
to the number of positive samples. The ‘weights’ was set to ‘distance’, and other param-
eters were set to default values.

Support vector machine

As one of the most widely used learning model, support vector machine has been 
applied to solve various classification problems [47–49]. It transforms the input data to 
higher dimension space with kernel functions, and then constructs a hyperplane to clas-
sify two types of samples. The larger the distance between the hyperplane to the nearest 
samples, the better the separation performance of the classifier achieves. In this paper, 
SVM with the radial basis function kernel was implemented using the SVC class in the 
Python module ‘sklearn.svm’. The kernel type of ‘rbf’ was used, and the probability esti-
mates were enabled. Considering the imbalance of the training dataset, the ‘balanced’ 
mode was selected for improving the classification performance.

Random forest

Random forest is a widely used ensemble learning (ML) method that consists of a mul-
titude of decision trees and outputs the class with the most votes from the individual 
trees. Here, the RF model with 100 decision trees was implemented in Python with the 
RandomForestClassifier class from the ‘sklearn.ensemble’ module. When training the RF 
model, the bootstrap samples were used to build decision trees, and the out-of-bag sam-
ples were chosen to estimate the generalization accuracy. The ‘balanced’ mode was used 
to adjust weights inversely proportional to the class frequencies in the training dataset.

Multi‑layer perceptron

Multi-layer perceptron is a class of feedforward artificial neural network model, which 
consists of the input, output, and hidden layers. MLP can solve problems which are not 
linearly separable in the higher dimensional feature space. Here, the MLP model with 
two hidden layers was built using the MLPClassifier class in the python module ‘sklearn.
neural_network’. The ‘lbfgs’ solver was used for weight optimization, and the random 
state for weight initialization was set to 1. Based on the number of features, the number 
of neurons in the 1st and 2nd hidden layer was set to 100 and 50, respectively. To ensure 
the convergence, the maximum number of iterations was set to 1000.



Page 13 of 16Zhao et al. BMC Bioinformatics          (2022) 23:399 	

Performance measures

Overall accuracy, specificity, recall, precision, F1-score, and Matthew’s correlation coef-
ficient (MCC) were used to measure the performance for identifying pHis sites, and they 
are defined as follows:

TP and TN are the number of correctly predicted pHis sites and non-pHis sites, respec-
tively. FP and FN are the number of incorrectly predicted pHis sites and non-pHis sites, 
respectively.

Receiver operating characteristic (ROC curve) created by plotting the true positive 
rate (TPR) against the false positive rate (FPR) at various threshold values was used to 
visualize the predictive performance for both pHis and non-pHis sites. Precision-recall 
(PR) curve constructed by plotting the precision against the recall at a variety of thresh-
olds was used to visualized the predictive performance for the pHis sites. Area under 
the ROC curve (AUC) is used to summarize its performance as a single number. All 
the performance values were calculated using the ‘metrics’ class in the Python module 
‘scikit-learn’.
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