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Abstract
This study aims to investigate the effect of Premna odorata (P. odorata) (Lamiaceae) on the hepatic and nephrotoxicity 
induced by aluminum chloride  (AlCl3) in rat. Wistar male rats were equally classified into four groups: control, P. odorata 
extract (500 mg/kg B.W.),  AlCl3 (70 mg/kg B.W.), and P. odorata extract plus  AlCl3 groups. All treatments were given orally 
for 4 weeks. Serum transaminases and some biochemical parameters, hepatic and renal antioxidant/oxidant biomarker; tumor 
necrosis factor-α (TNF-α); matrix metalloproteinase (MMP9) and transforming growth factor-β (TGF-β) mRNA expression; 
histopathological examination of the liver, and kidneys were investigated. The obtained results revealed that  AlCl3 signifi-
cantly increased the activities of serum aspartate transaminase, alanine transaminase, and alkaline phosphatase as well as 
produced a significant increase in total cholesterol, triglyceride, urea, and creatinine concentrations, while there were no 
changes observed in the total protein, albumin, and globulin concentrations. Also, aluminum administration significantly 
decreased the reduced glutathione content and increased the catalase activity, malondialdehyde, and TNF-α concentrations 
in the liver and kidney tissue. Moreover,  AlCl3 results in congestion, degeneration, and inflammation of the liver and kidney 
tissue. Co-treatment of P. odorata extract with  AlCl3 alleviated its harmful effects on the previous parameters and reduced 
the histopathological alterations induced by  AlCl3. Therefore, Premna odorata may have a potent protective effect against 
oxidative stress induced by Al toxicity through downregulation of MMP9 and TGF-β gene expression.
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Introduction

Plant-derived compounds used as drugs are in high demand 
because of their major therapeutic potential (Jabir et al. 
2018). Premna species are widespread throughout tropical 
and subtropical Australia, Asia, and Africa. They are used in 
traditional medicine for the treatment of immune-related dis-
eases, skin diseases, inflammation, and stomach disorders. 
They are also known for their antibacterial and antifungal 
activities (Mohammad et al. 2019). Previous studies reported 
hepatoprotective activity of the extract of Premna tomentosa 
leaves against acetaminophen toxicity and dimethyl-nitrosa-
mine (Dianita and Jantan 2017). Additionally, in vitro (using 
HepG2 cells) and in vivo (using tert-butyl hydroperoxide 
induced hepatic damage in mice model) evaluation of the 
hepatoprotective activity of the icetexanes isolated from 
stem-bark of Premna tomentosa was reported by Naidu et al. 
(2014). Also, Premna serratifolia and Premna corymbosa 
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showed protective activity against paracetamol and carbon 
tetrachloride-induced hepatic damage in rats, respectively 
(Singh et al. 2011; Karthikeyan and Deepa 2010). Ethno-
medicines prepared from the leaves of Premna odorata are 
used for the treatment of tuberculosis, phlegm, headache, 
stomachache, cough, tympanites, beri-beri, heart trouble, 
dysentery, and abdominal pain and to promote wound heal-
ing (Dianita and Jantan 2017). In our previous research, 
Premna odorata was evaluated for its antioxidative capa-
bility against neurotoxicity induced by aluminum (Ahmed 
et al., 2021).

Metallic elements are fundamental environmental compo-
nents. Their presence is deemed unique in that it is difficult 
to exclude them from the world entirely with the increasing 
use of a wide variety of metals in industry and our day-to-
day lives (Hassanen et al., 2021). Aluminum (Al) is one of 
the most abundant metals in the earth’s crust, representing 
approximately 8% of total mineral components (Al-Olayan 
et al. 2015). Aluminum toxicity has attracted considerable 
interest due to its persistence in the environment and bio-
availability (Mailloux et al. 2011). It accumulates in all body 
tissues including the liver, kidneys, spleen, heart, and brain 
causing damage to the target organs (Gonzalez et al. 2009; 
Ighodaro et al. 2012). The rat model is widely used to assess 
the toxicity of Al to prove its toxicity in humans.

The present study was planned to investigate the effec-
tiveness of the P. odorata extract to alleviate the hepato-
toxicity and nephrotoxicity induced by  AlCl3 exposure. 
This target was determined by estimation of some liver and 
kidney function tests, the concentration of oxidative dam-
age, the activities of some essential antioxidant enzymes, 
the relative expression concentrations of two inflammatory 
biomarkers, and the histopathological findings. The liver and 
kidney were chosen for the current study as they are vital 
organs documented to be greatly sensitive to metal toxicity.

Materials and methods

Chemicals and kits

Aluminum chloride was procured from Sigma-Aldrich (St 
Louis, MO, USA). The assay kits of aspartate transaminase 
(AST, COD 11,533), alanine transaminase (ALT, COD 
11,531), alkaline phosphatase (ALP, COD 11,591), total 
cholesterol (TC, COD 21,505), triglycerides (TG, COD 
11,528), blood urea nitrogen (BUN, COD 11,517), and 
creatinine (COD 11,734) were procured from Biosystem 
SA Barcelona (Spain). Total protein (Ref: 1,001,291) and 
albumin (Ref, 1,001,022) kits were provided from Spin-
react Company (Spain). Analytical kit of catalase (CAT) 
was purchased from Biodiagnostic company (Giza, Egypt, 
CA 2517). Reagents for measuring glutathione (GSH) and 

malondialdehyde (MDA) were purchased from Sigma-
Aldrich (St Louis, MO, USA). RNeasy mini kit (Qiagen, 
Germany) was used.

Plant extract

P. odorata leaves were collected in May 2020 from the 
Giza Zoo garden, Egypt. P. odorata was kindly identified 
by Dr. Abd El Halim A. Mohammed of the Horticultural 
Research Institute, Department of Flora and Phytotaxon-
omy Researches, Dokki, Cairo, Egypt. A voucher specimen 
(2020-BuPD 45) was deposited at the Department of Phar-
macognosy, Faculty of Pharmacy, Beni-Suef University, 
Egypt.

The air-dried leaves (3 kg) were collected and air-dried 
in the darkness for 1 month. After drying, the leaves were 
finely powdered using a CM 290 Cemotec™ laboratory 
grinder (200–230 V, 50–60 Hz, Foss, Denmark). The finely 
powdered leaves were extracted by maceration without agi-
tation using 70% ethanol (EtOH), (4 L, 3 X, 4 days each) 
at room temperature and subsequently concentrated under 
vacuum at 40 °C using a rotary evaporator (Buchi Rotavapor 
R-300, Cole–Parmer, Vernon Hills, IL, USA) to afford a 
200 g crude extract (Ahmed et al., 2021).

Metabolic analysis procedure

The crude total extract of P. odorata leaves was subjected 
to metabolomic analysis using analytical techniques of 
LC-HRESIMS (Elmaidomy et al., 2017). LC-HRESIMS 
metabolomics analyses were done on an Acquity Ultra Per-
formance Liquid Chromatography system coupled with a 
Synapt  G2-HDMS quadrupole time of flight hybrid mass 
spectrometer (Waters, Milford, MA, USA). Chromato-
graphic separation was carried out on a BEH  C18 column 
(2.1 × 100 mm, 1.7 µm particle size; Waters, Milford, MA, 
USA) with a guard column (2.1 × 5 mm, 1.7 µm particle 
size) and a linear binary solvent gradient of 0–100% eluent 
B, over 6 min, at a flow rate of 0.3 mL  min−1, using 0.1% 
formic acid in water (v/v) as solvent A and acetonitrile as 
solvent B. The injection volume was 2 µL and the column 
temperature was 40 °C. After chromatographic separation, 
the metabolites had been detected by mass spectrometry 
using electrospray ionization (ESI) in the positive mode; 
the source was operated at 120 °C. The ESI capillary volt-
age was set to 0.8 kV, the sampling cone voltage was set to 
25 V, and nitrogen (at 350 °C, a flow rate (FR) 800 L/h) was 
used as the desolvation gas and the cone gas (FR 30 L/h). 
The mass range for TOF–MS was set from mass-to-charge 
ratio (m/z) 50–1200. In MZmine 2.12, the raw data were 
imported by selecting the ProteoWizard converted positive 
files in the mzML format. Mass ion peaks were detected and 
followed by a chromatogram builder and a chromatogram 
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deconvolution. The local minimum search algorithm was 
applied and isotopes were also identified via the isotopic 
peaks grouper. Missing peaks were detected using the gap-
filling peak finder. An adduct search as well as complex 
search was performed. The processed data set was then sub-
jected to molecular formula prediction and peak identifica-
tion. The positive and negative ionization mode data sets 
from each of the respective plant extract were dereplicated 
against the Dictionary of Natural Products (DNP) database.

Animals and the experimental design

Forty mature Wistar male rats (weighing 125–150 g) were 
maintained at a controlled temperature (18–20 °C) and 
humidity (55% ± 10%) with 12 h light/dark cycles and had 
access to food and water ad libitum. One week after the 
adaptation period, the rats were randomly divided to four 
equal groups of 10 rats in each: control, P. odorata extract, 
 AlCl3, and P. odorata +  AlCl3 groups. The control group was 
given distilled water by oral gavage. In the second group, 
the P. odorata extract was orally given at a dose of 500 mg/
kg B.W. Aluminum chloride was prepared by dissolving the 
powder in distilled water and administered orally at a dose 
of 70 mg/kg B.W. (Kadhem and Enaya 2018) to rats in the 
third group, while rats in the fourth group were given  AlCl3 
followed by P. odorata extract after 10–15 min. The treat-
ments were done once daily for four successive weeks. At 
the end of the experimental period, each rat was anesthetized 
with 5% diethyl ether and ACE mixture for 2 min and blood 
samples were collected from the retro-orbital plexus for sep-
aration of adequate serum which preserved at − 80 °C for 
biochemical estimation. After blood collection, the rats were 
euthanized by cervical dislocation; liver and kidney were 
carefully dissected and washed with saline. The organ sam-
ples were preserved at − 80 °C until processed for total RNA 
isolation to determine matrix metalloproteinase (MMP9) 
and transforming growth factor-β (TGF-β) mRNA expres-
sion. Also, samples from liver and kidney were homoge-
nized in 10% w/v phosphate buffer (pH 7.4), centrifuged 
at 10,000 × g for 15 min at 4 °C. The obtained supernatant 
was used for measuring GSH content, CAT activity, MDA, 
and tumor necrosis factor-α (TNF-α) concentrations. For the 
histopathological investigation, samples from the liver and 
kidney were preserved in 10% formalin.

Biochemical evaluation

Hepatic enzymes

The serum liver enzymes, AST, ALT, and ALP activities 
were measured according to the method of Friedman and 
Young (2001).

Total protein and albumin

Serum total proteins and albumin concentrations were 
determined according to the method of Peters (1968) and 
Doumas and Biggs (1972), respectively. The globulin 
concentration was determined by subtracting the albumin 
value from the value of total protein to obtain the albumin-
globulin (A/G ratio).

Total cholesterol and triglycerides

Serum total cholesterol and triglycerides were assayed 
using a commercial enzymatic kit according to the manu-
facturer’s instructions.

Kidney function

The concentration of BUN and creatinine were assayed 
with a commercially available assay kit according to the 
operating instructions.

Antioxidant/oxidant biomarkers

Reduced glutathione

The GSH content was determined according to the method 
of Van Doorn et al. (1978). This method is based upon 
the yellow color that is developed by adding 5,5′-dithio-
bis (2-nitrobenzoic acid) (DTNB) reagent to sulfhydryl 
compounds.

Catalase

The decomposition of  H2O2 catalyzed by CAT can be 
measured at 240 nm according to Aebi (1984).

Malondialdehyde

The principle of the assay depends on that MDA, the end 
product of the polyunsaturated fatty acids that is consid-
ered an index to measure the concentration of lipid per-
oxidation MDA reacts with the thiobarbituric acid in an 
acidic medium to give a pink color that can be assessed 
spectrophotometrically at 535 nm (Uchiyama and Mihara 
1978).

The protein concentration in the supernatant of the 
liver and kidney homogenates was measured following 
the method of Lowry et al. (1951). The protein content 
was determined using Folin’s reagent. The reduction of 
the phosphomolybdic–phosphotungstic reagent by the 
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copper-treated protein in an alkaline medium at room tem-
perature resulted in blue color.

Tumor necrosis factor‑α

ELISA kit was used to measure the concentration of pro-
inflammatory cytokine TNF-α in liver and kidney homoge-
nate following the manufacturer’s instructions using a test 
reagent kit (eBioscience Company, North America, USA).

Quantitative real‑time PCR for matrix 
metalloproteinase and transforming growth 
factor‑β genes

Total RNA was isolated from liver and kidney tissues 
using RNeasy mini kit (Qiagen) according to the man-
ufacturer’s instructions. First-strand cDNA was gener-
ated by reverse transcription of 10 μg RNA samples. 
The primer set used for MMP9 are forward primer: 
5′-GAT CCC CAG AGC GTT ACT CG-3′; reverse 
primer: 5′-GTT GTG GAA ACT CAC ACG CC-3′ and 
those of the TGF-β were forward primer: 5′-ACT CCC 
GTG GCT TCT AGT G-3′; reverse primer: 5′-GGA CTG 
GCG AGC CTT AGT TT-3′. Real-time PCR was done 
using a Real-Time PCR System (Applied Biosystems, 
USA) which was run for 40 cycles of denaturation at 
95 °C for 30 s, annealing at 59 °C for both genes for 
30 s and extension at 72 °C for 30 s. The GAPDH 
gene was amplified in the same reaction to serve as the 
internal control (Ibrahim et al. 2020). Each assay was 
repeated twice, and the values were used to calculate 
the gene/GAPDH ratio, with a value of 1.0 used as 
the control (calibrator) (HelmyAbdou et al. 2019). The 
normalized expression ratio was calculated using the 
Mxpro software (Khalaf et al. 2019).

Histopathological examination

The liver and kidney were dissected and collected 
carefully from all experimental groups. The speci-
mens were fixed in 10% formalin solution for 3 days, 
after that they were washed in water, dehydrated in 
ascending grades of alcohol, then they cleared in 
xylene. Finally, the specimens were embedded in par-
affin to prepare paraffin sections (5 µm) and stained 
with hematoxylin and eosin according to Bancroft and 
Gamble (2008).

Statistical analysis

Statistical analysis of results was performed by one-way 
analysis of variance (one-way ANOVA), followed by Tuk-
ey’s post hoc test using GraphPad Prism software (version 

5.0) (San Diego, CA, USA); p value less than 0.05 is statisti-
cally significant. All the data are expressed as mean ± stand-
ard error.

Results

Metabolic analysis

Chemical profiling of the secondary metabolites of P. odo-
rata leaves, using LC-HRESIMS for dereplication purposes, 
resulted in the characterization a variety of constituents, 
including sterols, triterpenes, fatty acids, iridoid, flavones, 
acylated rhamnopyranoses, and phenyl ethanoids (Table S1, 
Figure S1).

Biochemistry

The effect of aluminum administration and P. odorata treat-
ment on the liver enzymes, lipid, protein profile, urea, and 
creatinine concentrations are shown in Table 1. Treatment 
with P. odorata extract alone had no significant effect on 
the activities of AST, ALT, ALP compared to the control. 
Administration of  AlCl3 resulted in significant increases in 
the activities of these enzymes. The serum AST and ALT 
activities were returned to normal values in the rats in the 
 AlCl3 + P. odorata group. However, the ALP activity per-
sisted higher compared to the control and P. odorata groups.

Treatment with P. odorata extract alone did not affect TC 
and TG as compared with the control. The total cholesterol 
and TG concentrations were significantly increased by  AlCl3 
treatment as compared with the control. In the  AlCl3 + P. 
odorata group, the TG and the TC concentrations were sig-
nificantly decreased when compared to  AlCl3 group. How-
ever, the TC was still significantly higher than the control 
and P. odorata groups. The mean concentrations of the total 
protein, albumin, globulin, and A/G ratio did not change by 
 AlCl3 exposure as compared to the control.

Concerning the concentration of urea and creatinine, 
there were no significant difference between the P. odorata 
group and the control group. Aluminum alone was seen to 
increase the urea and creatinine concentrations compared to 
the control and P. odorata groups. Co-administration of P. 
odorata extract with  AlCl3 significantly decreased the urea 
concentration and insignificant decrease in the creatinine 
value compared to the Al group.

Biomarkers of oxidative stress and TNF‑α

The concentrations of GSH; MDA and TNF-α and CAT 
activity of the liver and kidney tissues are shown in Table 2. 
Rats treated with P. odorata extract alone do not produce any 
significant alteration in the CAT activity, GSH, MDA, and 
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TNF-α concentrations when compared to the control group. 
Administration of  AlCl3 resulted in significant decrease in 
GSH content, while the CAT activity; MDA and TNF-α con-
centrations were significantly increased compared to control 
and P. odorata groups. On the other hand, co-administra-
tion of P. odorata with  AlCl3 increased the GSH content; a 
decrease in CAT activity; MDA and TNF-α concentrations 
in comparison with  AlCl3 group. However, the MDA con-
centration was still higher in  AlCl3 + P. odorata group than 
those in the control group and P. odorata groups.

mRNA expression of TGF‑β and MMP9 genes

A significant upregulation in the m-RNA concentration of 
both TGF-β (Fig. 1) and MMP9 (Fig. 2) genes were detected 
in the  AlCl3-treated group relevant to all the experimen-
tal groups. Co-administration of P. odorata decreased the 
expression of the studied genes compared to the intoxicated 

group. These findings were detected in liver and kidney 
samples.

Histopathology

The liver histopathological picture is illustrated in Fig. 3. 
The liver of control rats showed normal histological struc-
ture (Fig. 3A). Liver of  AlCl3-treated rats showed central 
vein dilatation and congestion, diffuse ballooning degenera-
tion of hepatocytes with sinusoidal dilatation (Fig. 3B and 
C). In the  AlCl3 + P. odorata group, the liver showed diffuse 
hepatocellular regeneration with central vein and sinusoidal 
congestion in the centrilobular zone with some congestion 
and inflammation of portal tact (Fig. 3D and E). Adminis-
tration of  AlCl3 resulted in marked congestion in the cap-
illary tuft of the glomeruli, diffuse hydropic degeneration 
in the epithelial cells with focal cystic tubular dilatation 
(Fig. 3G and H). Co-treatment with  AlCl3 + P. odorata 

Table 1  Serum biochemical 
parameter values in different 
experimental groups

The results are expressed as means ± SE (n = 5) with dissimilar superscript letters
a significantly different from control
b significantly different from the P. odorata group
c significantly different from the  AlCl3 group (p < 0.05 considered to be statistically significant)

Parameters Control P. odorata AlCl3 AlCl3 + P. odorata

AST (U/l) 51.0 ± 1.1 53.1 ± 2.0 70.1 ± 2.5a,b 56.8 ± 1.6c

ALT (U/l) 36.6 ± 2.1 37.7 ± 0.9 51.3 ± 1.3a,b 40.3 ± 0.86c

ALP (U/l) 81.1 ± 1.9 82.6 ± 1.8 117 ± 3.6a,b 97 ± 2.5a,b,c

TG (g/dl) 130.6 ± 4.5 126.8 ± 1.5 180 ± 3.9a,b 141.8 ± 4.5c

TC (g/dl) 89.6 ± 3.5 85.8 ± 3.3 196 ± 10.5a,b 125.2 ± 9.0a,b,c

Total protein (g/dl) 6.00 ± 0.20 5.6 ± 0.27 5.4 ± 0.15 5.7 ± 0.20
Albumin (g/dl) 3.4 ± 0.15 3.3 ± 0.07 3.5 ± 0.06 3.5 ± 0.1
Globulin (g/dl) 2.6 ± 0.08 2.4 ± 0.20 2.0 ± 0.14 2.2 ± 0.17
A/G ratio 1.32 ± 0.06 1.34 ± 0.09 1.70 ± 0.17 1.63 ± 0.13
Urea (mg/dl) 31.0 ± 0.80 31.8 ± 1.00 38 ± 0.31a,b 33.8 ± 1.00c

Creatinine (mg/dl) 0.82 ± 0.05 0.88 ± 0.06 1.3 ± 0.14a,b 1.1 ± 0.10

Table 2  Values of antioxidant/
oxidant and TNF-α in liver and 
kidney homogenates in different 
experimental groups

The results are expressed as means ± SE (n = 5) with dissimilar superscript letters
a significantly different from control
b significantly different from the P. odorata group
c significantly different from the  AlCl3 group (p < 0.05 considered to be statistically significant)

Parameters Control P. odorata AlCl3 AlCl3 + P. odorata

GSH (µM/mg protein) Liver 251.0 ± 8.5 257 ± 7.7 178 ± 2.5a,b 245 ± 7.5c

Kidney 374 ± 5.3 381 ± 4.9 196 ± 6.6a,b 362 ± 7.6c

CAT (IU/min/mg protein) Liver 0.71 ± 0.06 0.72 ± 0.04 0.97 ± 0.05a,b 0.77 ± 0.04c

Kidney 0.28 ± 0.01 0.30 ± 0.01 0.38 ± 0.02a,b 0.32 ± 0.01c

MDA (nM/mg protein) Liver 186 ± 6.6 171 ± 12.2 322 ± 14.4a,b 238 ± 7.3a,b,c

Kidney 229 ± 7.4 238 ± 3.2 595 ± 12.7a,b 328 ± 4.7a,b,c

TNF-α (ng/100 g tissue) Liver 142 ± 9.4 145 ± 10.0 261 ± 12.4a,b 183 ± 9.6c

Kidney 133 ± 3.7 132 ± 6.0 255 ± 17.6a,b 155 ± 8.2c
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alleviated the effect  AlCl3 as there was a minimal congestion 
in the capillary tuft of the glomeruli with focal regeneration 
of epithelial cells (Fig. 3I).

Discussion

The liver is considered the main metabolic organ of the 
body. This makes the liver highly susceptible to harmful 
metabolites that generated during the metabolism process. 
In the current study, aluminum-induced hepatotoxicity was 
demonstrated by an increase in serum AST, ALT, and ALP 
activities. Serum transaminases are indicative for liver 
injury, as they are escape from the injured hepatic cells to 
the plasma following hepatocellular degeneration or injury 
with alteration in the permeability of liver membrane. This 
was further confirmed by hepatic histopathological changes 
including congestion and diffuse degeneration of hepato-
cytes with sinusoidal dilatation. These results are in agree-
ment with previous studies (Balgoon 2019; Galal et al. 
2019; Al-Kahtani et al. 2020). Shati and Alamri (2010) pre-
viously suggested that the increase in the serum ALT and 
AST activities might be due to the leakage of these enzymes 
from the liver cells into the circulation and/or disturbance in 
these enzymes biosynthesis and liver dysfunction, with an 

alteration in the permeability of the hepatocyte membranes. 
Alkaline phosphatase is a membrane-bound enzyme and it 
is considered a sensitive biomarker of hepatic injury and 
because its activity dependent on energy metabolism. A 
decrease in its activity may indicate impaired cellular energy 
processing (Al-Hashem 2009).

Administration of P. odorata extract simultaneously with 
 AlCl3 was able to prevent the upsurge in ALT, AST, and 
ALP activities. The leaves of P. odorata exhibited a wide 
range of pharmacological activities as they contain bioac-
tive and medicinal compounds which provide a scientific 
evidence of the medicinal benefits of the P. odorata (Pinzon 
et al., 2011). Also, leaves gave high percent of crude extract 
comparing with other parts (Elmaidomy, et  al., 2019). 
Also, the yield of extraction depends on the solvent used 
for extraction. Ethanol has been described as good solvent 
for the extraction of polyphenol; also it is safe among other 
solvents for human consumption (Do et al., 2014). Treatment 
with P. odorata extract may inhibit peroxidation of mem-
brane lipids and maintain cell membrane integrity by neu-
tralizing free radicals, thus prevented the leakage of hepatic 
enzymes (Shati and Alamri 2010).

The elevated concentrations of total cholesterol and 
triglycerides in  AlCl3-treated rats may be attributed to 
the disturbance in lipid metabolism due to Al exposure 

Fig. 1  The relative expression 
level of TGF-β A in liver and B 
in kidney of different experi-
mental groups. The dissimilar 
superscript letters (significantly 
differing at p < 0.05): (a) signifi-
cantly different from control; 
(b) significantly different from 
the P. odorata group, and (c) 
significantly different from the 
 AlCl3 group

Fig. 2  The relative expression 
level of MMP9 A in liver and B 
in kidney of different experi-
mental groups. The dissimilar 
superscript letters (significantly 
differing at p < 0.05): (a) signifi-
cantly different from control; 
(b) significantly different from 
the P. odorata group, and (c) 
significantly different from the 
 AlCl3 group
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(Newairy et al. 2009; Shati and Alamri 2010 and John 
et al. 2015). That is consistent with Al Eisa and Al Nahari 
(2016) who attributed the increase in the serum cholesterol 
concentration that was seen in rats given  AlCl3 to hepatic 
dysfunction and the elevated serum TG concentration to 
the hypoactivity of lipoprotein lipase which is responsi-
ble for triglycerides degradation. Flavonoids, polyphenols, 
and phenolic acids in P. odorata that possess antioxidant 
activity might reduce the serum TC and TG concentrations 
(Aniss et al. 2014). Patel and Patel (2012) reported that 
the extract of root bark of Premna integrifolia significantly 
decreased serum total cholesterol and triglyceride in rats. 
Subramani et al. (2017) attributed the anti-atherosclerotic 
activity of hydroalcoholic extract of root bark of Premna 
integrifolia to its flavonoids and phenols contents.

In the present study, no change was observed in pro-
tein profile in  AlCl3-treated rats. Conversely, a significant 
decline in the concentrations of total protein and albumin 
was reported by Newairy et al. (2009) and Al Eisa and Al 
Nahari (2016) in rats treated with  AlCl3.

Urine is the primary route for Al elimination (about 
95%), while biliary route accounts for < 2% of total Al 
elimination (Yokel and McNamara 2001). Urea, a nitrog-
enous end product of amino acids, which is filtered by the 
glomerulus, reabsorbed by the renal tubules and excreted 
in urine. Creatinine, a nitrogenous end product of muscle 
creatine metabolism, is a specific indicator of glomerular 
function. In the present study, elevation of urea and creati-
nine concentrations in Al-exposed rats revealed significant 
renal damage and metabolic disturbances (Yu et al. 2017).

The present findings were in agreement with the results 
of other studies (Belaïd-Nouira et al. 2013; Al-Kahtani 
and Morsy 2019 and Balgoon 2019) which detected 
that Al induces renal damage. In the current study, the 
increased concentration of urea and creatinine is substan-
tiated by the altered histological feature in the kidney of 
rats treated with  AlCl3. Co-administration of P. odorata 
extract improved the biochemical and histological altera-
tions induced by  AlCl3 in liver and kidney, which could be 
related to the antioxidant activity. The P. odorata contains 
iridoid glycosides that have been noted to possess signifi-
cant biological activities such as neuroprotective, anti-
diabetic, and hepatocurative activities (Hang et al. 2008).

Reactive oxygen species (ROS) production can be 
increased due to toxicity, causing significant damage 
to cellular structures and thus induce oxidative stress 
(Elhelaly et al. 2019). The oxidative stress has been linked 
to a series of pathological conditions including inflamma-
tion, damages the macromolecular structures in the cell, 
and cellular dysfunction. The aluminum toxicity is attrib-
uted to the increase of ROS generation giving rise to oxi-
dative deterioration of cellular proteins, lipids, and DNA, 
besides induction of changes in the tissue antioxidant 

enzymes activities and alteration gene expression (Mail-
loux et al. 2011).

Yu et al. (2017) reported that aluminum mainly accumu-
lates in the liver and kidney during the first 8 weeks from 
receiving Al. Aluminum might induce oxidative stress in 
soft tissues like kidney and liver by decreasing the activity 
of glutathione-synthase enzyme, thus leading to a reduced 
GSH content (Orihuela et al. 2005 and Gonzalez et al. 2007). 
Moreover, the decreased concentration of GSH by Al could 
be due to insufficient supply of NADPH, which is the main 
factor for the GSH regeneration, by inhibiting NADPH-gen-
erating enzymes such as glucose 6-phosphate dehydrogenase 
(Newairy et al. 2009).

Catalase is a hydrogen peroxide  (H2O2) scavenger that 
catalyzes the breakdown of  H2O2 to  H2O and oxygen mole-
cule to protect cells against the toxic effects of  H2O2 (Chance 
et al. 1979). The elevation of CAT activity in the Al toxic 
group found in this study could be an indicator for enhanced 
free radical generation especially  H2O2, in the liver and kid-
ney tissues (Aniss et al. 2014) and appears to be a response 
towards increased ROS generation for neutralizing its impact 
(Kumari et al. 2014). In line with the current results, a study 
by Al-Amin et al. (2018) demonstrated significant increase 
in the CAT activity in the cortex and hippocampus of mice 
as response to the oxidative stress damage induced by 
lipopolysaccharide. Aniss et al. (2014) reported that CAT 
activity increased in the heart of mice in adriamycin-induced 
cardiotoxicity. Also, Szymonik-Lesiuk et al. (2003) reported 
that catalase mRNA expression and enzyme activity were 
increased by exposure of hepatocytes to  H2O2.

In the current study, administration of  AlCl3 increased 
both hepatic and renal MDA. Aluminum is known to bound 
with transferrin, an iron carrying protein, thus increasing 
free intracellular iron  (Fe2+) and, consequently, membrane 
lipids become primary targets of oxidative damage leading 
to lipid peroxidation (Nehru et al. 2007 and Mokrane et al. 
2020).

The results of this study are consistent with those of 
John et al. (2015), Ghorbelet al. (2015), and Khalifa et al. 
(2020). They observed that Al administration significantly 
elevated tissue TNF-α. According to Ghorbel et al. (2015), 
the increase of cytokine expression indicate the disruption 
in pro-oxidant/antioxidant balance and during hepatocyte 
damage the activated Kupffer cells release growth factors, 
cytokines, which have a stimulating effect on proliferation 
and activation of stellate cells. They also release inflamma-
tory mediators (TNF, IL-1, IL-6, IL-8), which are respon-
sible for infiltration of inflammatory leukocytes. In the 
current study, administration of P. odorata extract to the 
Al-intoxicated rats significantly decreased the concentra-
tions of TNF-α in liver and kidney compared with those in 
the  AlCl3 group. Oral administration of P. odorata volatile 
oils to tuberculosis-infected mice caused a decrease in the 
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elevated serum concentration of TNF-α (Mohammadet al. 
2019). Phytochemical studies on P. odorata leaves have led 
to characterization of diosmetin and acacetin as the chemical 
composition of the P. odorata which have anti-inflammatory, 
anti-microbial, and chemopreventive properties (Tantengco 
and Jacinto 2015; Pinzon and Uy 2016).

The current results support the conclusion that the 
 AlCl3-induced upregulation of TGF-β and MMP9 gene tran-
scription might contribute to disruptive functions in the liver 
and kidney of the intoxicated rats.

Aluminum chloride was reported to induce cellular dam-
age due to excessive ROS production which causes oxida-
tive stress through disrupting the antioxidant defense mecha-
nism (Rahmani et al. 2020). The important role of oxidative 
damage in the  AlCl3 toxicity makes it important to consider 
antioxidant therapy against the  AlCl3 toxicity (Ahmad et al. 
2018).

Transforming growth factor-β (TGF-β) plays an important 
role in the control of inflammation as an immune suppressive 

factor (Han et al. 2012). It may negatively regulate immune 
cell response by activating regulatory T cells (Tregs) and by 
inhibiting immune cells proliferation, while it can induce 
Th17 differentiation and enhance the secretion of proin-
flammatory cytokine IL-17 (Yoshimura et al. 2010). The 
cytokine TGF-β is the major pro-fibrotic cytokine that is 
over expressed in generalized inflammation (Samarakoon 
et al. 2013) and it regulates the recruitment of inflammatory 
cells and macrophage differentiation.

Upregulation of the MMP expression has been reported in 
almost all tissue inflammation in human. MMPs are incor-
porated in the modulation of inflammatory mediators which 
attract the immune cells to the inflamed tissues (Prabhu and 
Frangogiannis 2016). Aluminum chloride markedly upregu-
lated the proteins related to cell migration, such as MMP-2 
and MMP-9.

Our results suggest that P. odorata provides protec-
tive effects against  AlCl3-induced oxidative stress in 
liver and kidney; thus, it maybe of therapeutic benefit in 
 AlCl3-induced hepato-nephrotoxicity.

On the other hand, the administration of antioxidants can 
reduce the toxic effects of  AlCl3 (Al Dera 2016). The P. 
odorata ameliorated the  AlCl3-induced hepato-nephro dam-
age by its potent antioxidant constituents (Elmaidomy et al. 
2019) which render the P. odorata able to scavenge ROS and 
modulate the expression of TGF-β and MMP9.

Taken together, these results suggest that the antioxidative 
and anti-inflammatory properties are possible mechanisms 
of action of P. odorata for the management of pro-oxidants 
and oxidative stress, which are the most causative factors of 
Al toxicity (Elmaidomy et al. 2020).

Conclusion

Based on the current study, P. odorata treatment reduced the 
hepatic enzyme activity; improved lipid profile and kidney 
function; increased the GSH content; reduced lipid peroxida-
tion (MDA) and proinflammatory marker (TNF-α) as well as 
downregulated the TGF-β and MMP9 gene expression and 
minimized the  AlCl3-induced hepatic and renal histopatho-
logical damage. Therefore, P. odorata extract exhibited pro-
tective effect against Al-induced hepato-nephrotoxicity via 
reducing the oxidative stress and the inflammatory response, 
which might attributed to the flavonoids, polyphenols, and 
phenolic acids in P. odorata extract that possess antioxidant 
activity.
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Fig. 3  A A photomicrograph (H&E × 200) of a section in liver of 
control rat showing normal liver cell plates formed of polygonal 
hepatocytes with granular eosinophilic cytoplasm and vesicular 
nuclei and intervening regular sinusoids and normal central veins 
(black arrows) with normal portal tact (red arrow). B A photomicro-
graph (H&E × 200) of the liver of  AlCl3-treated rat showing mild cen-
tral vein dilatation (arrow head), the liver parenchymal cells revealed 
diffuse moderate ballooning degeneration of hepatocytes with sinu-
soidal dilatation (red arrows) with mild lymphocytic parenchyma-
tous aggregations (black arrow). C A photomicrograph (H&E × 400) 
of group the liver of  AlCl3-treated rat showing moderate central vein 
congestion (red arrow) with diffuse marked ballooning degeneration 
of hepatocytes (enlarged distended hepatocytes with clear cytoplasm 
without nuclear displacement) with moderate sinusoidal dilatation 
after administration of  AlCl3. D A photomicrograph (H&E × 200) 
of a section in the liver of  AlCl3 + P. odorata group showing diffuse 
hepatocellular regeneration with mild central vein and sinusoidal 
congestion in centrilobular zone (red circle). E A photomicrograph 
(H&E × 400) of a section in the liver of  AlCl3 + P. odorata treated 
group showing hepatocellular regeneration (black arrow) with mild 
congestion and inflammation of portal tact (red arrow). F A photomi-
crograph of renal tissue from control group, showing normal glomer-
uli formed of capillary tuft surrounded by Bowman’s capsule (arrows 
head), proximal convoluted tubules with narrow lumen lined by high 
cuboidal cells with homogeneous eosinophilic cytoplasm (black 
arrows), and distal convoluted tubules with wide lumen lined by low 
cuboidal cells (red arrows). G A photomicrograph (H&E × 400) of 
the kidney of  AlCl3-treated group showing marked congestion in the 
capillary tuft of the glomeruli (black arrow), diffuse mild hydropic 
degeneration in the epithelial cells lining renal tubules (red arrows) 
with focal cystic tubular dilatation (arrows head) at corticomedul-
lary portion. H A photomicrograph (H&E × 400) of the kidney of 
 AlCl3-treated group showing marked interstitial congestion and 
inflammation (black arrow) diffuse hydropic swelling in the epithelial 
cells lining renal tubules with focal cystic tubular dilatation (stars) at 
corticomedullary portion. I A photomicrograph (H&E × 400) of P. 
odorata +  AlCl3 group, a section in the kidney showing minimal con-
gestion in the capillary tuft of the glomeruli (black arrow) with focal 
regeneration of epithelial cells lining renal tubules (red arrow) with 
residual degenerative changes in some renal tubules (blue arrow)
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