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A tree-based scan statistic
for zero-inflated count data
in post-market drug safety
surveillance

Goeun Park & Inkyung Jung®"™

After new drugs enter the market, adverse events (AE) induced by their use must be tracked; rare
AEs may not be detected during clinical trials. Some organizations have been collecting information
on suspected drugs and AEs via a spontaneous reporting system to conduct post-market drug

safety surveillance. These organizations use the information to detect a signal representing

potential causality between drugs and AEs. The drug and AE data are often hierarchically structured.
Accordingly, the tree-based scan statistic can be used as a statistical data mining method for signal
detection. Most of the AE databases contain a large number of zero-count cells. Notably, not only

an observational zero from the Poisson distribution, but also a true zero exists in zero-count cells.
True zeros represent theoretically impossible observations or possible but unreported observations.
The existing tree-based scan statistic assumes that all zeros are zero-valued observations from the
Poisson distribution. Therefore, true zeros are not considered in the modeling, which can lead to bias
in the inferences. In this study, we propose a tree-based scan statistic for zero-inflated count datain a
hierarchical structure. According to our simulation study, in the presence of excess zeros, our proposed
tree-based scan statistic provides better performance than the existing tree-based scan statistic.

The two methods were illustrated using Korea Adverse Event Reporting System data from the Korea
Institute of Drug Safety and Risk Management.

After new drugs enter the market, the adverse events (AE) induced by their use must be tracked because rare
AEs may not be detected during clinical trials owing to short trial durations, limited sample sizes, or limited
population representation. Once drugs are commercialized, they are used in different ways and by more people
than those covered during clinical trials. Accordingly, drug safety must be monitored even after commercializa-
tion to identify AEs that may not have been identified previously'~’.

Drug and vaccine safety monitoring systems have traditionally been based on spontaneous reporting sys-
tems, such as the US Food and Drug Administration’s Adverse Event Reporting System (AERS), the US Vaccine
Adverse Event Reporting System (VAERS), and VigiBase, the World Health Organization’s (WHO) global Indi-
vidual Case Safety Reports database. AERS is a large database supporting the US Food and Drug Administration’s
program for monitoring drug safety; VAERS helps monitor vaccine-related AEs and is maintained by the US
Center for Disease Control and Prevention and the US Food and Drug Administration; and VigiBase is managed
by the Uppsala Monitoring Centre (UMC) on behalf of the WHO. VigiBase receives individual case safety reports
from 80 countries. In South Korea, the Korea Institute of Drug Safety and Risk Management provides information
on AEs collected through the Korea Adverse Event Reporting System (KAERS) to the UMC. These spontane-
ous reporting systems play an important role in detecting AE signals in post-market drug safety surveillance®®.

Disproportionality data mining methods have been used to analyze these databases to identify signs that
certain drugs may be posing unrecognized safety hazards. Frequentist methods, such as the proportional report-
ing ratio?, relative odds ratio'!, Yule’s test'?, chi-squared test'?, and likelihood ratio test (LRT)", and Bayesian
methods, including the Bayesian confidence propagating neural network'®, multi-item gamma Poisson shrinker'¢,
and simplified Bayes (sB) methods'>~'° are often used to detect drugs with previously unrecognized AE!¢20-25,

In pharmacovigilance data, AE information uses adverse reaction terms, which have a hierarchical structure.
For example, as shown in Fig. 1, the WHO Adverse Reaction Terminology (WHO-ART) developed for the WHO
drug monitoring program has a four-level hierarchical structure. (https://www.who-umc.org) Owing to this type
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Figure 1. WHO-ART structure.

of structure, it is difficult to determine the level of AE definition that should be used during data mining. To
solve the problem, tree-based scan statistics, which find signals at each level of AEs in the form of a hierarchi-
cal tree, have been proposed by Kulldorff et al.?® and have been recently used by some researchers to detect AE
signals*’~?’. The tree-based scan statistic is distinct from most disproportionality methods; it is based on scan
statistical theory and uses a hierarchical diagnosis tree to simultaneously assess risk at any level of granularity,
adjusting for a multiple testing problem in several overlapping evaluated groups”?%*.

Most of these AE databases have large numbers of zero-count cells. For example, AERS data from 2006 to 2011
show that the percentage of zero-count cells by the drug ranges from 50 to 99.99%>'. However, based on KAERS
data from 2012 to 2016, the percentage of zero-count cells by the drug ranges from 75 to 100%. Zero-count cells
may contain not only zero-valued observations from the Poisson distribution, but also true zeros, which represent
theoretically impossible observations or possible but unreported observations. Data with a large number of zeros
cannot be assumed to have a Poisson distribution as some zeros are true zeros. The distribution of such data is
typically more dispersed than the Poisson distribution, resulting in equality between the variance and the mean
of the distribution. To solve this problem, the zero-inflated Poisson (ZIP) model proposed by Lambert® can be
used. Huang et al.>"** proposed a zero-inflated Poisson model based likelihood ratio test (ZIP-LRT) method as
an extended version of LRT, a frequentist data mining method. Further, Hu et al.** developed the zero-inflated
Poisson simplified Bayes method and the zero-inflated Poisson Dirichlet process method, which are Bayesian
data mining methods.

The existing tree-based scan statistic assumes all zero values are zero-valued observations from the Poisson
distribution. As a result, true zeros are not considered in the modeling, which can lead to bias in the inferences.
Therefore, in this study, we proposed a new tree-based scan statistic using the ZIP model for data with excess
zeros in a hierarchical structure.

In section “A tree-based scan statistic”, we introduce the existing tree-based scan statistic. In section “A tree-
based scan statistic for zero inflated count data”, we propose a tree-based scan statistic for zero-inflated count
data. In section “Simulation study”, a simulation study to evaluate the performance of the proposed method is
presented. In section “Real data”, the two methods are compared through a real data example. Finally, in sec-
tion “Conclusion and discussion”, we summarize the results and conclude with our recommendations.

Hierarchical diagnosis tree.  The tree-based scan statistic uses hierarchical classification systems to repre-
sent clinical concepts, such as drugs, procedures, or diagnoses®. To code adverse drug reactions in postmarket
drug surveillance, medical terminologies, such as Medical Dictionary for Regulatory Activities (MedDRA) and
WHO-ART, are used. In the KEARS data, WHO-ART is used to code the AEs.

WHO-ART is the terminology for coding clinical information related to pharmacotherapy and is commonly
used for coding the AEs. When new drugs and new symptoms create new terms that incorporate them, the
structure of the terms is updated to include the newly integrated terms while retaining their previous relation-
ships and the existing structure of terms. WHO-ART has a four-level hierarchical structure, which consists
of System Organ Class (SOC), High Level Terms (HLT), Preferred Terms (PT), and Included Terms (IT). The
highest level, the SOC, corresponds to body systems and organs, which contain grouping terms. The HLT is
used to group related or similar PTs, but all PTs are not grouped into the HLT. The PTs are principal terms used
to describe AEs and the ITs are synonyms of the PTs, which help in the search for the PTs. An example of the
WHO-ART is shown in Table 1.
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sOC |PT IT Diagnosis HLT
0800 Metabolic and nutritional disorders

0800 0363 Acidosis 0363
0800 0363 | 003 | Bicarbonate reserve decreased 0363
0800 0363 | 004 | PH reduced 0363
0800 | 0363 | 005 | Acidosis Metabolic 0363
0800 | 0363 | 006 | Blood bicarbonate decreased 0363
0800 | 0363 | 007 | Blood PH decreased 0363
0800 | 0363 | 008 | Acidosis hyperchloraemic 0363
0800 0364 Acidosis lactic 0363
0800 0364 | 003 | Lactate blood increase 0363
0800 0393 Ketosis 0363
0800 0393 | 003 | Ketoacidosis 0363
0800 0393 | 004 | Acetonuria 0363
0800 | 0393 | 005 | Acetone breath 0363
0800 0393 | 006 | Acetonaemia 0363
0800 0393 | 007 | Diabetic ketoacidosis 0363
0800 1465 Acidosis respiratory 0363
0800 1465 | 002 | Blood carbon dioxide increased 0363

Table 1. Example of WHO-ART.

A tree-based scan statistic

Review of a tree-based scan statistic. The tree-based scan statistic is a statistical data mining method
that has been used for signal detection in a hierarchically structured data, such as a classification system for cod-
ing AEs. This statistic searches signals at any level of AE definitions, called leaves. Each leaf contains information
on the total number of patients with a specific AE and the number of patients with a specific AE from a certain
drug. Mutually-related leaves are grouped into a higher level, called a node. Of note, a cut defines a branch of the
tree where a node or a leaf may have more events than expected.

The tree-based scan statistic method considers all possible cuts. For each cut, the total number of AEs from
all drugs and a certain drug are respectively calculated for the leaves within that cut. The test statistic is gener-
ated by a likelihood function in which risk is estimated separately for the leaves defined by the cut and those
outside of the cut?®*+%,

Let ¢; be the observed number of patients with ith AE potentially caused by a certain drug in leaf i and n;
be the total observed number of patients with i th AE in leaf i. For a rare disease, with covariates ignored, c; is
approximately Poisson distributed with mean niAi, where ) is the probability that i th AE is caused by a certain
drug. For all leaves on the tree, let C = Zl ciand N = Z, ni where I is the number of all leaves in the tree. For
each cut G, aleaf or a group of related leaves, letcg = > ;. qciandng = >, i Ris the rest of the leaves except
those included in G. The following null hypothesis Hy : Ag = /Ao and the alternative hypothesis H, : A > Agare
considered. The null hypothesis suggests that the probability that AEs in a cut G due to a certain drug are not
lower or higher than that of all AEs. The alternative hypothesis is that at least one cut is defined by a set G such
that Ag > A, where R is a group of the remaining leaves.

Of note, the analysis is only concerned with C, as the total number of AEs represented by the tree is not of
interest. In fact, only the relative distribution between the different AEs is relevant. The likelihood can then be

Ci
expressed as L(4,¢) =[], ( it ) using a multinomial distribution. As a maximum likelihood estimator

inili
(MLE) of Ag/Ar is Wﬂ% given G, a likelihood ratio test statistic is
max  L(4,c) C—
G C G _ G N —_ . .. .
T = % = (%) mgx(i—i) (AC] ;i) when;—z > I\C]_Zg;otherwme, the statistic is 1. The log-like-

lihood Tatio-based test statistic is given by

C—cg G C—cg
1 g + (C — g\ ——— I\ —>—-—,
ogT = mcs;ix{cGlo (nG> (C —cg)lo ( nG)} X <nG > N HG)

where I() is the indicator function?.

Hypothesis testing. To calculate the test statistic T, the likelihood of each possible cut was determined. The
cut, which is maximizing the likelihood ratio value, is defined as the most likely cut; the likelihood ratio value
is defined as the test statistic T. As the null distribution of the test statistic is unknown, it is produced using the
Monte Carlo simulation®. Given the total number of patients with AEs from a certain drug, a large number of
random data sets was created under the null hypothesis, and the test statistics for each random data set and the
real data were calculated. The obtained test statistics for random datasets were compared to the test statistic for
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the real data. The P-value was calculated using the equation: rank/(1 + B), where rank is the relative position of
the test statistic for the real data among the test statistics for the random data sets and B is the number of Monte
Carlo replications.

A tree-based scan statistic for zero-inflated count data

In the presence of excess zero, the Poisson model tends to underestimate the observed dispersion. In this case,
the ZIP model can be employed as one of the approaches to resolve the problem as this model is more flexible
than the Poisson model. If the number of ith AE with a certain drug C; follows the ZIP model, with the prob-
ability p of a true zero and the average number of events n;4;, C; ~ ZIP(p, n;4;), the mean and variance can be
expressed as E(C; |p, niii) = (1 — p)niAiand V(C;i|p, ni),i) = (1 — p)niAi(1 + pn;A;). It can also be expressed as
V(Ci|p, nisi) = E(Ci|p, ni2i) (1 4 pnili); thus, V(Ci|p, nidi) > E(Ci|p, ni/;) when p>0.

As the ZIP model has an additional parameter relative to the tree-based scan statistic, its mean is smaller than
that of the Poisson model. Thus, the ZIP model correctly calculates a reduced number of ith AEs with a certain
drug due to the presence of true zeros.

Given the parameters p and n;/;, the probability of C; = ¢; is described as follows:

p+ (1 —p)e_ni;'i ,¢6i =0

P(CI =G ( )efn,-/‘.i(n.;‘)f,‘
1-p f” ,¢i > 0.

psnili) =

For the tree-based ZIP scan statistic, the hypotheses of interest are the same as those in section “Review of a
tree-based scan statistic”. The zeros are assumed to be known, whether or not they are true zeros, as it is difficult
to find a closed form of MLE when the nature of each zero is unknown. As tree-based scan statistics are based
on scan statistic theory, the methodology of Cancado et al.*’, who proposed a spatial scan statistical method for
zero-inflated Poisson processes, was employed.

We consider a vector § = (81, ...,87) where §; = 1 for a true zero in leaf i and §; = 0 for an observational
zero in leaf i. §; s are Bernoulli random variables with the probability p of a true zero. Given a set of observa-
tions § = (81,...,d;) that are bivariate data such that (C;, §;),i = 1,..., I, the likelihood function for set G can
be expressed as

s 1 (1=di) ) 1 (=di)
—NiLi C —NjAi C
i e " (nidg)” i e "% (nidp)"
tpinie) = | T4 |0 -0 [T (1 - p) i
. ¢! . ¢!
ieG i¢G
; 7 Sa(—dy)
When §; s are known, the MLEs under the null hypothesis are 49 = m
Y iegCi(l—di) E _ Yiggti(l—di)
Siceni—d’ "R = T oni(1=d))’
When §; s are unknown, an expectation-maximization (EM) algorithm is used to find the MLEs of
40> 2G> Ar> po and p. In the expectation step (E-step), the expected value of §;, given C;, is calculated using the
following formula:

I
—~ [
andpy = % However,

I g
andp = L"f"d’.

under the alternative hypothesis, the MLEs are WG =

Sm)
sim P _I(c;=0)i=1,...,1
P+ (1 —pim)) ek

Under H,, ¢ is considered Ag and Ag in each cut G and the remaining leaves R, respectively.

In the maximization step (M-step), the MLEs of 4o, G, Ar, po, and p are updated via the equations with d;
replaced by gi(m) when §; s are known. Until the maximum likelihood estimates for each possible cut G converge,
the above E- and M-steps are performed repeatedly. To perform a faster calculation, we used the ‘zeroinfl’ func-
tion in the R package “pscl”. For the possible candidate cuts, this process should be conducted and the most
likely cut should be determined.

The likelihood ratio for cut G can be expressed as

[ e ci(1—d) ] Dieg ci(1—=d;) ng(.‘ Cj(l—dj) Zj«’;éG Cj(l—dj)
Die ni(1—di) Yig ni(1—dj)
}Z{l ci(1—d;)

LRg =

o Sieca—d) Do (1= d)
YL a—dy Siegnil—d) ~ o1 —d))

Thereafter, the maximum likelihood ratio is defined as the test statistic, T = maxLRg.

As it is impossible to know the null distribution of the likelihood ratio test statistic T, Monte Carlo hypothesis
testing was conducted to assess statistical significance®.

Simulation study

Data generating process and performance assessment measures. We conducted a simulation
study to assess the performance of the proposed tree-based scan statistic for zero-inflated count data (TreeScan-
ZIP) and the existing tree-based scan statistic (TreeScan-Poisson). For the simulation study, datasets with the
hierarchical structure where AEs can be expressed in terms of WHO-ART SOCs and PTs were generated. Only
105 of the 1292 AEs in the PT terms were considered to reduce computation time. Different artificial true signals
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and true zeros were generated using a tree with 105 leaves and 9 nodes. The total numbers of patients with each
AE varied from 10 to 4670. The total number of patients in all leaves of the tree was 19,920 and the total number
of patients with AEs from a certain drug was 640.

First, true zeros (§; = 1) were randomly allocated using the Bernoulli distribution with the probability p,
where p is the percentage of the true zero leaves. Thereafter, for each iteration, the total number of patients with
AEs from a certain drug, thatis C = Zizlci, was randomly assigned to the leaves on the tree as multinomial,
with probabilities proportional to the relative risk. The relative risk of ith leaf was computed as Cc%q\]’ ,i=1,...,L
For true zero leaves, (§; = 1), ¢; = 0. If the ith leaf was not a true zero, the dataset was generated using a multi-
nomial distribution. Under H,, the vector C = (cy, . . ., 1) follows a multinomial distribution with parameters
Z,ZINW:, TEREEE ZZVWL% , where rry, . .., rry are the relative
risks of all types of AEs. The relative risk of the randomly selected true signal leaves ranged from 3, 4, and 2 to
6; however, for the other leaves, except the true zero leaves, the relative risk was equal to 1.

Based on the total number of cases, C= 640, we considered 0, 10, 30, 50, and 70 for the number of true zero
leaves, and 1%, 3%, 5%, and 10% for the true signal leaves with the relative risk (RR). All possible combinations
were simulated.

To evaluate the performance of the two methods, we computed type I error, power, sensitivity, and positive
predicted value (PPV). First, the critical value T* was obtained from 10,000 random datasets under H, by the
Monte Carlo replications for each scenario according to the number of true zeros (0, 10, 30, 50, 70). Thereafter, B
random datasets were generated under Hy and H, to calculate type I error, power, sensitivity, and PPV. For each
of the B random datasets, test statistic T,k = 1,. .., B, was calculated using both methods.

Thereafter, type I error and power were estimated using

Cand p, where p = (%, s %) Under Hy, p =

S _I(Ty > T*|Hp)
B

Typelerror =

B I(Ty > T*|H,)
. .

Power =

Sensitivity and PPV for each random datasets are expressed as

# of (detected signal N true signal)

Sensitivity =

>

# of (true signal)

# of (detected signal N true signal)
# of (detected signal)

PPV =

Overall sensitivity and PPV were calculated as the average of sensitivity and PPV over B random datasets,
S 2 .
where B =) ¢ I(Tx > T™).

Results. The results obtained using the simulated data are presented in Table 2. The type I errors for the
TreeScan-Poisson and TreeScan-ZIP methods were close to 0.05, except when the data had a Poisson distribu-
tion. The type I error of the TreeScan-Poisson method was above the nominal significance level of 0.05, while the
type I error of the TreeScan-ZIP method tended to be less than 0.05.

When the data did not include true zeros (i.e., the data were generated from the Poisson distribution), the
TreeScan-Poisson and TreeScan-ZIP methods produced similar power, sensitivity, and PPV estimates.

The TreeScan-ZIP method was identified to produce higher power and sensitivity estimates than the TreeScan-
Poisson method when the number of true zeros was greater than or equal to 10. In the presence of zero inflation,
when the number of true signals was greater than or equal to 5 and the RR was high, the PPV of the TreeScan-
Poisson method was 1.0. The TreeScan-Poisson method could detect highly significant cuts, resulting in a small
number of detected signals, which indicated high PPV and low sensitivity.

The TreeScan-ZIP method performed better than the TreeScan-Poisson in every dataset with true zero. The
estimated power was almost 1.0 and the PPV was greater than 0.98 when the number of true zeros was greater
than or equal to 10 and the number of true signals was greater than or equal to 5. The TreeScan-ZIP method was
more sensitive than the TreeScan-Poisson method. The sensitivity and PPV of the TreeScan-ZIP method became
higher with higher RR. When two true signals existed, both methods had a relatively low power; however, the
power of the TreeScan-ZIP method increased as the number of true zeros and RR increased.

The simulation study showed that in the presence of zero inflation, the TreeScan-ZIP method performed
better than the TreeScan-Poisson method.

Real data

Korea adverse event reporting system data. KAERS is a spontaneous AE reporting system main-
tained by the Korea Institute of Drug Safety and Risk Management (https://www.drugsafe.or.kr). Consumers,
Healthcare Professionals, Regional Pharmacovigilance Centers (RPVCs), and pharmaceutical companies can
report suspected drug information and AE information using the KAERS. RPVCs evaluate causality between the
suspected drug and AE and report them to KIDS. The information is then stored in the KAERS as an individual
case safety report (ICSR), which contains information on suspected drug, AE, causal relationship, and demo-
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TreeScan-Poisson TreeScan-ZIP
True zero | True signal | RR Power* | Sensitivity | PPV Power* | Sensitivity | PPV
0 0.043 0.043
2 3 0.061 0.144 0.275 0.061 0.144 0.275
2 4 0.086 0.260 0.490 0.086 0.261 0.491
2 (3.8,6) |0.125 0.343 0.654 0.126 0.339 0.648
6 3 0.833 0.176 0.976 0.833 0.176 0.976
6 4 0.988 0.192 0.984 0.989 0.192 0.983
0 6 (3.8,6) | 1.000 0.209 0.987 1.000 0.209 0.986
7 3 1.000 0.379 0.995 1.000 0.380 0.995
7 4 1.000 0.429 0.997 1.000 0.429 0.997
7 (3.8,6) | 1.000 0.451 0.997 1.000 0.451 0.997
13 3 1.000 0.234 0.996 1.000 0.235 0.996
13 4 1.000 0.297 0.998 1.000 0.299 0.998
13 (3.8,6) |1.000 0.386 0.999 1.000 0.389 0.999
0 0.052 0.046
2 3 0.047 0.000 0.000 0.070 0.173 0.338
2 4 0.042 0.000 0.000 0.104 0.304 0.581
2 (3.8,6) |0.040 0.000 0.000 0.159 0.388 0.732
6 3 0.002 0.069 0.417 0.952 0.192 0.983
6 4 0.085 0.166 0.993 1.000 0.241 0.988
10 5 (3.8,6) |0.901 0.200 1.000 1.000 0.388 0.992
7 3 1.000 0.286 1.000 1.000 0.398 0.998
7 4 1.000 0.286 1.000 1.000 0.434 0.999
8 (3.8,6) |1.000 0.276 1.000 1.000 0.389 0.999
13 3 0.996 0.153 1.000 1.000 0.250 0.998
13 4 1.000 0.154 1.000 1.000 0.318 0.999
13 (3.8,6) |1.000 0.164 1.000 1.000 0.404 1.000
0 0.051 0.049
2 3 0.044 0.000 0.000 0.071 0.205 0.390
2 4 0.037 0.000 0.000 0.115 0.338 0.629
2 (3.8,6) [0.035 0.000 0.000 0.180 0.404 0.742
6 3 0.002 0.000 0.000 0.982 0.242 0.986
6 4 0.000 0.000 0.000 1.000 0.339 0.991
30 5 (3.8,6) |0.174 0.200 1.000 1.000 0.452 0.993
8 3 0.830 0.232 1.000 1.000 0.359 0.998
8 4 1.000 0.250 1.000 1.000 0.388 0.999
8 (3.8,6) |1.000 0.250 1.000 1.000 0.421 0.999
14 3 0.733 0.128 1.000 1.000 0.258 0.998
14 4 1.000 0.143 1.000 1.000 0.326 0.999
14 (3.8,6) |1.000 0.143 1.000 1.000 0.407 1.000
0 0.052 0.051
2 3 0.040 0.000 0.000 0.103 0.298 0.543
2 4 0.033 0.000 0.000 0.184 0.423 0.761
2 (3.8,6) |0.023 0.000 0.000 0.313 0.519 0.875
6 3 0.001 0.000 0.000 0.998 0.349 0.990
6 4 0.000 0.167 1.000 1.000 0.397 0.993
50 6 (3.8,6) |0.258 0.167 1.000 1.000 0.404 0.995
8 3 0.969 0.247 1.000 1.000 0.409 0.998
8 4 1.000 0.250 1.000 1.000 0.464 0.999
8 (3.8,6) [1.000 0.250 1.000 1.000 0.529 1.000
14 3 0.908 0.138 1.000 1.000 0.287 1.000
14 4 1.000 0.143 1.000 1.000 0.362 1.000
14 (3.8,6) | 1.000 0.143 1.000 1.000 0.466 1.000
Continued
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TreeScan-Poisson TreeScan-ZIP

True zero | True signal | RR Power* | Sensitivity | PPV Power* | Sensitivity | PPV
0 0.050 0.049
2 3 0.040 0.000 0.000 0.226 0.499 0.826
2 4 0.035 0.000 0.000 0.462 0.586 0.926
2 (3.8,6) |0.033 0.000 0.000 0.735 0.664 0.967
6 3 0.000 - - 1.000 0.417 0.996
6 4 0.013 0.167 1.000 1.000 0.499 0.997

70 6 (3.8,6) |0.969 0.167 1.000 1.000 0.527 0.999
7 3 1.000 0.286 1.000 1.000 0.429 0.999
7 4 1.000 0.286 1.000 1.000 0.477 0.999
7 (3.8,6) | 1.000 0.286 1.000 1.000 0.586 0.999
13 3 1.000 0.154 1.000 1.000 0.249 0.999
13 4 1.000 0.154 1.000 1.000 0.294 0.999
13 (3.8,6) |1.000 0.143 1.000 1.000 0.466 1.000

Table 2. Type I error, power, sensitivity and positive predictive value obtained by the two methods according
to the number of true signals and relative risk. * Type I error when the number of true signals is 0.

graphic. The ICSRs are periodically summited to the WHO-UMC. Further, safety information obtained from
KAERS data and signal analysis is periodically reported to the Ministry of Food and Drug Safety.

For the real data analysis, data cleansing was performed. Because a certain drug and AE information can
be reported multiple times depending on the dose and time of administration, if the same drug and AE were
reported twice or more, only the first report was used. In the causality, only drug-AE pairs that received rat-
ings of possible or above were included in this study. There are 6 levels of causality: certain, probable, possible,
unlikely, conditional, and unassessable’*’. In KAERS database, AEs are coded by the WHO-ART. As more than
half of the reports included information down to the PT level, and HLT may not exist, this study used two levels
of hierarchy, SOC and PT, with the exception of the HLT and IT level.

Data obtained between 2012 and 2016 from KAERS were used. During this period, 716,584 people reported
experiencing AEs. There were 1.8 million drug reports on 1981 types of drugs and 1.1 million AE reports on
4078 types of AEs. Further, a total of 2.4 million unique drug-AE pairs were found. When removing pairs that
had beneath the ‘possible’ threshold, the final dataset analyzed in this study included 1,077,060 drug-AE pairs
representing 1292 types of AEs in PTs. Further, 1981 types of drugs were identified in 557,390 reports.

Paclitaxel and docetaxel. The two proposed methods were applied to detect the AE signals to the drug-
AE pairs data from KAERS. Paclitaxel and docetaxel, which have the highest sales among all anticancer drugs
in the world, were selected*’. Of note, these are representatives of the new class of taxane drugs, which have
emerged as a fundamental treatment for breast cancer. Paclitaxel and docetaxel have similar main structures and
mechanisms of action*?. Paclitaxel is used to treat a number of cancer types, including Kaposi sarcoma, breast
cancer, ovarian cancer, lung cancer, cervical cancer, and pancreatic cancer (https://www.ashp.org/). Docetaxel
is also used as to treat several cancer types, including breast cancer, non-small cell lung cancer, prostate can-
cer, head and neck cancer, and stomach cancer (https://www.cancer.gov/). The most frequently reported AEs
related to taxene from MICROMEDEX® include cardiovascular effects, dermatologic effects, endocrine/meta-
bolic effects gastrointestinal effects, hematologic effects, hepatic effects, immunologic effects, musculoskeletal
effects, neurologic effects, ophthalmic effects, otic effects, renal effects, respiratory effects, and others (https://
www.who.int/).

Results. Paclitaxel. Nine signals were identified by the TreeScan-Poisson method and 30 signals were de-
tected by the TreeScan-ZIP method (Table 3). The nine signals detected by the TreeScan-Poisson method were
also detected by the TreeScan-ZIP method. The AEs corresponding to the signals found by both methods were
related to the following SOCs: central & peripheral nervous system disorders (0410), respiratory system disor-
ders (1100), white cell and reticuloendothelial system disorders (1220), and body as a whole—general disorders
(1810). Further, their PTs were paresthesia (0410.0137), neuropathy peripheral (0410.1313), dyspnea (1100.
0514), granulocytopenia (1220.0572), leucopenia (1220.0908), chest pain (1810.0718), and temperature change
sensations (1810.1705). The TreeScan-ZIP method detected signals related to 10 SOC terms. The nine signals
detected by the two methods were included in the known AEs. However, some signals detected by TreeScan-ZIP
alone were included in the known AEs.

Docetaxel. The TreeScan-Poisson and the TreeScan-ZIP methods identified 9 and 56 signals, respectively
(Table 4). All signals detected by the TreeScan-Poisson method were also detected by the TreeScan-ZIP method.
The AEs corresponding to the signals found by both methods were related to the following SOCs: skin and
appendages disorders (0100), musculo-skeletal system disorders (0200), central & peripheral nervous system
disorders (0410), red blood cell disorders (1210), white cell and reticulo-endothelial system (RES) disorders
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TreeScan-Poisson TreeScan-ZIP

SOC PT Diagnosis Marginal total Obs Exp O/E p-value Exp O/E p-value
Skin and appendages disorders 352,949 1020 1176.5 0.9 1.000 868.3 1.2 1.000
0002 ALOPECIA 13,193 94 44.0 2.1 0.929 325 2.9 0.001
0100 0043 SWEATING INCREASED 13,433 100 44.8 2.2 0.890 33.0 3.0 0.001
0828 HYPOTRICHOSIS 234 13 0.8 16.7 0.897 0.6 22,6 0.001
Musculo-skeletal system disorders 50,667 305 168.9 1.8 0.639 124.6 2.4 0.001
0200 0073 MYALGIA 24,679 244 82.3 3.0 0.119 60.7 4.0 0.001
Central & peripheral nervous system disorders 233,135 781 777.1 1.0 1.000 573.5 1.4 1.000
0117 HYPOAESTHESIA 2349 32 7.8 4.1 0.934 5.8 5.5 0.001
0130 NEUROPATHY 4198 81 14.0 5.8 0.318 10.3 7.8 0.001
0410 0137 PARAESTHESIA 12,165 213 40.5 53 0.015 299 7.1 0.001
1313 NEUROPATHY PERIPHERAL 5634 150 18.8 8.0 0.015 13.9 10.8 0.001
2082 POLYNEUROPATHY 183 7 0.6 11.5 0.998 0.5 15.5 0.001
0800 Metabolic and nutritional disorders 68,669 92 228.9 0.4 1.000 168.9 0.5 1.000
0368 CACHEXIA 3184 49 10.6 4.6 0.754 7.8 6.3 0.001
Heart rate and rhythm disorders 22,346 206 74.5 2.8 0.270 55.0 3.7 0.001
1030 0221 PALPITATION 11,778 99 39.3 2.5 0.810 29.0 34 0.001
0224 TACHYCARDIA 4569 94 15.2 6.2 0.177 11.2 8.4 0.001
1040 Vascular (extracardiac) disorders 13,671 100 45.6 2.2 0.897 33.6 3.0 0.001
0207 FLUSHING 5334 91 17.8 5.1 0.312 13.1 6.9 0.001
Respiratory system disorders 137,936 588 459.8 13 0.961 339.3 1.7 0.001
1100 0514 DYSPNOEA 36,735 410 122.4 33 0.010 90.4 4.5 0.001
0537 RESPIRATORY INSUFFICIENCY 1292 18 43 4.2 0.996 32 5.7 0.001
White cell and RES disorders 92,531 1085 308.4 3.5 0.001 227.6 4.8 0.001
1220 0570 AGRANULOCYTOSIS 8089 89 27.0 33 0.656 19.9 4.5 0.001
0572 GRANULOCYTOPENIA 58,735 674 195.8 34 0.001 144.5 4.7 0.001
0908 LEUCOPENIA 20,456 314 68.2 4.6 0.008 50.3 6.2 0.001
1700 Neoplasms 6336 25 21.1 1.2 1.000 15.6 1.6 0.996
1345 NEOPLASM MALIGNANT 591 13 2.0 6.6 0.989 1.5 8.9 0.001
Body as a whole—general disorders 220,690 1295 735.6 1.8 0.011 542.9 24 0.001
0712 ALLERGIC REACTION 1394 18 4.6 3.9 0.998 3.4 52 0.001
0718 CHEST PAIN 25,856 479 86.2 5.6 0.001 63.6 7.5 0.001
1810 0730 PAIN 7221 54 24.1 22 0.987 17.8 3.0 0.001
1705 TEMPERATURE CHANGED SENSATION 9204 245 30.7 8.0 0.003 22.6 10.8 0.001
2237 ANAPHYLACTIC REACTION 3680 44 12.3 3.6 0.895 9.1 4.9 0.001

Table 3. Results of signal detection of adverse events of paclitaxel by the two methods.

(1220). Their PTs were alopecia (0100.0002), nail disorder (0100.0020), myalgia (0200.0073), sensory distur-
bance (0410.0148), anemia (1210.0544), and granulocytopenia (1220.0572). The TreeScan-ZIP method detected
signals related to 18 SOC terms. All signals detected by the two methods were included in the known AEs. A few
signals that were not detected by TreeScan, but were detected by TreeScan-ZIP, were included in known AEs,
such as vision disorders, gastro-intestinal system disorders, liver and biliary system disorders, urinary system
disorders, etc.

Conclusion and discussion

This study sought to reveal how the tree-based scan statistic developed by Kulldorff et al.*® can be extended for
the zero-inflated count data. To consider a large number of zero cells, we proposed the TreeScan-ZIP method,
which integrates a zero-inflated Poisson model into the TreeScan-Poisson method. Herein, a simulation study was
conducted with different settings for the relative risk and the number of true zero leaves and true signal leaves.
Based on the findings of the simulation study, the TreeScan-ZIP method performed better than the TreeScan-
Poisson method in terms of power, sensitivity, and PPV, especially when the proportion of true zeros was high.
The real data examples also supported the simulation results. The TreeScan-Poisson method may have missed
many signals that were detected by the TreeScan-ZIP method in datasets with a large number of true zeros. If
the TreeScan-ZIP method detects too many false positive signals, it may increase confusion in further investiga-
tion and utilize unnecessary energy. However, even the known AEs were not detected by the TreeScan-Poisson
method. Although we do not know whether all signals detected by the TreeScan-ZIP method were true, it is safer
to over-detect than to miss any signal in drug safety surveillance.
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TreeScan-Poisson TreeScan-ZIP
SOC PT Diagnosis Marginal total Obs Exp O/E p-value Exp O/E p-value
Skin and appendages disorders 352,949 4420 5126.4 0.9 1.000 3467.1 1.3 1.000
0002 ALOPECIA 13,193 2212 191.6 11.5 0.001 129.6 17.1 0.001
0008 DERMATITIS EXFOLIATIVE 161 11 23 4.7 1.000 1.6 7.0 0.024
0100 0020 NAIL DISORDER 3248 760 47.2 16.1 0.005 31.9 23.8 0.001
1199 SKIN EXFOLIATION 1673 54 24.3 22 1.000 16.4 33 0.001
1634 NAIL DISCOLOURATION 429 91 6.2 14.6 0.927 4.2 21.6 0.001
Musculo-skeletal system disorders 50,667 2387 735.9 32 0.011 497.7 4.8 0.001
0200 0063 ARTHRALGIA 8201 416 119.1 35 0.813 80.6 52 0.001
0073 MYALGIA 24,679 1908 358.4 5.3 0.003 242.4 7.9 0.001
Central & peripheral nervous system disorders 233,135 2081 3386.1 0.6 1.000 2290.1 0.9 1.000
0148 SENSORY DISTURBANCE 2473 767 35.9 21.4 0.003 243 31.6 0.001
0410 1313 NEUROPATHY PERIPHERAL 5634 230 81.8 2.8 0.986 55.3 42 0.001
1532 LOWER MOTOR NEURONE LESION 117 12 1.7 7.1 1.000 1.1 10.4 0.001
Vision disorders 17,634 186 256.1 0.7 1.000 173.2 1.1 1.000
0431 1049 LACRIMATION ABNORMAL 647 116 9.4 12.3 0.879 6.4 18.3 0.001
1462 EPIPHORA 151 22 2.2 10.0 1.000 1.5 14.8 0.001
0433 Special senses other, disorders 4692 563 68.1 8.3 0.121 46.1 12.2 0.001
0267 TASTE PERVERSION 4195 555 60.9 9.1 0.103 41.2 13.5 0.001
Psychiatric disorders 129,819 1261 1885.5 0.7 1.000 1275.2 1.0 1.000
0500 0165 ANOREXIA 36,109 690 524.5 1.3 1.000 354.7 1.9 0.001
Gastro-intestinal system disorders 636,320 6813 9242.1 0.7 1.000 6250.7 1.1 1.000
0204 CONSTIPATION 45,356 991 658.8 1.5 0.988 445.5 22 0.001
0269 ANUS DISORDER 321 17 4.7 3.6 1.000 32 5.4 0.005
0298 HAEMORRHOIDS 1442 45 20.9 2.1 1.000 14.2 32 0.005
0321 PROCTITIS 91 24 1.3 18.2 0.999 0.9 26.8 0.001
0600 0327 STOMATITIS 10,870 256 157.9 1.6 1.000 106.8 2.4 0.001
1014 HAEMORRHAGE RECTUM 655 33 9.5 35 1.000 6.4 5.1 0.001
1083 GINGIVITIS 1353 133 19.7 6.8 0.949 13.3 10.0 0.001
1351 MUCOSITIS NOS 4978 170 72.3 2.4 0.999 48.9 3.5 0.001
1376 TOOTH ACHE 1032 42 15.0 2.8 1.000 10.1 4.1 0.001
0700 Liver and biliary system disorders 52,619 643 764.3 0.8 1.000 516.9 1.2 1.000
0360 SGPT INCREASED 12,811 341 186.1 1.8 0.998 125.8 2.7 0.001
Metabolic and nutritional disorders 68,669 714 997.4 0.7 1.000 674.6 1.1 1.000
0800 0381 HYPERCHOLESTEROLAEMIA 1982 139 28.8 4.8 0.978 19.5 7.1 0.001
0387 HYPOCALCAEMIA 2433 112 35.3 32 0.998 239 4.7 0.001
Vascular (extracardiac) disorders 13,671 255 198.6 1.3 1.000 134.3 1.9 0.001
1040 0207 FLUSHING 5334 216 77.5 2.8 0.986 52.4 4.1 0.001
1413 ERYTHROMELALGIA 81 27 1.2 229 0.998 0.8 33.9 0.001
1100 Respiratory system disorders 137,936 1644 2003.4 0.8 1.000 1355.0 1.2 1.000
0523 PHARYNGITIS 18,340 361 266.4 1.4 1.000 180.2 2.0 0.003
Red blood cell disorders 30,116 1675 437.4 3.8 0.030 295.8 57 0.001
1210 0544 ANAEMIA 25,889 1668 376.0 4.4 0.011 254.3 6.6 0.001
White cell and RES disorders 92,531 3969 1344.0 3.0 0.002 909.0 4.4 0.001
0570 AGRANULOCYTOSIS 8089 375 117.5 3.2 0.899 79.5 4.7 0.001
1220 0572 GRANULOCYTOPENIA 58,735 2474 853.1 29 0.028 577.0 4.3 0.001
0908 LEUCOPENIA 20,456 1091 297.1 3.7 0.167 200.9 5.4 0.001
1300 Urinary system disorders 49,509 301 719.1 0.4 1.000 486.3 0.6 1.000
0621 RENAL PAIN 466 40 6.8 59 1.000 4.6 8.7 0.001
Reproductive disorders, female 10,695 283 155.3 1.8 1.000 105.1 2.7 0.001
0636 AMENORRHOEA 800 151 11.6 13.0 0.761 7.9 19.2 0.001
1420 0669 VAGINITIS 463 23 6.7 3.4 1.000 4.5 5.1 0.001
1839 BREAST PAIN 500 38 7.3 52 1.000 49 7.7 0.001
Continued
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TreeScan-Poisson TreeScan-ZIP
SOC PT Diagnosis Marginal total Obs Exp O/E p-value Exp O/E p-value
Body as a whole—general disorders 220,690 4995 3205.4 1.6 0.334 2167.9 2.3 0.001
0401 OEDEMA PERIPHERAL 9444 607 137.2 4.4 0.398 92.8 6.5 0.001
0716 ASTHENIA 24,301 456 353.0 1.3 1.000 238.7 19 0.006
0717 BACK PAIN 9781 209 142.1 1.5 1.000 96.1 2.2 0.003
1810 0718 CHEST PAIN 25,856 928 375.5 2.5 0.681 254.0 3.7 0.001
0724 FATIGUE 14,561 515 211.5 2.4 0.933 143.0 3.6 0.001
1705 TEMPERATURE CHANGED SENSATION 9204 822 133.7 6.1 0.079 90.4 9.1 0.001
1765 PALMAR-PLANTAR ERYTHRODYSAESTHESIA 7415 517 107.7 4.8 0.441 72.8 7.1 0.001
2101 PAIN AXILLARY 159 20 2.3 8.7 1.000 1.6 12.8 0.001
1820 Application site disorders 25,336 150 368.0 0.4 1.000 248.9 0.6 1.000
0058 INJECTION SITE REACTION 3385 106 49.2 2.2 1.000 333 3.2 0.001
Secondary terms—events 12,322 92 179.0 0.5 1.000 121.0 0.8 0.001
2000 1813 SURGICAL SITE REACTION 290 68 4.2 16.1 0.964 2.8 23.9 0.001

Table 4. Results of signal detection of adverse events of docetaxel by the two methods.

The data used were extracted from spontaneous reporting systems, which is a limitation. As spontaneous
reporting systems are based on self-reporting by people, such as consumers and healthcare professionals, under-
reporting or overreporting of AEs may easily occur. For example, only the number of cases reported can be
known. Thus, whether the same AE occurred multiple times in the same person cannot be known. Cases of
overreporting may thus lead to bias in the analysis.

In this study, the TreeScan-ZIP method and TreeScan-Poisson method identified signals of AEs for a par-
ticular drug, and could identify drugs that are more frequently reported to be related to a particular AE. Cuts
were made either above or below nodes in this study; however, more elaborate cuts, such as the combinational
cuts proposed by Kulldorff et al.” can also be made. In this study, we used a two-level structure; however, struc-
tures with more than two levels or other spontaneous reporting system data with more delicate levels can be
employed. Further studies could use a zero-inflated double Poisson or zero-inflated negative binomial model to
accommodate large numbers of true zeros and overdispersion*’. When a priory level of AE definition cannot be
determined in the tree structure and the data have a large number of zeros, the proposed tree-based scan statistic
can serve as a very useful method for detecting signals in the post-market drug safety surveillance.

Data availability
The KARES database is provided via the Korea Institute of Drug Safety and Risk management webpage. (https://
open.drugsafe.or.kr/original/invitation.jsp) upon request.
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