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Abstract

The rise in environmental pollutant levels in recent years is mostly attributable to anthropogenic activities such as industrial,
agricultural and other activities. Additionally, these activities may produce excessive levels of dangerous toxicants such
as heavy metals, organic pollutants including pesticide and herbicide chemicals, and sewage discharges from residential and
commercial sources. With a focus on environmentally friendly, sustainable technology, new technologies such as combined
process of nanotechnology and bioremediation are urgently needed to accelerate the cost-effective remediation process to
alleviate toxic contaminants than the conventional remediation methods. Numerous studies have shown that nanoparticles
possess special qualities including improved catalysis and adsorption as well as increased reactivity. Currently, microorgan-
isms and their extracts are being used as promising, environmentally friendly catalysts for engineered nanomaterial. In the
long term, this combination of both technologies called nano-bioremediation may significantly alter the field of environmen-
tal remediation since it is more intelligent, safe, environmentally friendly, economical and green. This review provides an
overview of soil and water remediation techniques as well as the use of nano-bioremediation, which is made from various
living organisms. Additionally, current developments related to the mechanism, model and kinetic studies for remediation
of agricultural contaminants have been discussed.

Keywords Biosynthesis - Environmental contaminants - Nanoparticles - Persistent organic pollutants

Introduction such as excessive soil tillage and runoff (El-Ramady et al.

2020). Agricultural pollutants may encompass unsustain-

Agricultural pollution is a global environmental concern that
is mainly caused by the function of many farming inputs
(such as pesticides and fertilizers) and numerous practices,
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able use of agrochemicals resulting in accumulation of
heavy metals, halogenated compounds, phenols and organic
compounds such as pesticides, insecticides which are one
of the most pressing issues confronting agriculture around
the world (Singh et al. 2020a). These agro-pollutants are
extremely toxic and can have a negative impact on soils,
water and air (Khan et al. 2020; Singh et al. 2020a; Ken and
Sinha 2020). Organic pollutants primarily consist of phe-
nols, chlorinated phenols, azo dyes, phthalic esters, pesti-
cides, persistent organic pollutants (POPs), and other chemi-
cals. Inorganic pollutants, on the other hand, include heavy
metals such as arsenic, nickel, chromium, lead, mercury, and
cadmium. These agro-pollutants have been linked to signifi-
cant negative affects on soil and water pollution, as well as
severe toxicity in living creatures (Saxena et al. 2019).

One of the most pressing challenges facing agriculture
today is the need to monitor and reduce the use of agro-
chemicals associated with certain toxic contaminants. It is

a
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well understood that agrochemical-derived pollutants can
have a negative impact on the agro-ecosystem (Mall et al.
2018). Indeed, injudicious use of excessive amount of pes-
ticides may result in volatilization, oxidation and photolysis
and only about 0.1 percent of pesticides reach the targeted
species (Liang et al. 2017). Toxic pollutants have increased
to alarming levels in the environment, deteriorating envi-
ronmental quality, disrupting ecosystems, and negatively
impacting human health (Singh et al. 2020a). As a result,
developing innovative techniques capable of eliminating
agro-pollutants in trace amounts is critical. Nanotechnolo-
gical approaches have been rapidly used in every field of
science and environmental application owing to their novel
characteristics such high surface area and small nano-size
in a wide range of application (Hidangmayum and Dwivedi
2021). Several remediation methods have been developed
for both in situ and ex situ applications. However, nano-
bioemediation techniques have received much attention in
recent times due to their sustainability and minimizing envi-
ronmental pollutants efficiently (Rajput et al. 2021). Biore-
mediation, according to the United States Environmental
Protection Agency, is a method that transforms harmful
compounds into less dangerous or benign ones using natu-
rally existing organisms (Singh et al. 2020b). Bioremedia-
tion can primarily be achieved by applying microorganisms
to the remediation of pollutants found in water and soil (Sax-
ena et al. 2019; Halecky and Kozliak 2020; Bhojiya et al.
2021). It is worth mentioning that various modern biore-
mediation approaches, such as the application of biosur-
factants, emulsifiers, enzymes, biopesticides, and Geneti-
cally Modified Organisms (GMOs), could be used (Halecky
and Kozliak 2020). Combining nanotechnology and biore-
mediation could increase the efficiency, time efficiency and
environmental friendliness of remediation, increasing ben-
efits (El-Ramady et al. 2020; Ghani et al. 2022). Nano-biore-
mediation (NBR) is one of these methods that have attracted
the attention of many scientists in recent years due to its
unique combination of nanomaterials and bioremediation.
NBR is the process of removing environmental pollutants
from contaminated areas by utilizing nanoparticles derived
from prokaryotes (Gram-negative rods, actinobacteria) and
eukaryotes (fungi, algae, and plants) with the aid of nano-
technology. (Mallikarjuna et al. 2011; Rajput et al. 2021).
For instance, dechlorination and biodegradation of biphenyls
was reported using zinc nanoparticle and the bacterium, Bur-
kholderia xenovorans (Le et al. 2015). Also, nanomaterials
derived from plants, for example, Noaea mucronata, were
applied for the bioremediation of heavy metal contaminants
from rivers, streams and groundwater (Mohsenzadeh and
Rad 2012).

Regarding the benefits of NBR, nanotechnology and
bioremediation are integrated for a number of reasons. Since
NPs have a large surface area per unit mass, a greater number
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of particles can be introduced into the environment, increas-
ing remediation (Kaur et al. 2018). In this way, NBR works
to reduce secondary environmental impacts while minimiz-
ing pollutant concentrations. Furthermore, nanotechnology
and bioremediation are combined with each other to create
an improved, faster, and more environmentally benign reme-
diation method (Kumar et al. 2021).

There are, however, specific merits as well as demerits
associated with each advancement in the remediation pro-
cess. As a result of the extensive literature survey, it can
be concluded that integrating bioremediation and nano-
technology would be a viable alternative to conventional
remediation technologies. Nevertheless, more research and
development are needed to bring these types of sustainable
technology to the market for full implementation. This cur-
rent review paper makes an effort to integrate and summa-
rise findings on the application of nano-bioremediation to
alleviate the environmental agro-pollutants. Furthermore, it
includes an in-depth discussion of the synthesis and mecha-
nism/kinetics model, interaction with nanomaterials with
other microorganisms, as well as their role in environmental
remediation.

Mechanism and action
of nano-bioremediation in soil

Nano-bioremediation is the process of employing nanoparti-
cles/nanomaterial generated by plants, fungus and bacteria to
remove environmental toxins (such as organic and inorganic
pollutants) from polluted locations with the aid of nanotech-
nology. Apart from the many methods available for con-
taminated site remediation (such as chemical and physical
remediation), bioremediation now provides an ecologically
acceptable and cost-effective option for removing toxins
from the environment (Yadav et al. 2017). Bioremediation
encompasses bioaccumulation, biotransformation, biosorp-
tion, and biological stabilization, among others with the use
of microbes, plants, and enzymes or combinations of them
(Fernandez et al. 2018). In one technique, nanoparticles can
be used to treat soils contaminated with pollutants, while in
another, they can be employed by combining phytoreme-
diation with enzyme-based bioremediation (Sunanda et al.
2021). This challenge might be overcome by merging nano-
technology and biotechnology, in which nano-encapsulated
enzymes transform complex organic molecules into simpler
ones, which are subsequently quickly eliminated by bacteria
and plants working together (Prasad et al. 2017). Figure 1
shows aspects of nano-bioremediation in agriculture soil in
terms of applications. In case of agricultural soil, it works as
remedial approach to remove inorganic, organic, and emerg-
ing pollutants. The same way it helps in soil health, growth
of plants and also works to improve the degraded land.
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Fig.1 Application of nano-bioremediation in agriculture soil

Bacteria have the ability to mobilize and immobilize met-
als, and in some cases, the microorganism that can decrease
metal ions may also precipitate metals at nanoscale size.
Bacteria are being investigated as a latent "biofactory" for
the production of nanoparticles such as gold, silver, iron,
zero valent iron, platinum, palladium, titanium dioxide,

Table 1 Synthesis of nanomaterial with different methods

cadmium sulfide, gold nanowire, titanium, selenium, mag-
netite, and zinc sulfide (Yadav et al. 2017; Ramezani et al.
2021). The utilization of microorganisms can act as cata-
lyst because of their enzyme present for specific reaction to
inorganic nanoparticle which is a new coherent biosynthesis
approach for production of nanoparticles, which comprises
application of polysaccharides, biodegradable polymers,
microorganisms, enzymes, microbial enzymes, vitamins,
and organic structures (Ramezani et al. 2021).

Preparation of nanomaterial

Only physical and chemical processes were previously used
to create nanoparticles. In the search for more cost-effective
and sustainable production of nanoparticle, microorganism
and plants extracts were utilized. Table 1 represents the syn-
thesis methods or procedures of different types of nanomate-
rial with suitable examples. Synthesis of nanomaterials from
different methods of preparation is shown in Fig. 2. The bio-
genesis of nanoparticles follow a bottom-up process involv-
ing the primary reaction of reduction/oxidation. The reduc-
tion in metal compounds into their respective nanoparticles
is usually mediated by microbial enzymes or phytochemicals
with antioxidant or reducing properties. Nanomaterials are
being produced in the millions of tons throughout the world,
and this number is likely to skyrocket in the near future. The
word "nanomaterial" refers to specially designed materials
with at least one dimension between 1 and 100 nm (Euro-
pean Commission, 2011). Microorganisms such as bacteria,

Nanomaterials Methods

Metals/metalloids/composites/microor-

References

ganisms/polymers

Metal nanoparticles (NPs) Photochemical
Electrochemical
Biochemical
Thermochemical

Carbon NMs Arc-discharge

Laser ablation

Chemical vapor deposition

Metal oxide NPs Sol-gel

Hydrothermal

Reverse micelles method

Solvothermal

Electrochemical deposition

Pt, Rh, Pd, Ir, Ag, Au, Cu, Co, Ni, FeNi,
CusAu, CoNi, CdTe, CdSe, ZnS

Cylindrical nanotube

Zn0, Fe,0;, Fe;0,4, MgO, BaCO;,
BaSO,, TiO,

Das and Ansari (2009), Koul and Taak
(2018)

Rizwan et al. (2014), Prasad et al. (2017),
Singh et al. (2020a, b)

Newkome et al. (1985), Chauhan et al.
(2012), Koul and Taak (2018)

Polymer NMs

Nanocomposite

Bio-nanomaterials

Electrochemical

Polymerization

Innovative

Biological

Nanowire of polypyrrole, polyaniline,
poly (3,4-ethylenedioxythiophane)
dendrimers (PAMAM)

CNTs (fluoropolymers polycarbonates,
polyethylene, glycol, polyester polyam-
ides); epoxy composites

Viruses, plasmids, and protein NPs

Rizwan et al. (2014), Prasad et al. (2017),
Kand V (2017)

Prasad et al. (2017), Yadav et al. (2017),
Benjamin et al. (2019), Singh et al.
(2020a, b), Vazquez-Nuiiez et al. (2020)

Koul and Taak (2018), Bahrulolum et al.
(2021)
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Fig.2 Methods for synthesizing nanomaterials (Rizwan et al. 2014; Koul and Taak 2018; Singh et al. 2020b)

filamentous fungi, yeasts, algae, and actinobacteria can be
employed for synthesis of biogenic nanoparticle in addition
to vascular plants.

Botanical synthesis

Biosynthesis of nanoparticles by plants namely Azadirachta
indica, Catharanthus roseus, Aloe barbadensis, etc., is gain-
ing wide acceptance due to the single-step biosynthesis pro-
cess, the unavailability of toxic elements, the presence of
natural capping agents, and the presence of a wide variety
of metabolites that may assist in reduction. Plants require a
shorter incubation period for the reduction in metal ions than
fungi and bacteria; hence, they are regarded superior candi-
dates for nanoparticle synthesis (Table 2). In case of synthe-
sis on industrial scale, plant tissue culture and downstream
processing techniques generally used, though it depends on
the metabolic status of the plant (Mura et al. 2013). Though
effect of nanoparticles on contaminants diverges from plant
to plant, but it depends on the physiological, biochemical,
molecular mechanisms of the plant, and their interactions
with contaminants and living organisms (Yadav et al. 2017).

Bacterial synthesis
Bacteria are being investigated as a latent "biofactory"

for the production of nanoparticles such as gold (Au),
silver (Ag), iron (Fe), zero valent iron (ZVI), platinum

* @ Springer

(Pt), palladium (Pd), gold (Au) nanowire, titanium (Ti),
titanium dioxide (TiO,), selenium (Se), magnetite
{Fe**(Fe*"),(0*7),}, cadmium sulfide (CdS), zinc sulfide
(ZnS), and they can immobilize metals at the nanom-
eter scale (Chauhan et al. 2012; Phumying et al. 2013;
Ramezani et al. 2021; Wang et al. 2018; Xiao et al.
2017). It uses bacteria as a source of enzymes, microbial
enzymes, vitamins, and polysaccharides for the formation
of nanoparticles, and it follows an innovative rational bio-
synthesis approach that does not involve any toxic, harm-
ful, or expensive chemical for stabilizing operations (Ben-
jamin et al. 2019). Although it is devoid of other cellular
proteins, the NPs produced by enzyme secretion have an
edge in metal binding capacities, making them valuable in
nano-bioremediation. The production of nanoparticles is
influenced by a number of parameters, including microbe
growth circumstances, chemical composition, cellular
activity, and enzymatic activities. More in-depth research
is needed to fully comprehend the chemical pathways and
identify the enzymes and proteins involved in biosynthesis
of nanoparticles.

Fungal synthesis

Yeast and filamentous fungi have long been utilized for nan-
oparticle synthesis, and they are a great source of extracellu-
lar enzymes that influence nanoparticle synthesis. In case of
production of larger amounts of nanoparticles, filamentous
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et al. (2008), Phumying et al. (2013)

Gericke and Pinches (2006), Mohanpuria
Shahi and Patra (2003)

References

Yeast and filamentous fungi
Lichen fungi (Usneea longissimia)

Magnetosirillium magneticum, Sulfate
reducing bacteria

Bacteria

Plant
Aloe vera

Table 2 (continued)

Nanomaterials
Magnetite
Bioactive

fungi could be employed as a source since it secretes higher
volume of proteins which translates into better nanoparticle
production efficiency (Koul and Taak 2018). One of the key
disadvantages of employing filamentous fungi is that it pro-
duces nanoparticles at a significantly slower rate than plant
synthesis, owing to the creation of enzymes that catalyti-
cally decrease salt metallic solid nanoparticles. In terms of
nanoparticle synthesis, filamentous fungi offer an advantage
over other biological systems owing to an environmentally
acceptable approach with a large variety of species, simple
culture methods, reduced time, and increased cost-effective-
ness (Sunanda et al. 2021). Yeast strains also have certain
advantages over bacteria in terms of synthesis, such as quick
growth with the use of basic nutrients and enzymes, and the
use of yeast in the manufacture of metallic nanoparticles is
being studied. Table 2 contains a list of diverse plants, bac-
teria, yeast and filamentous fungi that are employed in the
processing and manufacture of nanomaterials.

Kinetics and models for nano-bioremediation
of contaminants

A proper interaction between nanomaterials (NMs),
living organisms and contaminants takes place during
whole nano-bioremediation process. A set of parameters
influence on each of the component which have physi-
cal, chemical, and biochemical interactions among them
(Fig. 3) (Taylor et al. 2012; Tang et al. 2016; Tan et al.
2018; Vazquez-Nuiiez et al. 2020). In this complex interac-
tion phenomena nanomaterial depends on size and shape,
surface coating of material, and its chemical nature; con-
taminants depends upon its concentration in soil, level
of toxicity, and its compounds stability. Due to nanoma-
terial and contaminant interactions from both side, liv-
ing organisms undergo biocidal (BC) or biostimulation
(BS) effect, which impacts its remedial performance in
bioremediation process. Sorption is a critical step in the
nano-bioremediation process. Sorption is the process of
a pollutant interacting with a sorbent at the surface, and
the pollutant then penetrating deeper layers of the sorb-
ent to produce a solution (Vieira and Volesky 2000). To
understand the nature of the adsorption processes employ-
ing NMs, a substantial amount of studies have been con-
ducted (Hu et al. 2006; Wang et al. 2011; Sebeia et al.
2020). On other side, contaminants get adsorbed through
adsorption process with the influence of temperature, pH,
media. Mechanistic, thermodynamic and kinetic investiga-
tions are, therefore, required to describe the behavior of
the nanomaterial when it comes into contact with contami-
nants. The Langmuir, Freundlich and Temkin isotherms, as
well as the Dubinin—Radushkevich models, are some of the
models that describe the nature of involving the biological
material in remediation processes (1-12) (A.O.D 2012;
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Fig.3 Schematic diagram depicting the nano-bioremediation of contaminants (Taylor et al. 2012; Tang et al. 2016; Tan et al. 2018; Vazquez-
Nuiiez et al. 2020); BCF (Bioconcentration factor), TF (Translocation factor)

Olalekan et al. 2013; Dada et al. 2013; Pathak et al. 2015;
Matougq et al. 2015).

According to the Langmuir isotherm, a monolayer
adsorption occurs on a uniform surface that has a finite
number of adsorption sites, and the adsorbate cannot trans-
migrate along the surface plane. This isotherm is presented
by Eq. (1) (Langmuir 1916, 1918)

_ qmbOCe
%= 1T4b,C, M

The linear model is expression as (Eq. 2):

& = L + & (2)
9. qmb 0 m

where g,—quantity of contaminants absorbed (mg/g), C.—
equilibrium liquid-concentration (mg/g), by—Langmuir iso-
therm constant (L/mg), g,,—maximum adsorption capacity
(mg/g).

Langmuir model can also be used as equilibrium param-
eter or separation factor “R;” for interpreting the adsorp-
tion behavior of the nanoparticles system (Eq. 3) (Weber
and Chakravorti 1974).

1

R = —
LT THbC, 3)

where C, is the initial concentration of adsorbate (mg/L).
The irreversibility (R, =0), linearity (R, =1) and viability
(0< Ry <1) of the sorption process is determined by the val-
ues of R; .

A Freindlich isotherm achieves multilayer coverage of
an adsorbent by means of transmigration interaction. It
suggests that model is applied to the absorption char-
acteristics on heterogeneous surfaces. This isotherm is
presented by the following empirical equation as follows
(Eq. 4) (Freundlich 1906).

0, = kgCl/" )

where K} and n are the freundlich constant and heterogeneity
factor, respectively.

Linearized illustration of the isotherm provided as
(Eq. 5):

Ing. =InKp + 1 InC, (5)
n

Temkin model assumes that the heat energy of sorption
process decreases with the coverage of the adsorbent surface
and its interaction with adsorbate molecules. This isotherm
equation and linear form of the model expressed in following
Egs. (Egs. 6, 7) (Temkin and Pyzhev 1940):

RT
qe = 73— InkC, (6)

e
E

* @ Springer
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g.=BInK;+BInC, @)
RT
B=— ®

where B is the Temkin isotherm constant (Eq. 8), Ky is the
Temkin equilibrium binding constant (L/mg), R =universal
gas constant (8.314 J/mol.K), T=Temperature at 298 K.

D-R isotherm gives an idea about the nature of the
adsorption process either physical or chemical and it does
not hypothesize a homogenous surface or constant absorp-
tion potential (Hutson and Yang 1997). Dubinin—Radushk-
evich isotherm can be expressed as (Eq. 9)

e = () exp (—kyq)€> ©9)

where g, signifies the quantity of adsorbate species adsorbed
in adsorbent dose (mg/g), g, is the theoretical isotherm satu-
ration capacity (mg/g), k,, represents D-R coefficient (mol%/
kJ?).

€ is the polyani potential which is obtained from
Eq. (Eq.10):

1+ (2] 10
C (10)

where R signifies the gas constant (0.008314 kJ/mol/K), T
is the absolute temperature in Kelvin,.
Linear for of D-R isotherm can be expressed as (Eq. 11):

e=RTIn

Ing, = Ing,, — fe’ (11)

However, as discussed above that the D-R isotherm
can be use in defining the nature of the adsorption process
through the relationship with apparent energy (E) parameter
(Eq. 12) (Igwe and Abia 2006).

1
2k (12)

Adsorption is regarded as following a chemisorption
mechanism when the parametric value of E is between 8
and 16 kJ/mol while a value below 8 kJ/mol is indicative of
a dominance of physisorption.

The photocatalytic activity of nanomaterials is mostly
determined by light absorption, charge transport, and sepa-
ration on the catalyst surface (Bhattacharjee et al. 2022).
Photocatalysts reaction with light results formation of
anionic electron-oxidative hole pairs, which later gets
separated (Eqgs. 13, 14). As h* (hole) further reacts with
water molecules redox active species and subsequently
hydroxyl radicals have been formed (Eq. 15). On the other
side superoxide radical anion is formed with the reaction
with anionic electron (Eq. 16).

E =

* @ Springer

Photocatalysts (NPs) + hv — e~ + h* (13)
h* + H,0 - H'+ OH~ (14)
h*+ OH™ - OH’ (15)
O,adsorption : O,(ads) +e~ — O; (16)
e + 0,+ H' - H,0, (17
e— +H,0, > OH' + OH" (18)

Organic + OH" + O, —» CO,
+ H,0 + Other degradation product (19)

Furthermore, strong oxidants like hydroxyl (-OH) and
perhydroxyl (HOO-) radicals are formed with the reaction
of water and superoxide anion (02'_) radicals (Eqgs. 17, 18)
(Fujishima et al. 2008). Aqueous medium contains organic
contaminants which are effectively degraded by these radi-
cals (Rana et al. 2018). The reactions that follow show a
mechanism that is similar to the photoelectronic break-
down of organic contaminants (Eq. 19). Contaminants
may be reduced by photocatalytic reactions, depending
on the type of the NMs. The resulting compounds may be
bio-transformed by biotic systems, by lowering contami-
nants concentrations in the environment. In addition, cer-
tain enzymes produced by living organisms can degrade
many types of pollutants (Peixoto et al. 2011). Apart from
other entities, NPs can reach contaminated zones due to
their small size, hence expanding the application areas
of nano-bioremediation technologies, which is an advan-
tage over conventional remediation strategies (Sohail et al.
2019). Several contaminants which are removed by the
application of nano-bioremediation (nanoparticles and
bioagents) are shown in Table 3. Other factors to consider
are the standardization of techniques for testing nanoma-
terials toxicity in soil and water, the explication of their
relationships with biotic and abiotic components, and the
applicable regulatory context in which these materials
might be employed (Ramirez-Garcia et al. 2018). Finally,
in regard to synergistic applications of nanomaterials
over the long-term, collateral effects of nanomaterials on
microorganisms, and trophic transfer of nanomaterials in
the food supply chain, future research should focus on the
selection of NPs and living organisms (Vazquez-Nifiez
et al. 2020).
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Nano-bioremediation for heavy metals
and other pollutants

In recent years, carbon nanotubes (CNTs) have been uti-
lized for remediation of wastewater contaminated with
heavy metals. There are mainly two types of carbon nano-
tubes: single-walled and multi-walled (Martel et al. 1998).
CNTs are able to treat heavy metal wastewater much better
than other treatment methods due to their rapid adsorp-
tion kinetics associated with high specific surface area
and high adsorption capacity which is more prominent in
heavy metal ions such as Mn’*,Ti*, Cu?*, Pb>*, and Cr’*
(Pu et al. 2013; Yadav and Srivastava 2017). CNT surfaces
may be modified by heat treatment and chemical modifi-
cation or endohedral filling to increase their adsorption
properties toward heavy metals through introduction of
functional groups such as COOH, NH, OH (Kumar et al.
2021).

A study was conducted that examined the use of a gra-
phene oxide (rGO) modified electrode that contains Au
nanoparticles (rGO-Au NPs). The nanoparticles were syn-
thesized using a vegetable extract from Abemoschus escu-
lentus as a reducing agent and sensing of toxic metal ions
such as Cd**, Pb?*, Cu®*, and Hg?* were detected simul-
taneously. Several bacteria were introduced such as Pseu-
domonas aeruginosa, Bacillus subtilis, Rizobium gallium,
and Staphylococcus aureus for their high adsorptive poten-
tial for bioremediation of the toxic metal ions and these
were reported to scavenge heavy metal ions effectively
(Gnanaprakasam et al. 2016). Cao and his team demon-
strated in a seminal paper that polyvinylpyrrolidone-coated
iron oxide nanoparticles were useful for metal removal,
specifically Cd** and Pb>*, through bacterial interaction
with Halomonas sp. The treatments included a bacteria
and nanoparticle both individually and in combination.
After 24 h of treatment, Cd was removed with the removal
efficiency of 100% in the combined treatment. After 48 h,
the percentage remained the same. The removal of Cd
and Pb was found to be 60% and 80% for treatments with
only NPs, respectively. Whereas, by Halomonas sp., the
removal of Cd rose to 80%, while treatment of Pb showed
the same removal as for NPs, i.e., 80% (Cao et al. 2020).

The possibility of making iron nanoparticles from natu-
ral consortia that can adsorb arsenic, copper, zinc, and
chromium from wastewaters was reported in a recent study
(Castro et al. 2018). Biogenic Fe—Mn oxides (BFMO)
synthesis was carried out using the soil bacterium Pseu-
domonas sp. QJX-1 isolated from manganese mines.
These oxides were found to oxidize and adsorb arsenic.
This allows for adequate As(IIT) and As(V) adsorption and
oxidation (Bai et al. 2016). The use of sulfate-reducing
bacteria (SRB) to treat wastewater containing chromium

a
* @ Springer

has also been demonstrated. The bacteria rely on organic
compounds as a carbon source to be able to remove sulfate
and COD from wastewater. As a result of experiments con-
ducted at optimized conditions on synthetic wastewater,
81.9% of COD, 89.2% of Cr’*, and 95.3% of sulfate were
removed (Verma et al. 2015). Biogenic manganese oxide
(BMO) derived from Pseudomonas putida MnB1 has been
used to remove heavy metals from the environment. With
regard to adsorbing heavy metals, BMO have shown supe-
rior performance compared with chemically synthesized
manganese oxide (birnessite). It is amorphous, small size,
and the large surface area makes BMO an excellent adsor-
bent. Compared to birnessite, BMO adsorbs zinc, lead, and
cadmium at a rate 7-8 times higher, and when the pH and
temperature are changed, BMO adsorbs heavy metals even
more powerfully (Zhou et al. 2015). Recent reports have
found that nanoparticle synthesis through biogenic method
utilizing Citrobacter freundii Y9 are effective in remediat-
ing Hg contaminated soil (Wang et al. 2017). Combined
elements of mercury and selenium form HgSe, an inert and
chemically inert compound that is less toxic than mercury
and selenium alone. Furthermore, nano-selenium has the
ability to capture mercury in anaerobic and aerobic con-
ditions. Immobilizing mercury using nano-selenium is an
effective way to remediate soils that are contaminated with
mercury.

Nano-bioremediation for organic
contaminants (including pesticides
and herbicides) in soils

Le et al. (2015) investigated the degradation of Aroclor
1248-containing solutions which is a polychlorinated
biphenyls (PCB) with nZVI (1000 mg/L) followed by bio-
degradation with Burkholderia xenovorans. Following
the application of nZVI, the researchers obtained an 89%
degradation of the congeners. Following that, Biphenyls
formed by bacterial metabolism after PCB dechlorination
showed a biodegradation rate of 90%. The nZVI was found
to have no toxic effects on microorganisms in this study.
Also, Bokare and his team investigated the feasibility of
combining bioremediation and reductive processes using
nanoparticles in a triclosan (5 g/L) contaminated solu-
tion. A sequential degradation was promoted by exposing
the contaminant to anaerobic dechlorination using Pd/Fe
nanoparticles. Following that, a further remediation step
involves oxidizing the by-products with Trametes versicolor
laccase. As a result, triclosan was completely dechlorin-
ated and its by-products completely oxidized 20 min after
application (Bokare et al. 2010). Another experiment con-
ducted by Bokare and his team combined the use of Pd/
Fe nanoparticles and Sphingomonas wittichii to remediate a
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2,3,7,8-tetrachlorodibenzo-p-dioxin-contaminated solution.
A dechlorination process was carried out in an anaerobic
environment with 2,3,7,8-tetrachlorodibenzo-p-dioxin via
Pd/Fe nanoparticles, yielding 100 percent dechlorination
in just 10 h. As a result of dechlorination, the residual by-
product (dibenzo-p-dioxin) could not be remedied by nano-
particles, but was degraded completely through microbial
metabolism (Bokare et al. 2012). Singh and his team inves-
tigated the integrated remediation of Lindane-contaminated
soil. Using CMC-Pd/Fe nanoparticle the researchers evalu-
ated how Sphingomonas sp. behaved when exposed to dif-
ferent concentrations. The researchers discovered that nano-
particle suspensions containing 40 mg/L of nanoparticles
produced the best results for microbial growth. Combining
the two systems (biotic and abiotic) resulted in a contami-
nant degradation rate of 99 percent in 6 days, a result that
was far superior to either treatment alone (Singh et al. 2013).

Kim and her team investigated the effect of combining
nZVI and diphenyl ether with the bacteria Sphingomonas
sp. PH-07 on the biodegradation of polybrominateddiphe-
nyl ethers (PBDEs). They found that PH-07 is capable of
growing at 5 g/L. nZVI concentrations and has the ability to
biodegrade PBDEs (Kim et al. 2012). Furthermore, utiliza-
tion of nZVI nanomaterials as part of bioremediation, elec-
trokinetic remediation and chemical oxidation has assisted
in the cleanup of heavily polluted sites (Fan et al. 2016). In
their report, nZVI-assisted dechlorination was followed by
a biosurfactant-based soil washing procedure to eliminate
polychlorinated biphenyls (PCBs) from soil contaminated by
transformer oil. Aside from direct dechlorination, it was dis-
covered that nZVI greatly improved efficiency of soil wash-
ing in oil and soil phases by lowering the interfacial tension
between them, and 90 percent of PCBs were removed. A
combination of treatments with nZVI, surfactants, electro-
kinetic treatments has previously been reported to pretreat
sites of contaminated with heavy metals, polychlorinated
biphenyls (PCBs), pesticides and chlorinated volatile organic
compounds (cVOCs) (de Lima et al. 2012; Bhattacharya
et al. 2016). The reactivity of nZVI is affected by natural
organic matter (NOM), such as fulvic acids and humic acids,
as they compete with pollutants for the reactive sites on the
surface of nZVI where reactions occur. However, some have
argued that NMs are ineffective in bioaugmentation because
they inhibit microbes living in polluted environments (Nzila
et al. 2016; Amoatey and Baawain 2019). However, it should
be noted that NMs can reduce microbial diversity and abun-
dance after a few days, but they can return again after a
few weeks. Furthermore, although NMs decreased enzyme
concentrations involved in ecological processes, they began
to increase again after the first few days of the experiment.
There is an indication that NMs have a priming effect ini-
tially, but because of their resilience, ecological balance
returns shortly thereafter. It has been reported, however,

that high CNT concentrations inhibit bacterial growth and
microbial activity, while low CNT concentrations lead to
greater biodegradation by causing bacteria to grow and over-
express degradation genes (Zhang et al. 2015). Because of
its large surface area, NM could help to overcome limita-
tions in microorganism immobilization and entrapment dur-
ing bioaugmentation strategies (Nzila et al. 2016).

With the introduction of the basic idea of how nanopar-
ticles interact with microbes, different nanoparticles have
been fabricated using biological entities. It has become the
focus of "green nanotechnology" to immobilize microbes
on nanoparticles with desirable characteristics, and their use
in environmental remediation combines both technologies
into an innovative, hybrid approach that could open up new
approaches to sustainable pesticide mitigation. Different
nanoscale structures are used here to enhance the degra-
dation of pesticides from polluted sites by simultaneously
or sequentially combining with microbes. Reategui and
his team employed whole cell immobilization techniques
to degrade pesticides. To remove the pesticide, they used
recombinant Escherichia coli cells that expressed the long-
lasting atrazine-dechlorinating enzyme. To encapsulate cells
in a porous gel, siliconized silica nanoparticles (SiNPs)
were used. By silanizing nanoparticles with methyltrimeth-
oxysilane (MTMS) and polyethylene glycol, a porous gel
was created which served as a cross-linker. Stability testing
was carried out at 23 and 45 °C, respectively. In the higher
temperature range, gel displayed a good structural rigidity.
The degradation of the pesticide by encapsulated cells was
three times more efficient than that of free cells (Reategui
et al. 2012).

Zhuang et al. (2015) used Streptomyces sp. NO1 immo-
bilized on bamboo-carbon supported Fe;O, nanoparticles
(Fe;O,/BC) to break down the heterocyclic aromatic organic
compound quinoline. It was found to be effective at quino-
line concentrations of 100—400 mg L~!, pH levels of 5-10,
and temperatures of 20-45 °C. When temperature and pH
were changed, Fe;0,/BC immobilized cells demonstrated
greater pesticide concentration tolerance. In the ninth cycle,
pesticides were removed at an 85.3 percent rate. Hou and
his team observed that aniline-degrading Rhodococcus rho-
dochrous cells immobilized on Fe;0, nanoparticles were
capable of degrading chlorophenols (CPs) which is an organ-
ochloride of phenol utilized for a variety of purposes such as
antiseptics, disinfectants, pesticides and wood preservatives.
Immobilization of Rhodococcus rhodochrous DSM6263
strain was carried out with k-carrageenan. In this study,
2,3-dichlorophenol, 4-chlorophenol and their mixture were
efficiently degraded by cells immobilized by k-carrageenan
in combination with 9 g ™! Fe;O, nanoparticles, indicating
a higher degradative efficiency than free cells. With these
immobilized cells, the process could be repeated for a mini-
mum of six times (Hou et al. 2016). Khataon and Rai (2018)
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isolated two Bacillus sp. capable of degrading atrazine, B.
badius and B. ensimensis. Atrazine's biodegradation in vari-
ous environmental conditions was studied using free and
a-Fe,05; immobilized cells. In order to immobilize these
bacterial isolates, a-Fe,O; magnetic nanoparticles were
developed because free cells of microbes were rarely able
to degrade atrazine. SEM images revealed that immobilized
bacterial cells were completely held on to and spread across
the surface of a-Fe,O; magnetic nanoparticles. In compari-
son with free cells, immobilized o -Fe,O; cells degraded by
90.56 percent after 20 days.

Advances in nano-bioremediation and crop
productivity

Nano-bioremediation is defined as the method wherein envi-
ronmental contaminants including heavy metals, organic
and inorganic pollutants are removed from polluted sites
by using nanoparticles/nanomaterials produced by plants
or microorganisms such as fungi, bacteria through nano-
technology. Nano-bioremediation is gaining popularity as a
flexible utility for long-term environmental cleanup (Koul
and Taak 2018). Currently, bioremediation provides an
environmentally useful and economically feasible option to
remove pollutants from the environment, following latest
advancements (Ken and Sinha 2020). Microbes, plants and
enzymes-mediated remediation are the three fundamental
methods used in bioremediation. Nano-bioremediation is
one such technology that employs physiochemical and bio-
logical approaches and is now being researched in several
polluted areas. Nanomaterials are utilized in the nano-biore-
mediation process to break down pollutants to a level that is
suitable for biodegradation, and then the contaminants are
biodegraded. NPs that are biologically produced from plant
extracts or microbes are utilized in nano-bioremediation to
clear away polluted water and land locations. Nanomateri-
als have developed as a viable alternative to conventional
methods of treatment in the last two decades due to their
high efficacy, cost-effectiveness, and environmental friend-
liness (Dastjerdi and Montazer 2010). The first nanoparti-
cles to be utilized for environmental cleanup were iron NPs
(Tratnyek and Johnson 2006). For the treatment of polluted
soil or groundwater remediation, several potential iron-
based solutions are available. Zero-valent iron NPs have
been demonstrated to successfully remediate acidic water
polluted with heavy metals by solubilizing the heavy metal
contaminants on their interface, making them a viable and
necessary technique of nano-remediation (Iravani 2011; Saif
et al. 2016). Because of their exceptional ability to destroy
organic dyes, Zn NPs have been widely studied and exam-
ined by scientists all over the world. Because Zn NPs are
semiconductor photocatalysts, they may completely degrade
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a broad range of substances, including dyes, phenols, and
pharmaceuticals (El-Kemary et al. 2010). Noble metallic
nanoparticles, such as gold and silver, offer a broad range
of uses, the most notable of which is the decomposition of
organic dyes (Rajeshkumar and Santhiyaa 2018). Copper
nanoparticles have also been demonstrated to be effective at
degrading organic pigments (Marcelo et al. 2018).
Nanotechnology also improves the effectiveness of phy-
toremediation (Zhu et al. 2019). Organic contaminants
like atrazine, chlorpyrifos and molinate can be eliminated
by nano-sized zero-valent ions, as reported by (Ghormade
et al. 2011) Ghormade and his team. In enzymatic biore-
mediation, nanoparticles can also be employed in combi-
nation with phytoremediation (Singh 2010). Microbial and
plant degradation are especially resistant to some organic
substances that are complex in nature such as organochlo-
rines and long-chain hydrocarbons. This limitation might be
overcome by linking nanotechnology and biotechnology, for
example, complex organic substances would be reduced into
simpler compounds by nano-encapsulated enzymes, which
would then be promptly broken down by microorganisms
and plants functioning together. Carbon nanotubes have also
been shown to be particularly successful in the treatment of
polluted water due to their high affinity and adsorption prop-
erties for pollutants (Kitching et al. 2014). Excellent thermal
and chemical stability of carbon nanotubes makes them a
viable alternative to activated carbon for the detoxification of
various organic and inorganic pollutants such as zinc, lead,
and chromium (Hu and Xia 2018). Even though nano-reme-
diation helps in treating the mine water, there are still a num-
ber of safety problems that need to be resolved. Various eco-
remediation nano-applications are rapidly progressing from
trial to full-scale success in addressing ecologically hazard-
ous chlorinated areas. Nanoscale TiO,, carbon nanotubes,
dendrimers, swellable organically modified silica (SOMS),
and metallo-porphyrinogens are nanoproducts for in situ and
ex situ remediation of pollution (Shi et al. 2015; Wang et al.
2017). During photo-catalysis, TiO, nanoparticles can treat
a variety of chemical fertilizers, herbicides, insecticides, and
pesticides, and are being explored for ex situ handling of
diseased groundwater reservoirs (Pandey 2018). The kinetics
of the redox reaction is increased by biologically produced
iron, copper and titanium nanomaterials in conjunction with
a metal precursor including gold, nickel, Pt, and Pd. Pd NPs
have the ability to catalyze the conversion of trichloroethene
to ethane while avoiding the formation of an intermediate
by-product, vinyl chloride. Palladium-Osorb, a parallel
metal-glass fused material, has been experimentally veri-
fied and employed for ex situ cleanup of chlorinated volatile
organic compounds (Song et al. 2009). Silica NPs are used
for lead remediation (Ma et al. 2018), zinc NPs for carbon
disulfide removal from the air, and nano-crystalline hydroxy-
lapatite for the removal of lead and cadmium, zero-valent
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nano-iron, carbon nanotubes, fullerenes, TiO, and ZnO NPs,
and bimetallic nano-metals for DDT, carbamates, and heavy
metals such as chromium, lead, arsenic, and cadmium from
soil (Larez Velasquez 2018). The incorporation of biologi-
cally generated Iron NPs and Iron-Pd NPs in the remediation
of dyes, hydrocarbons, 2,3,7,8-tetrachloro dibenzo-p-dioxin,
pesticides, trichloroethylene, polychlorinated biphenyls, and
Lindane, among other things, has become more widespread
(Asmel et al. 2017). Biogenic uranite nanoparticles were
utilized for the bioremediation of uranium (Bargar et al.
2008). Heavy metals, namely Cu, Zn, Pb, and Ni, were
deposited in biologically produced nanoparticles from Gun-
delia tournefortii, Centaurea virgata, Reseda lutea, Scariola
orientalis, Eleagnum angustifolia, Bacillus sp., and Noaea
mucronata (Sinha et al. 2011; Ingle et al. 2014).

A few chemicals in the agricultural system, such as pes-
ticides, degrade slowly or are chemically stable in nature,
so they remain in the environment for longer periods of
time and lead to serious consequences. However, by using
nanoscience, these hazardous and toxic derivatives can be
degraded under certain circumstances. They may penetrate
the food chain if they are not decomposed, posing a major
health risk. Agriculture nanotechnology has taken a positive
stride in this regard in recent years. For example, in polluted
soil, a nanoparticle-water slurry can be combined, and over
time, these particles will diminish the toxicity of pesticides
that are slow to degrade or resistant. Plant-derived nanomet-
ric lignocellulosic materials have led to a new market place
for creative and value-added nanoscale materials and prod-
ucts, such as nano-sized cellulose crystals utilized as ultra-
light augmentation in polymeric matrixes (Dasgupta et al.
2016). These can be implemented in food as well as other
packaging, manufacturing and body components of trans-
port vehicles. Because we can extract nano-lignocellulosic
components from lignin- and cellulose-based agricultural
residues, nano-lignocellulosic materials are the ideal solu-
tion to manage agricultural wastes (Brinchi et al. 2013).

Commercialization of nano-materials
for restoration of contaminated agricultural
land

The "Environmental Remediation Market with COVID-19
Impact Analysis by environmental medium (soil & ground-
water), Technology (Bioremediation, Pump & Treat, Soil
Vapor Extraction, Chemical Treatment), Site Type, Appli-
cation, and Region—Global Forecast to 2026" reported that
the market for environmental remediation is predictable
to reach USD 158.8 billion by 2026, up from USD 104.6
billion in 2021, at an 8.7 percent CAGR over the forecast
horizon. By 2026, bioremediation technology is expected to
rationalize the majority of the environmental remediation

market. Due to the growing demand for this methodol-
ogy for the remediation of both soil and groundwater, the
bioremediation section is supposed to prompt the market
for environmental remediation during the baseline period.
Increasing government initiatives for environmental safety;
a rising emphasis on the development of environmental
friendly enterprises, and rapid population growth and indus-
trialization in developing countries are key elements which
drive this market's growth. In the midst of COVID-19, the
development of sophisticated remediation technologies and
the steady expansion of the oil and gas industry caused a
heavy demand for environmental remediation for productive
industrial activities.

The global agricultural land is projected to produce nearly
99 percent of our food, as well as textiles, timber, and raw
materials of industrial significance. However, anthropogenic
activities have led to the contamination of agricultural land
due to the release of organic pollutants such as pesticides,
fertilizers, plastics, bisphenols; inorganic pollutants like
heavy metals and metalloids, and other pollutants including
personal care products, pharmaceuticals, surfactants, nano-
plastics, etc. (Marziali et al. 2021). Engineered nanoparticles
(ENMs) are now being explored as a way to enhance agricul-
tural soil quality and, as a result, promote sustainable agri-
culture. ENMs are particularly reactive due to their tiny size
and wide surface area, and they exhibit a range of features
such as improved cation exchange capacity, sustained release
of nutrient in the soil that make them useful in soils applica-
tion (Thul et al. 2013). Chemical reductant-based nanoparti-
cles such as nano-zerovalent iron (nZVI), manganese (Mn),
thiosulfate (5203_2), molybdenum sulfides (MoS,), zinc
(Zn), hydrogen peroxide (H,0,), and iron sulfide (FeS) are
effective at transforming, degrading, and detoxifying organic
and inorganic soil pollutants. Adsorption, immobilization,
ion exchange, complex formation, reduced dehalogenation,
and SN2 nucleophilic substitution were the basic mecha-
nisms (Wang et al. 2017; Chen et al. 2020; Zhou et al. 2021).
nZVlI is one of the most effective technologies that has been
used to create permeable barriers or restore soil in situ by
removing several pollutants. Nano form of ZVI has also been
shown to be very successful in eradicating organic chemi-
cals from the soil, particularly chlorinated solvents (e.g.,
TCE), in real-world applications at military-based locations
across the United States and Europe (Viskutyte et al. 2014).
The utilization of flower-like MoS, nano-hybrid has been
proved to be effective in removing Hg(II) and Pb(II) from
soil (Wang et al. 2020). Other interesting nanoscale materi-
als including the self-assembled monolayers on mesoporous
supports (SAMMS) have been reported to remove non-polar
pollutants like polyaromatic hydrocarbons (PAHs) from
soil (Brandl et al. 2015). Metal oxides-based nanoparti-
cles such as oxides of Mn, Zn have greater capabilities to
detoxify contaminated soil. Mn oxide is being applied for
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the detoxification of contaminated land due to its interesting
properties such as large specific surface and low pH. How-
ever, Mn oxide-based nanomaterials are not desirable for the
pollutants with reduced species (e.g., Cr** versus Cr®"; their
application is restricted only to the pollutants with oxidized
chemical species, e.g., As>t versus AsS+) since Mn oxides
have strong oxidative characteristics (Villalobos et al. 2014).
In comparison with Mn oxides, biogenic nanostructured Mn
oxides are more productive, cost-effective, and environmen-
tal-friendly materials. They have been reported to be suc-
cessful in restoring arsenic-contaminated soil (Wang et al.
2020). Zn oxide nanoparticles have been reported to reduce
both cadmium and arsenic contamination in paddy (Ma et al.
2020). With adsorption and degradation efficiencies of up to
80% and 99%, respectively, carbon-based materials such as
biochar, graphene, activated carbon, single and multi-walled
CNTs have been proven to be effective in extracting both
organic and inorganic contaminants from soil (Gopinath
et al. 2021). Biochar/Fe components have been utilized in
soil restoration via three different mechanisms—adsorption,
reduction and oxidation (Lyu et al. 2020). For the treatment
of Cd*™ and Pb** polluted soils, a new thiol-modified rice
straw biochar was produced by esterification with-mercap-
toethanol. Rice straw preferentially adsorbed Cd** over
Pb**, lowering Cd availability by up to 40% while allowing
Pb to be immobilized to a limited extent (Fan et al. 2020).
Nano-sized biopolymers have been described as a flexible
category of materials that may be employed in a variety of
applications, particularly soil conditioners. However, there’s
limited information on the application of nanotechnology in
soil restoration and hence this deserves further investigation.

Conclusion

The biosynthesis of nanoparticles is a slow process com-
pared with physical and chemical processes. Further studies
should focus on reducing the reaction time for the synthesis
of nanoparticles, which will enhance the attractiveness of the
process. In addition, it is crucial to determine and isolate the
compound(s) that results in metal reduction during synthesis
so that the process can be more efficient. Nanobioremedi-
ation-based approaches have been established as an effec-
tive treatment for a number of environmental contaminants,
including micropollutants. Nevertheless, these studies are
confined to laboratory conditions, so their efficacy in soil,
wastewater treatment plants remains to be further explored.
The creation of intermediate complexes led to toxicity in
aqueous systems when nanoparticles are utilized to remedi-
ate environmental contaminants. Therefore, it is mandatory
to check the genesis and fate of these compounds at miscel-
laneous points during the treatment procedure, as well as to
take adequate steps to remove them.
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