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Abstract

Purpose: This article will briefly review the origins and evolution of functional genomics, first 

describing the experimental technology, and then some of the approaches applied to data analysis 

and visualization. It will emphasize application of functional genomics to radiation biology, using 

examples from the author’s work to illustrate several key types of analysis. It concludes with a 

look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some 

of the innovative areas that may help to shape future research in radiation biology and oncology.

Conclusions: Transcriptomic approaches have provided insight into many areas of radiation 

biology and medicine, and innovations in technology and data analysis approaches promise 

continued contributions to radiation science in the future.
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Introduction

Exposure to ionizing radiation results in damage to all cellular components, triggering a 

network of signaling cascades, especially as a response to DNA damage. These signaling 

cascades coordinate cellular and tissue-level responses including DNA repair, cell cycle 

arrest, apoptosis, fibrosis, and immune and inflammatory responses. These responses are 

often directly mediated by post-translational protein modifications that alter protein binding, 

activity or sub-cellular localization, however, changes in gene expression programs are also 

recognized as a central component of radiation signaling and response (Amundson 2008). 

The study of gene expression changes has historically contributed to our understanding 

of the molecular mechanisms of radiation response, and evolving technologies continue to 

accelerate such studies.

The study of DNA damage-inducible genes developed out of the SOS response, an error-

prone DNA repair system activated in Escherichia coli by exposure to ultraviolet radiation 

(UV) or alkylating agents (Radman 1975). A set of five coordinately regulated SOS genes 

were initially cloned in E. coli (Kenyon and Walker 1980), with many more such genes 
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identified since. Six DNA damage responsive genes were also identified in yeast, with early 

estimates that as many as 80 yeast genes might be DNA damage inducible (Ruby and 

Szostak 1985).

Several DNA damage-inducible genes, including metallothionein Ila, urokinase-type 

plasminogen activator, and several keratins, were identified in mammalian cells using 

hybridization subtraction screening of cDNA libraries (Angel et al. 1986; Rotem et al. 1987; 

Kartasova et al. 1987). This procedure can only identify very abundant transcripts, however. 

Soon, it was shown that low-abundance transcripts could be enriched and differential 

expression could be identified using low-ratio hybridization subtraction screening (Fornace 

and Mitchell 1986). This approach was used to identify UV induction of metallothioneins 

I and II, and at least 18 novel sequences (Fornace et al. 1988), many of which were later 

shown to also respond to ionizing radiation.

In the early 1990s the introduction of RT-PCR-based differential display techniques 

provided another technical boost to studies of differentially expressed genes (Liang and 

Pardee 1992). More radiation responsive genes were reported, but because cloning and 

sequencing was required to determine the identity of individual hits, progress remained slow, 

with most studies describing only one or a few new radiation-induced genes and following 

a reductionist approach to their study (Gomez et al. 1996; Yan et al. 1996; Chang-Liu 

and Woloschak 1997; Goltry et al. 1998; Noel et al. 1998; Okamura et al. 2001). While 

the earlier focus had been on genes with increased expression following DNA damage, 

differential display experiments also started to identify genes with decreased abundance 

after irradiation (Woloschak et al. 1995; Paunesku et al. 2000; Watson et al. 2000; Zhou 

and Rigaud 2001). As an increasingly complex picture of the transcriptional response to 

DNA damage began to emerge, it became clear that multiple cellular processes, including 

apoptosis (Paunesku et al. 2000; Okamura et al. 2001), cell cycle regulation (Gomez et al. 

1996; Zhou and Rigaud 2001), and cellular signal transduction pathways (Yan et al. 1996; 

Watson et al. 2000) could be impacted at the level of mRNA abundance.

Experimental approaches for functional genomics

As the human genome project of the 1990s provided an increasing amount of gene 

sequence information, a shift in research focus from genomics to functional genomics began. 

Once all coding sequences had been determined and mapped, the next task would be to 

understand how the genome was used in a dynamic fashion to achieve cell differentiation 

and specialization, and to respond to environmental signals and challenges. The introduction 

of cDNA microarrays was to be revolutionary in many biological fields, including radiation 

biology.

The first cDNA microarray consisted of 45 arabidopsis genes that were robotically printed 

onto a glass slide (Schena et al. 1995). Two samples could be labeled with different 

fluorochromes and the relative expression levels of each gene on the array could be 

measured simultaneously. Early human cDNA arrays surveyed around 1000 genes, and were 

used to detect both known and novel genes responding to heat shock and phorbol ester 

(Schena et al. 1996) or to explore differences related to tumorigenicity (DeRisi et al. 1996).
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Despite the technical demands of maintaining and annotating large cDNA libraries 

and producing consistently printed microarrays, as well as early informatics challenges, 

the microarray technique was soon applied to the study of the radiation-responsive 

transcriptome. In the first such study (Amundson et al. 1999), we reported 18 known and 30 

new gamma-ray responsive sequences in a human myeloid cell line, and showed different 

patterns of response to various stress agents in different human cell lines. The radiation 

responsive genes newly identified in this study included ATF3 and FOSL1, which were 

both shown to have some level of p53 dependence for their radiation response. This study 

was followed closely by the initial description of potential blood biomarkers for radiation 

exposure identified using the same cDNA microarray approach (Amundson et al. 2000).

Around the same time, photolithographic techniques were being applied to construct arrays 

of short oligonucleotides that did not rely on libraries of cDNA clones (Pease et al. 1994), 

although they were still limited to known sequences. This approach was commercialized by 

Affymetrix and widely adopted by many institutional core facilities, making the technology 

widely accessible.

Long oligonucleotide microarrays, either printed or synthesized in situ, also became 

commercially available (Ben-Dor et al. 2000; Ramakrishnan et al. 2002). These could be 

used with two-color hybridization protocols similar to cDNA arrays, but their high degree of 

standardization and quality control also enabled comparison between samples hybridized to 

different microarray chips. My group has used the Agilent long oligonucleotide microarray 

platform to study radiation bystander responses (Ghandhi et al. 2008; Ghandhi et al. 2010; 

Ghandhi et al. 2011; Ghandhi et al. 2014) and to build on our initial radiation biodosimetry 

work using human (Paul and Amundson 2008; Paul and Amundson 2011; Broustas et al. 

2017; Ghandhi et al. 2019), mouse (Broustas et al. 2018; Mukherjee et al. 2019; Paul et 

al. 2019; Ghandhi et al. 2020), and non-human primate (Park et al. 2017; Ghandhi et al. 

2018) models. Recent reviews (Lacombe et al. 2018; Zhao et al. 2018; Amundson 2021) 

demonstrate that many laboratories, using various whole-genome transcriptomic techniques, 

continue to contribute to what is now a considerable body of radiation biodosimetry gene 

expression work.

More recently, transcriptomic profiling has come full circle, with RNA-Seq, like earlier 

profiling methods, not requiring a priori knowledge of gene sequence for detection of 

differential expression (Wilhelm et al. 2008; Nagalakshmi et al. 2008). As sequencing 

costs have become more competitive with microarrays, RNA-Seq is poised to become 

the dominant technology for transcriptomic studies and appears to be gradually replacing 

microarrays (Figure 1). The ability to discover differential expression of previously 

unidentified genes may be particularly useful in understanding stress responses or disease 

states, where induced or altered transcripts may not have been represented in the libraries 

used to define the human genome.

Functional genomics data analysis and visualization

From the early use of printed cDNA microarrays it was almost immediately apparent that 

the usefulness of whole-genome profiling would be limited mainly by our ability to process 
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and make sense of the huge amounts of data it had now become possible to generate from 

single samples. Early analyses mainly focused on detecting genes that had significantly 

different expression levels in different samples. Statistics-based tools, such as DeArray 

(Chen et al. 1997), provided an improvement over the direct visual or numeric comparison 

of individual probe intensity between two samples. It was also recognized that performing 

tens of thousands of simultaneous comparisons could result in many genes achieving 

apparent statistical significance by chance. Thus, analysis methods incorporating multiple 

comparison corrections and estimates of the False Discovery Rate (FDR), such as SAM 

(Significance Analysis of Microarrays) (Tusher et al. 2001) were developed specifically for 

the identification of genes differentially expressed between groups using microarray data.

Data visualization tools can also be extremely useful for extracting meaningful patterns 

from large-scale expression data. Many of these are available along with statistical analysis 

tools, from non-specific statistical tests such as ANOVA or t-tests to multiple comparison 

adjustment methods, in both commercial and open source platforms. For instance, a huge 

variety of analysis and visualization tools are available as Bioconductor or other R packages 

(Carey et al. 2007; Zhang et al. 2009; Huber et al. 2015; McDermaid et al. 2019). User-

friendly interfaces are also available, such as BRB Array-Tools (Simon et al. 2007), which 

provides streamlined access to a curated suite of R packages for microarray data analysis.

Clustering algorithms, such as hierarchical clustering, K-means clustering, and self-

organizing maps are often applied to microarray data (Do and Choi 2008; Zhu et al. 2008). 

These algorithms use different approaches to compare expression patterns of selected genes 

across all samples in an experiment to group the most similar patterns together. Early studies 

in yeast found that genes with similar function or shared up-stream regulators could be 

grouped together in this way (Eisen et al. 1998). Samples can also be clustered as well as 

genes, for instance to reveal similarities between different tumor types, or to reveal novel 

sub-types with specific gene expression signatures (Jazaeri et al. 2002). Clustered genes 

can be displayed as heatmaps, with a row for each gene, a column for each sample, and 

color intensity representing the relative level of gene expression. Two colors can be used to 

represent ratios of expression so that both increases and decreases can be clearly visualized, 

while a single color can be used to represent expression intensities. Figure 2A shows an 

example of an intensity heatmap visualizing K-means clustering of expression levels of 

blood genes that significantly responded to an LD50 radiation dose in wild-type mice. Two 

clusters, representing up-regulated and down-regulated genes, are clearly visible in the wild 

types, and general ablation of the response can be seen in the two mutant strains. Details of 

the studies generating this data have been published (Rudqvist et al. 2018).

Multi-dimensional scaling (MDS) algorithms, such as principal components analysis, can be 

used to reduce an n-dimensional gene expression space to a 2- or 3-dimensional projection, 

while maintaining the relative relationships between the samples (Raychaudhuri et al. 2000). 

In practical terms, this enables visualization of the overall similarity of samples based on 

the expression of a selected set of genes. The example in Figure 2B illustrates a 72-gene 

signature of radiation dose (Paul and Amundson 2008) monitored in human blood samples 

between 6 and 48 hours after radiation exposure (Paul et al. 2013). Each point represents 

an individual sample, with different colors representing different radiation doses from 0 to 8 
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Gy, and different shapes representing 6, 24, or 48 hours after irradiation. In this example, it 

can be seen that the samples cluster by dose, but also separate by the time since exposure, 

with the effect of dose beginning to diminish after 48 hours compared with the earlier time 

points.

Network analysis and upstream regulators

Genes that demonstrate patterns of co-expression may also be co-regulated by common 

upstream pathways. Chromatin Immunoprecipitation (ChIP) assays (Rodríguez-Ubreva and 

Ballestar 2014) can be used to isolate the DNA sequences bound to a specific transcription 

factor of interest, such as NFκB or TP53, followed by microarray or sequencing-based 

identification of the differentially bound genes. Integration of such ChIP-Seq results with 

expression profiling of the same experimental conditions (Jiang and Mortazavi 2018) can 

provide insight into mechanisms of transcription regulation following radiation exposure 

(Janus et al. 2018; Szołtysek et al. 2018; Hafner et al. 2020).

A large amount of non-radiation specific DNA-protein and protein-protein binding data 

is also publicly available through sources such as the Biomolecular Interaction Network 

Database (BIND) (Alfarano et al. 2005). In conjunction with gene expression results, 

such protein-binding information can be used to construct and visualize putative regulatory 

interaction networks. Free platforms, such as Cytoscape (Shannon et al. 2003), as well as 

commercial solutions, such as Ingenuity Pathway Analysis (IPA) (Krämer et al. 2014), are 

available to perform network analyses. We previously used BIND and Cytoscape to build 

a regulatory network of a strongly down-regulated cluster of TP53-independent radiation 

responsive genes in the cell lines of the NCI-60 panel. The network analysis indicated E2F4 

as a potential upstream regulator of this response, and we were able to confirm response of 

E2F4 to radiation (Amundson et al. 2008).

A reanalysis of the same NCI-60 gene expression data using IPA is illustrated in Figure 2C. 

In this case, IPA was first used to predict putative upstream regulators of the genes in the 

down-regulated cluster. IPA assumes a normal distribution of gene up- or down-regulation 

for each potential upstream regulator-gene connection, and calculates a z-score (number 

of standard deviations from the mean) to determine the significant over-representation of 

“activated” or “inhibited” predictions. For each potential regulator, a z-score of ≥2 is taken 

as significantly likely to be activated, and a z-score of ≤−2 as significantly inhibited. E2F4 

was again predicted to be activated by radiation, but additional transcription factors were 

also predicted as possible upstream regulators of the down-regulated genes. The strongest 

predictions were for activation of NUPR1 (z-score 3.5) and inhibition of FOXM1 (z-score 

−3.7). FOXM1 is a known regulator of cell cycle genes with roles in carcinogenesis (Myatt 

and Lam 2007), and its down-regulation may enhance radiosensitivity (Nagel et al. 2015; 

Xiu et al. 2018). Consistent with our prediction from the NCI-60 data, NUPR1 has been 

shown to be induced by multiple cellular stressors, including ionizing radiation (Gironella 

et al. 2009). We have also previously reported IPA-predicted activation of NUPR1 by direct 

irradiation with 123 keV/μm 4He ions, and inhibition in un-irradiated bystanders of the same 

cells (Ghandhi et al. 2014). This example illustrates the common finding that reanalysis of 
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transcriptomic data using different or updated approaches generally confirms older findings, 

but also often suggests additional directions for further investigation.

Gene ontology

Gene ontology analyses are also commonly employed to gain insight into the biological 

functions likely to be affected in an experiment. The Gene Ontology (GO) consortium 

maintains annotations of biological processes and molecular functions of genes and gene 

families (The Gene Ontology Consortium 2019). Other databases, such as KEGG (the Kyoto 

Encyclopedia of Genes and Genomes) (Kanehisa et al. 2017), and Reactome (Jassal et al. 

2020), organize genes into pathways, while databases, such as InterPro (Mitchell et al. 

2019), SMART (Simple Modular Architecture Research Tool) (Letunic and Bork 2018), or 

PANTHER (Protein ANalysis THrough Evolutionary Relationships)(Thomas et al. 2003), 

classify protein functional domains or motifs and associate them to coding genes. Many 

freely available analysis platforms allow users to query gene lists against multiple such 

databases in order to look for terms that are overrepresented compared to their expected 

occurrence in a random gene list of the same length. These tools implement methods 

to correct for multiple comparison, and include DAVID (the Database for Annotation, 

Visualization and Integrated Discovery) (Huang et al. 2009), PANTHER Tools (Mi et al. 

2019), AmiGO (Carbon et al. 2009), and ToppFun (Transcriptome, ontology, phenotype, 

proteome, and pharmacome annotations based gene list Functional enrichment analysis)

(Chen et al. 2009). Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005) 

is a related approach for revealing enriched biological processes through comparison of 

experimental results with pre-defined gene lists. An advantage of this approach is that 

in addition to GO or other annotated categories, any curated gene list can be used for 

comparison.

Gene expression based classifiers

Numerous algorithms have been applied to develop predictive classifiers based on gene 

expression. These include such approaches as linear discriminant analysis, the Bayesian 

compound covariate predictor, and shrunken centroid, nearest centroid and nearest neighbor 

classifiers (Simon et al. 2007). Artificial intelligence approaches, including random forest 

classification, support vector machines, radial bias function neural networks, and multilayer 

perceptron neural networks can also be applied (Pirooznia et al. 2008). Such classification 

algorithms have been used for gene expression based prediction of the likelihood of cancer 

metastasis (van’t Veer and Bernards 2008), and to predict radiosensitivity (Torres-Roca et 

al. 2005; Williams et al. 2011; Williams et al. 2017) or the risk of normal tissue damage 

(Nuyten and van de Vijver 2008; Lyngholm et al. 2015). They have also been applied in the 

radiation biodosimetry arena. For example, one early study used Bayesian regression models 

(West et al. 2001) with leave-one-out cross validation to classify samples from mice as 

controls or radiation exposed (Dressman et al. 2007). Similarly, a nearest centroid classifier 

with leave-one-out cross validation was used for non-binary classification of human blood 

samples irradiated ex vivo as either unexposed, 0.5, 2 or ≥5 Gy (Paul and Amundson 

2008). In a different application, independent training and test sets were used with 

seven classification algorithms (linear discriminant analysis, Bayesian compound covariate 

predictor, nearest centroid, compound covariate predictor, 1- and 3-nearest neighbors, and 
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support vector machines) to demonstrate improved binary classification of irradiated versus 

control samples across DNA-repair deficient mouse strains when training sets included all 

genotypes (Rudqvist et al. 2018).

For binary classifiers, an algorithm’s performance is commonly illustrated using a receiver 

operating characteristic (ROC) curve, such as the example in Figure 2D. The ROC curve 

in the example shows a diagonal linear discriminant analysis using 20 genes selected with 

a greedy pairs algorithm to discriminate at 1, 2, or 3 days after exposure between mice 

given a lethal dose of radiation (10 Gy) and mice given survivable doses from 0–6 Gy (Paul 

et al. 2019). By plotting sensitivity (the true positive rate) against 1-specificity (the false 

positive rate) it visualizes the trade off between sensitivity and specificity. The point in the 

extreme upper left corner of the graph represents perfect classification, and the diagonal line 

represents completely random classification. Classifier performance is reported using the 

area under the curve (AUC), which would be 1 for perfect classification, and for the case 

illustrated is 0.92.

Time series analysis

As reflected in the MDS plot in Figure 2B, gene expression in response to radiation or other 

stresses is a highly dynamic process, and a single microarray or RNA-Seq analysis only 

provides a snapshot of an instant in time. Time-course data, or more complex experiments, 

such as a dose response as a function of time, or comparison of multiple irradiation 

conditions, can become unwieldy to analyze. Pattern clustering approaches, developed for 

the analysis of time-course data, cluster curves rather than individual points, and can provide 

insight from time courses or other complex data. One approach developed for transcriptomic 

data is the Short Time series Expression Miner (STEM) algorithm, which clusters genes into 

pre-defined patterns based on “units of change” as a function of time and tests significance 

using a permutation test (Ernst and Bar-Joseph 2006). A Feature Based PAM (Partitioning 

Around Medoids) Algorithm (FBPA) that incorporates biologically relevant features to 

summarize gene expression over time has also been developed to cluster gene expression 

curves without comparison to pre-defined profiles (Sinha and Markatou 2011). In a direct 

comparison between STEM and FBPA, we were able to extract more biologically relevant 

clusters from radiation bystander data using FBPA, including identification of a novel 

methylation pathway involved in the bystander response (Ghandhi et al. 2011). We have also 

found the maSigPro R package (Conesa et al. 2006) useful for analysis of complex radiation 

response data sets, including a study monitoring gene expression for two weeks in response 

to different amounts of internally deposited 137Cs (Ghandhi et al. 2020) and a dose-response 

study of gene expression covering the first week after external-beam gamma irradiation 

of mice (Paul et al. 2019). Two of the gene response patterns identified by maSigPro in 

the latter study are illustrated in Figure 2E. Both represent down-regulated genes, but the 

genes in these two clusters show very different time and dose relationships. In the first 

pattern, expression levels decrease during the first few days, and then begin to recover 

toward control values in a dose dependent manner. Only mice exposed to a lethal 10 Gy dose 

show no recovery of expression levels. In contrast, the second pattern shows a strong dose 

dependence, but little time dependence, with gene expression dropping rapidly by the first 

day after exposure, then remaining at a fairly consistent level throughout the study.
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Public accessibility of data

There is an increasing movement of support for open science and open data of all kinds. 

The wealth of functional genomic data being generated in radiation studies represents a 

great potential resource for the field. There are a number of repositories available to ensure 

its continued public availability. Some, such as the Gene Expression Omnibus (Barrett et 

al. 2009) or ArrayExpress (Brazma et al. 2003) are general transcriptomic repositories, in 

which it can be difficult to find relevant radiation experiments. Specialized gene expression 

databases have been developed targeting the radiation community, including Radiation 

Genes (Chiani et al. 2009) and the NASA GeneLab (Beheshti et al. 2018; Berrios et al. 

2021), which integrates radiation datasets from transcriptomic, proteomic, and metabolomic 

studies. Such efforts, combined with the ongoing development of increasingly powerful 

analysis tools, which can be applied to existing public datasets, will help ensure that the 

maximum insight can be derived from all transcriptomic experiments, past and future.

Future directions for radiation functional genomics

Since the initial introduction of cDNA microarrays, functional genomics techniques have 

expanded to enable an increasingly broad range of studies. Molecular biology has uncovered 

new levels of regulation by non-coding transcripts and alternatively spliced forms of known 

genes (Mortazavi et al. 2008). The increasing accessibility of whole-genome RNA-Seq and 

its ability to detect novel transcripts, as well as third-generation sequencing providing full 

transcript reads (Cruz-Garcia et al. 2020a), will likely enhance the study of these regulatory 

layers and their roles in radiation response and disease. Advances in both technology and 

informatics are also accelerating studies of the heterogeneity of radiation response on the 

single cell level. These promising directions are discussed briefly below.

Non-coding RNA

When one of the original “growth arrest and DNA-damage inducible” genes, Gadd7, was 

found to exert growth arrest properties but to lack a protein product (Hollander et al. 1996), 

it was an intriguing curiosity, but the observation then languished for several decades. 

Now, however, non-coding RNAs (ncRNA) are understood as key regulatory factors, with 

roles in diverse processes from chromatin remodeling and gene transcription to protein 

translation. The importance of ncRNAs is underlined by the finding that their dis-regulation 

appears to be involved in many pathological states, including cancer (Schmitt and Chang 

2013; Choudhari et al. 2020). Although multiple varieties of ncRNA are now known, long 

non-coding RNAs (lncRNA, such as Gadd7), micro RNAs (miRNA), and circular RNA 

(circRNA) in particular appear to contribute to the response to radiation, and may be useful 

as both biomarkers and therapeutic targets (May et al. 2021).

Investigation of miRNA contributions to radiation response was initially enabled by 

microarray platforms or low-density TaqMan arrays (Goulter et al. 2006). We used the 

TaqMan low-density array approach to develop miRNA signatures that could classify mouse 

blood samples as coming from unexposed, low LET exposed or heavy-ion exposed mice 

with high accuracy (Templin et al. 2011). We also found that accurate classification of 

human samples from total body irradiation patients was possible using miRNA signatures 
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(Templin et al. 2011). Comparison of miRNA expression in that study with global mRNA 

expression measured in the same patients (Paul et al. 2011) further identified a set of 37 

genes that were downregulated after irradiation, and were also predicted to be targets of 

consistently upregulated miRNAs. Several biological processes including hematopoiesis and 

immune response were over-represented among these genes, suggesting a role for miRNA 

regulation in their response to radiation.

Studies of ncRNA in the context of radiation response continue to expand. Both miRNA 

and lncRNA have been found to participate in regulating DNA double-strand break repair 

(Thapar 2018), a critical response to ionizing radiation exposure. Specific lncRNA (Jiang 

et al. 2017; Hu et al. 2019; Ma et al. 2018), miRNA (Weidhaas et al. 2007; Zhang et al. 

2011), and circRNA (Guan et al. 2020; Niu et al. 2020), have been associated with alteration 

of radio-resistance of human tumors, and may present targets for modification of radiation 

response. The development of normal tissue damage may also be modulated by ncRNA, 

with the lncRNA WWC2-AS1 found to be a regulator of radiation-induced fibrosis (Zhou et 

al. 2019).

The relative stability of ncRNA species, and their presence in serum and in exosomes, also 

makes them attractive targets for the development of radiation biodosimetry (Jacob et al. 

2013; Beer et al. 2017; Aryankalayil et al. 2018; Yadav et al. 2020). miRNA may also 

provide tissue-specific biomarkers of radiation damage (Khan et al. 2013; Menon et al. 

2016; Rogers et al. 2020), or early predictors of death following irradiation (Acharya et al. 

2015; Tomasik et al. 2018).

Variant transcripts and translation

Alternative reading of the genome, including the use of alternative transcription start 

sites, alternative splicing leading to different exon usage, alternative polyadenylation and 

alternative initiation of translation can all contribute to the functional regulation of the 

genome, and the broad extent of these alternative processes is being revealed through RNA-

Seq (de Klerk and ‘t Hoen 2015). These mechanisms can also play a part in the response 

to radiation. Ionizing radiation has been shown to induce transcription using alternate 

promoters in MDM2 (Barak et al. 1994), PPM1D (Rossi et al. 2008), RRM2B and XPC 
(Forrester et al. 2012), as well as a number of other genes (Sprung et al. 2011). Alternative 

splicing of genes following irradiation is also being increasingly reported, particularly in 

the context of radiation biodosimetry (Macaeva et al. 2016; Wahba et al. 2018). The use 

of radiation-induced exon expression normalized against intragenic control exons of genes 

including MDM2, PPM1D, and FDXR has been suggested as an attractive approach to 

provide more robust radiation biodosimetry (Forrester and Sprung 2014; Cruz-Garcia et al. 

2020b).

The use of different promoters in irradiated cells has also been linked to different 

translational profiles for those genes (Barak et al. 1994; Rossi et al. 2008). More broadly, a 

microarray analysis of polysome-bound mRNA found that radiation exposure had a 10-fold 

greater impact on gene translation than on transcription (Lü et al. 2006). The translational 

profiles responding to radiation also appear to be tumor type specific, and to differ between 

tumor and normal cell lines (Kumaraswamy et al. 2008). RNA-Seq analysis of polysome-
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bound RNA fractions has revealed a 3-fold enhancement of radiation-induced changes in 

translation of alternative transcripts compared to their transcription, further emphasizing 

the interconnection between these levels of functional genomic control (Wahba et al. 

2018). Translational control and alternative transcription in response to radiation remain 

understudied areas worthy of more detailed investigation.

Single-cell transcriptomics

The heterogeneity of the cellular response to radiation exposure has long been recognized. 

For instance, variation in the intensity of TP53 antibody staining was observed in different 

cells within a population exposed to the same radiation dose (MacCallum et al. 2001). 

Early attempts to look at the radiation transcriptional response at a single cell level also 

indicated a high degree of cell-to-cell variability (Ponnaiya et al. 2007; Ponnaiya et al. 

2013) and suggested within-cell correlation of the expression of genes with common 

upstream regulatory factors (Shang et al. 2019). However, these studies were limited 

to the measurement of only one or a small number of genes. More recent advances 

in both sequencing technology and data analysis have enabled studies in which the 

transcriptome of individual cells within a sample can be studied, further defining the 

scope of cellular heterogeneity in the response to radiation (Gao et al. 2021). Such 

studies have also provided more granular molecular insight into heterogeneous radiation 

responses, for instance, identifying activation of different signaling pathways in subsets 

of T-lymphocytes (Moreno-Villanueva et al. 2019), and suggesting novel gene expression 

changes during the development of radiation resistance during tumor treatment (Wu et 

al. 2019). Reconstructing cell-type specific radiation signaling networks from single-cell 

sequencing data has also provided insights into the interplay between radiotherapy and 

immune cell activity (Formenti et al. 2019).

Further technological refinements are enabling true tissue-level systems biology (Moor 

and Itzkovitz 2017) and deconvolution of the tumor microenvironment (Wang et al. 2021) 

through retention of spatial information coupled with single-cell resolution transcriptomics 

(Teves and Won 2020). These spatial transcriptomic techniques have, for example, been 

applied to bone marrow stem cell niches to study conditions of homeostasis, carcinogenesis, 

and response to stresses including radiation (Al-Sabah et al. 2020). Spatial and single-cell 

transcriptomics hold great promise for the development of immunotherapies (Nerurkar et al. 

2020; Castellanos-Rueda et al. 2021), and for our understanding of the radiation response 

of complex tissues, tumors, and interacting cell types. As functional genomic technologies 

continue to evolve, it seems certain that the field will have an ongoing impact in diverse 

areas of radiation biology and radiation oncology.
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Figure 1. 
Publications found in Pubmed by searching “ionizing radiation” combined with the terms 

“differential display”, “microarray”, or “RNA-Seq” plotted by year.
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Figure 2. 
Examples of analysis and visualization tools applied to transcriptomic data.

A) heatmap visualizing K-means clustering of gene expression levels produced using BRB-

Array Tools (Simon et al. 2007). Each row represents a gene and each column an individual 

sample (mouse). Samples are arranged as indicated at the top of the heatmap. WT = wild 

type; Atm−/− = Atm null; Scid = Prkdcscid; Irr = 24 h post irradiation with an LD50/30 
137Cs γ-ray dose. The data are from Rudqvist et al. 2018. The intensity of microarray 

hybridization, corresponding to the level of gene expression, is represented by the shade of 

blue as indicated in the key.

B) Multi-dimensional scaling plot created in BRB Array-Tools representing a 72-gene 

signature of radiation dose (Paul and Amundson 2008) measured in ex vivo irradiated 

human blood samples at 6 h (squares), 24 h (triangles), or 48 h (circles) after exposure to 0 
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Gy (purple), 0.5 Gy (blue), 2 Gy (green), 5 Gy (yellow), or 8 Gy (red) 137Cs γ-rays. Data 

from Paul et al. 2013.

C) Network generated in IPA (Krämer et al. 2014) following upstream regulator analysis 

of data from Figure 2 of Amundson et al. 2008. Transcription factors colored orange were 

predicted to be activated by radiation, and blue indicates a transcription factor predicted 

to be inhibited by radiation. Blue lines indicate the regulatory relationships supporting the 

prediction. Nodes corresponding to the down-regulated genes (green) have been colored to 

show the relative radiation response in HL60 cells, with darker color corresponding to a 

greater magnitude of decrease.

D) ROC curve summarizing performance of a diagonal linear discriminant analysis 

algorithm built using 20 genes in BRB Array-Tools. Mouse blood was sampled at 1, 2 

or 3 days after exposure to doses from 0–10 Gy, and the samples were classified as coming 

from animals experiencing a survivable exposure (0–6 Gy) or a lethal exposure (10 Gy). The 

AUC (area under the curve) was 0.92, and the data are from Paul et al. 2019.

E) Two distinct down-regulated gene expression patterns from time-course analysis using 

MaSigPro (Conesa et al. 2006). Mice were exposed to 0–10 Gy γ-rays and sacrificed for 

gene expression measurement in blood 1–7 days later (Paul et al. 2019). Relative median 

expression of all genes in the pattern is plotted as a function of time, with a separate curve 

for each dose (color coded according to the key). The graph on the left represents 1700 

genes, that on the right 98.
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