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Abstract

This paper introduces stretchable, long-term wearable, tattoo-like dry surface electrodes for highly 

repeatable electromyography (EMG). The tattoo-like sensors are hair thin, skin compliant and 

can be laminated on human skin just like a temporary transfer tattoo, which enables multi-day 

noninvasive but intimate contact with the skin even under severe skin deformation. The new 

electrodes were used to facilitate a system-based approach to tracking of long-term fatiguing 

and recovery processes in a human neuromusculoskeletal (NMS) system, which was based on 

establishing an autoregressive moving average model with exogenous inputs (ARMAX model) 

relating signatures extracted from the surface electromyogram (sEMG) signals collected using the 

tattoo-like sensors, and the corresponding hand grip force (HGF) serving as the model output. 

Performance degradation of the relevant NMS system was evaluated by tracking the evolution of 

the errors of the ARMAX model established using the data corresponding to the rested (fresh) 

state of any given subject. Results from several exercise sessions clearly showed repeated patterns 

of fatiguing and resting, with a notable point that these patterns could now be quantified via 

dynamic models relating the relevant muscle signatures and NMS outputs.

1. Introduction

Even if the study of electromyogram (EMG) can be traced back to 1666 and has been a 

major research topic ever since, very few characteristics of surface electromyogram (sEMG) 

signals are used in fatigue detection and performance analysis. The reason is that sEMG 

is notoriously noisy and susceptible to noise from surface tissues (Kuiken et al. 2003). 

Furthermore, dynamic body motion like walking and running can cause inconsistency 

of the connection and detachment of electrodes. On the other hand, researchers have 

shown connections between changes in certain characteristics of EMG signals and muscle 

fatigue in both the time and frequency domains. E.g., Gerdle et al. (2000) use changes 

in the amplitudes of EMG signals to detect fatigue, while Dimitrov et al. (2006) use 
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spectral (frequency domain) indices to track fatigue before and after maximum knee torque. 

Signatures extracted from joint time-frequency distributions EMG signals have also been 

used as indicators of fatigue, including the instantaneous frequencies (Allison & Fujiwara, 

2002) and intensities (Disselhorst-Klug et al. 2009).

In this paper, a long-term wearable, tattoo-like stretchable sEMG sensor is developed, 

manufactured and utilized to collect sEMG signals for model-based performance monitoring 

of a human neuromusculoskeletal (NMS) system. The stretchable sensors are dry, 

noninvasive, hair thin, skin soft, and capable of long-term biopotential monitoring (Yang, 

et al.,2015; Kabiri et al., 2017; Wang et al., 2018; Yamagami et al.,2018.). The subjects are 

able to wear this tattoo-like sensor for days freely, without any irritation or other discomfort. 

In such a way, these tattoo-like sensors enable a long-term system-based investigation of 

muscle fatigue and recovery over time by solving the problem of inconsistent electrode 

positioning between trials, as well as the sensor detachment.

The vast majority of research on modeling and monitoring of human NMS system 

performance is symptom-based, meaning that the NMS condition is characterized via 

analysis of relevant signals, such as joint angles and/or angular velocities, electrical activities 

in muscles (EMG), limb and/or reaction forces, etc. A symptom-based monitoring paradigm, 

such as what we see in the Phase Space Wrapping method (Dingwell et al. 2007), Goal 

Equivalent Manifold (GEM) approach (Gates & Dingwell, 2008), or limb force-based NMS 

analysis (Vøllestad, 1997) is valid only when the system input is stationary (Musselman et 
al. 2017), and this is not true during regular operation of most complex systems, including 

(especially) biological ones.

Functionally speaking, various portions of the NMS system can be seen as dynamic systems 

for which inputs are the neurally-induced electrical activities in the relevant muscles, 

visible in the EMG signals, while joint and limb movements and forces can be seen 

as outputs (Keynes et al. 2001). Therefore, the machine-monitoring technique based on 

establishing and tracing dynamic models of inputs and outputs, rather than purely signal-

based monitoring techniques, can be employed to monitor NMS system performance during 

its regular activities. Thus, in addition to the use of the novel tattoo-like long-term sEMG 

sensors, the research presented in this paper will utilize a system-based monitoring paradigm 

to track human body fatigue over longer periods of time (days).

The remainder of the article is structured as follows. In Section 2, the “cut and paste” based 

manufacturing technique and design of tattoo-like sensors specifically for the experiment are 

described. Section 3 describes the methods for EMG signal processing, modeling of NMS 

system dynamics, and model-based tracking of changes in the NMS system performance. 

Section 4 presents results of applying the tattoo electrode based EMG data collection system 

and the model-based NMS performance method to fatigue characterization and tracking in 

forearm portion of the NMS system of multiple subjects, over multiple exercise sessions 

and days. Finally. Section 5 summarizes findings of the research presented in this paper and 

outlines avenues for possible future work.
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2. Sensor Manufacturing, design, and performance

2.1 Cut-and-Paste Method

Creation of dry and stretchable tattoo-like electrodes requires precise shaping of gold 

nanomembranes in order to create patterns that are conductive, stretchable, and conformable 

enough to operate on the human skin. Traditional nanomanufacturing, the industry standard 

for the creation of ultrathin devices, is labor and equipment intensive process, usually 

involving many different steps and the use of many different chemicals, all of which add 

up to a significant cost in time and money. Thus we have invented a unique manufacturing 

method dubbed “Cut-and-Paste” method, which uses entirely dry and freeform (no mask or 

template) processes with countertop operation in order to manufacture tattoo-like electronics 

in only a few minutes (Yang, et al.,2015; Kabiri et al., 2017; Wang et al., 2018; Yamagami 

et al.,2018.). The method is applicable to all types of thin metals, polymer sheets, and 

even atomically thin two dimensional materials, and creates devices that are shown to 

accurately measure a wide array of signals, including biopotentials, skin hydration, and 

surface temperature. In this study, we used such “Cut-and-Paste” method to manufacture 

tattoo-like sEMG sensors.

2.2 Sensor design and deformation test

Due to the nature of muscles to move during contraction and extension, a stretchable sensor 

was designed to capture EMG signals based on the Cut-and-Paste technology described in 

previous subsection. This new design is shown in Figure 1, both stand-alone and on the 

target arm muscles under deformation.

The new design features two electrodes patterned in a “Sun” pattern with meandering 

“radiance”, to increase electrode surface area, while maintaining stretchability and 

conformability. The electrodes also each feature a snap-connector, which allows for easy 

connection of the electrodes to a measurement device during data capture, either by snap-on 

wire connectors or alligator clips. Tegaderm was chosen as the substrate for the device for its 

skin-like qualities, good adhesion strength, and stretchability greater than needed for muscle 

movement during testing (Yang et al,2015). To ensure the capabilities of the tattoo-like 

device under deformation, several deformations were performed on a live subject, including 

stretching, compression, shearing, and poking. The resistance of the Au serpentines were 

measured before and after the deformations, and show negligible resistance change as 

a result of deformation, indicating that the deformations did not affect the electrical 

capabilities of the device. The stretchability allows both more conformal contact for truer 

EMG measurements, and also does not constrain the muscle during movement in order to 

capture the truest possible free muscle dynamics for study.

3. System-based Monitoring, fatigue tracking, and performance evaluation

3.1 EMG signal processing and feature extraction

Raw surface EMG signals are highly noisy and nonstationary, which presents a great 

challenge in the signal analysis. On the other hand, various research shows the connection 

between muscle fatigue and changes in the amplitude and frequency content of EMG 
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signals (Gerdle et al., 2000; Dimitrov et al., 2006; Allison et al., 2006) Cohen’s class of 

time-frequency distributions (TFD) offers a powerful tool for description and analysis of 

highly noisy and non-stationary signals, such as EMG signal (Cohen, 1995). A TFD reveals 

the distribution of signal energy concurrently in both the time and frequency domains by 

quantitatively describing what portion of signal energy resides at any given time and at any 

given frequency. More formally, given a signal s(t), a Cohen’s class TFD, denoted as C(t, ω), 

is computed as:

C(t, ω) = 1
4π2 .

∭
−∞

+∞

s* u − τ
2 s u + τ

2 ϕ(θ, τ)e−j(θ(t − u) + τω)dτdudθ (1)

where:

• A(θ, t) = ∫−∞
∞ s* u − τ

2 s u + τ
2 e−jθudu is the ambiguity function of signal s(t)

• ϕ(θ, τ) is the kernel which determines the distribution and some properties.

In this paper, we use the binomial kernel, which is a powerful signal-independent kernel in 

the family of so-called Reduced Interference kernels, with a set of desirable mathematical 

properties that enable a high-resolution representation of signal over time-frequency 

domains, and a much faster calculation of TFDs, compared to the signal dependent kernels. 

(Jeong & Williams,1992). Once the binomial TFD is calculated, for each moment t in time, 

corresponding instantaneous intensity, mean frequency, second order moment and entropy 

can be extracted from the time-frequency distribution.

Instantaneous intensity of EMG signals is known to be directly related to voluntary muscle 

force (Potvin,1997), while the instantaneous mean (expected) frequency has been shown 

to be a common indicator for muscle fatigue (Bilodeau et al. 2003). Because of the time-

domain and frequency-domain marginal properties of binomial kernels (Jeong and Williams, 

1992), binomial TFD C(t, ω) of an EMG signal can be used to calculate instantaneous signal 

intensity < f0|t > at any time sample t as

< f0 ∣ t > = ∫ C(t, ω)dω (2)

while conditional expectation properties of binomial TFDs (Jeong and Williams, 1992) 

enable calculation of instantaneous EMG frequencies < f1|t > at time sample t as

< f1 ∣ t > = ∫ C(t, ω)
< f0 ∣ t >

ωdω (3)

Even though literature does not recognize relation between higher order instantaneous 

frequency moments of EMG signals, in order to better describe instantaneous frequency 
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characteristics of EMG signals, input vector for the NMS dynamic model also included 

second order instantaneous moments of EMG signals < f2|t >, calculated as (Cohen, 1995)

< f2 ∣ t > = ∫ C(t, ω)
< f0 ∣ t >

ω2dω (4)

as well as the instantaneous EMG entropy < S|t >, calculated as (Cohen, 1995)

< S ∣ t > = ∫ C(t, ω)
f0 ∣ t

 ln  C(t, ω)
< f0 ∣ t >

dω (5)

3.2 ARMAX modeling and model order determination

EMG featured signal X (t) = < f0 t > , < f1 t > , < f2 t > , < S t > T
 as system input and 

hand grip force signal F(t) as system output are utilized to train fresh unfatigued NMS 

system structured by an Autoregressive-Moving Average with Exogenous input (ARMAX) 

which defines an evolution rule formulated in the following equation:

F(t) = ∑n = 1
N ϕnF(t − n) + ∑n = 1

N − 1θna(t − n) + ΓX (t − 1) (6)

where:

• ϕn are the autoregressive coefficients;

• θn are the moving average coefficients;

• Γ denotes the matrix of coefficients relating EMG signatures with the hand grip 

force1;

• a(t) – modeling residuals, behaving as a Gaussian white noise with variance σa2.

To preserve model accuracy as well as simplicity of the NMS system, model order N for 

each subject/trial was instantaneously produce forces (to preserve causality of the resulting 

dynamic system). determined using the Akaike Information Criterion (AIC) (Akaike, 1974).

3.3 Model-based fatigue tracking

Relevant NMS Model of any given subject is trained using the data from the initial 10–20 

seconds of his or her exercise period, during which the NMS performance is believed to 

be the least degraded (the corresponding subject experiences minimum fatigue). The model 

learnt in this least degraded state will be referred to as the “fresh model”, and the data 

used to train it will be referred to as “fresh data”. Let us denote as P the distribution of 

1-step ahead prediction errors the fresh model produces on the fresh data. As the exercise 

progresses and new data arrives, distribution of the most recent 1-step ahead prediction 

errors (most recent modeling errors) produced by the fresh model can be generated. Let 

us denote this distribution by QT, where T denotes the time interval over which the NMS 

1Please note that the vector X (t) of EMG signatures is delayed by one time-sample to account for the fact that muscle activity does 
not instantaneously produce forces (to preserve causality of the resulting dynamic system).
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system performance is evaluated (time interval over which the distribution QT of modeling 

errors produced by the fresh model is evaluated). If the NMS system dynamics in the time 

interval T are the same or similar to those observed on the fresh data, the distributions P and 

QT should be similar to each other. However, if the NMS dynamics in interval T are changed 

compared to those observed on the fresh data, due to e.g. fatigue or injury, the distribution 

QT will be different from the fresh distribution P and this difference can be quantified and 

used to track the degradation of NMS performance.

Following, (Musselman et al., 2017), let us quantify the difference between distributions P 
and QT via a Fatigue Index defined using the Kullback-Leibler divergence:

Fatigue Index (FI): = DKL P QT = ∑iP(i) ⋅ ln P(i)
QT(i) (7)

The non-negative measure FI depicts the similarity between distributions P and QT, with FI 

close to zero indicating that the current NMS model is similar to the fresh model, while a 

larger FI implies a more significant difference between the two distributions.

4. Results and Discussion

4.1 Experiment Setup

The study presented in this paper involved 3 types of exercises (trials), involving periodic 

squeezing and releasing of a force sensor and resting in between exercise sessions. We 

will refer to these trials as the Same-day Repetitive Trial (SRT), Multi-day Repetitive Trial 

(MRT) and Repetitive Fatigue and Recovery Trial (RFRT). During SRT, subject is asked 

to grip the force sensor with MVC (Maximum Voluntary Contraction) for 2 minutes, then 

rest for 20–30 minutes until he/she experienced no soreness in the affected muscles. At that 

point, the subject performed another grip trial for the same duration, followed by a rest 

for another 20–30 minutes. This fatigue-and-rest process is repeated 8 times. During the 

MRT, the subject is asked to grip the force sensor for 2 minutes with MVC, after which 

he/she rested for 20–30 minutes, until subject experienced no soreness, followed by another 

2 minutes of gripping the force sensor. The same experiment is performed for 2 more 

consecutive days. During the RFRT, subject is asked to grip the force sensor with MVC 

for 2 minutes, after which over the next 30 minutes, the subject is asked to grip the force 

sensor with MVC for 10 seconds every 2 minutes (this enabled us to track his/her recovery 

process). This process is repeated twice after which the subject performed a final 2 minutes 

gripping trial to end the RFRT.

All experiments involved the dominant hand of the relevant subject and the corresponding 

forearm flexor muscles. The forearm EMG signals were collected using the Sun type tattoo-

like sensor described in Section 2, while the HGF data is collected by a bar-shaped hand 

dynamometer. A signal generator was used to produce pulse signals with a frequency of 

100mHz, which were used as timing signals for synchronization of the EMG and hand 

force datasets. Experimental set up is shown in Figure 2, while an example of concurrently 

collected and synchronized EMG and hand force signals is shown in Figure 3.
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4.2 Experiment protocol

Each trial was done by a different subject and subjects were asked not to exercise or 

otherwise exert their arm for a full 24 hours prior to testing. During experimental trials, each 

subject was allowed to rest in between data measurements and disconnected from the data 

gathering devices, though the Sun electrodes remained on the arms of each subject for the 

duration of the testing period.

4.3 Results

Figure 4 shows evolution of FIs of the relevant subject observed during the SRT. Inspection 

of fatigue patterns at the beginning of each repetition shows that each time, subject’s FI 

starts at about zero, indicating the that the current NMS model returned very close to 

the fresh model, which was trained using only the initial 20 seconds of the first trial. In 

addition, it is visible that during each exercise section, FIs show increasing trends, indicating 

increasing departure of NMS system performance away from the fresh model. More 

formally, we observed a statistically significant increasing linear trend in FIs corresponding 

to each session (utilizing tests proposed by Meals et al., 2011). Given the character and 

time-scale of the experiment, these changes can clearly be seen as NMS performance 

degradation caused by the fatiguing process.

Evolution of the FIs observed as the relevant subject performed RFRT is plotted in Figure 

5. Once again, a clear increasing trend could be observed in the FIs during fatiguing 

portions of the trial. Furthermore, during the recovery portions of RFRT, one can observe 

decreasing trends in the FIs, illustrating recoveries of NMS system performance toward the 

fresh and unfatigued state. More formally, statistically significant linear increasing trends 

were observed during each fatiguing portion of the trial, and statistically significant linear 

decreasing trends could be seen during recovery portions of the trial. Such patterns of FIs 

increasing during fatigue trial and decreasing during recovery trials were observed for all 

subjects.

Finally, evolution of FIs observed as the relevant subject performed the MRT is shown in 

Figure 6. Since the subject is able to carry tattoo-like sensor for days, the model-based 

method is able to reliably capture the increasing FI patterns during the fatiguing portions of 

the trial, as well as recovered NMS states at the beginning of each session. From inspection 

of FI evolution in Figure 6, it is evident that subject’s fatigue pattern is consistent throughout 

the 3 consecutive days even though the corresponding fresh model is trained using only the 

initial dataset on the first day of the experiment. of the experiment.

5. Conclusions and Future Work

This paper advances the capabilities of stretchable electronics in the field of long-term 

repeatable and reliable monitoring of performance of a human NMS system. We describe 

a unique method of manufacturing stretchable skin-compliant sensors for long-term, 

noninvasive collection of human body physiological signals, as well as a new application 

for those sensors for model-based tracking of performance of a human NMS system.
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The new devices for collection of EMG signals produced using the Cut-and-Paste 

manufacturing method are skin-compliant and can remain attached to the subject over 

multiple days, which enables a more consistent and reliable long-term data collection, 

compared to standard electrodes. The model-based performance monitoring method is based 

on building and tracking a dynamic model that relates EMG signatures and relevant NMS 

outputs (angles, angular velocities, forces). A simple Autoregressive Moving Average Model 

with Exogenous Inputs (ARMAX) form of the NMS model is employed, with instantaneous 

EMG intensities, frequencies, second order moments and entropies used as exogenous 

model inputs. A Fatigue Index (FI) indicating a Kulbeck-Leibler distance between the 

distribution of modeling errors observed at any given time and that of errors observed when 

the subject is fresh was used to quantitatively evaluate the relevant NMS performance at that 

time.

Three different experiments were conducted, involving hand gripping activities with subjects 

fatiguing and resting multiple times, including a trial that lasted multiple days, with new 

electrode remaining attached to the subject throughout that time. The relevant NMS system 

performance was evaluated using data from the forearm flexor EMG and the corresponding 

hand grip force. Throughout all trials, subjects showed consistent patterns of increasing FIs 

during exercising portions of the trials, as well as decreasing FIs during recovery portions. 

Furthermore, even though a very limited amount of data was used to training of the fresh 

models, it was noticed that after each resting session, the FIs consistently returned close to 

zero, showing a remarkably reliable and repeatable recovery of the relevant NMS system 

(no engineering machine recovers as reliably after maintenance, as the human NMS system 

studied here appears to recover after rest).

As for directions for future research, two major aspects of this study can be furtherly 

improved. Firstly, even if subjects are able to wear tattoo-like sensor during rest section 

without wiring constraint, the wire connection is still required during an exercise session. 

Advancement towards tattoo-like sensors with wireless data transmission capabilities is 

desirable since it enables free motion exercise and real-time monitoring. Also, integrating 

this unique sensor to current data collection platform can also be beneficial for further study 

of human body monitoring. Another aspect is the improvement of NMS system modeling. 

In this study, an essentially linear and very tractable ARMAX model is used to track the 

relevant NMS performance. This was possible because the system and function that were 

studied are rather simple. For more complex NMS systems with more elaborate and free 

joints and limbs movements, a non-linear model of the relevant NMS dynamics would be 

more appropriate.

In the long run, non-intrusive sensors and system-based approaches, such as those presented 

in this paper, should facilitate continuous long-term monitoring of performance of larger, 

more consequential portions of human NMS system. Such capabilities could improve health 

care by facilitating systematic and customized therapies for NMS injuries during which 

progress and effectiveness of any therapy could be tracked and perhaps optimized. In 

addition, in athletics, capabilities of quantitative long-term monitoring of NMS performance 

would lead to customized training and resting schedules, tailored to avoid injuries and 

maximize performance a specific athlete.
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Figure 1: 
Sun-type sensor design and deformation test on skin.
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Figure 2: 
Experimental Setup. Subject grips a commercially available hand dynamometer, while the 

tattoo-like sensor records their forearm EMG signals.
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Figure 3: 
An example of concurrently collected and synchronized EMG (left) and hand grip force 

(right) signals.
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Figure 4: 
Fatigue Index for Same-day Repetitive Trial (subject 1). Each solid dot represents 1 FI point, 

and back dash line is the linear fit of the corresponding set of FI points
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Figure 5: 
Fatigue Index for Repetitive Fatigue and Recovery Trail (subject 3).
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Figure 6: 
Fatigue Index for the Multi-day Repetitive Trial.
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