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Computer-assisted surgery (CAS) allows clinicians to personalize treatments and surgical 
interventions and has therefore become an increasingly popular treatment modality in maxil-
lofacial surgery. The current maxillofacial CAS consists of three main steps: (1) CT image 
reconstruction, (2) bone segmentation, and (3) surgical planning. However, each of these three 
steps can introduce errors that can heavily affect the treatment outcome. As a consequence, 
tedious and time-consuming manual post-processing is often necessary to ensure that each step 
is performed adequately. One way to overcome this issue is by developing and implementing 
neural networks (NNs) within the maxillofacial CAS workflow. These learning algorithms can 
be trained to perform specific tasks without the need for explicitly defined rules. In recent years, 
an extremely large number of novel NN approaches have been proposed for a wide variety of 
applications, which makes it a difficult task to keep up with all relevant developments. This 
study therefore aimed to summarize and review all relevant NN approaches applied for CT 
image reconstruction, bone segmentation, and surgical planning. After full text screening, 76 
publications were identified: 32 focusing on CT image reconstruction, 33 focusing on bone 
segmentation and 11 focusing on surgical planning. Generally, convolutional NNs were most 
widely used in the identified studies, although the multilayer perceptron was most commonly 
applied in surgical planning tasks. Moreover, the drawbacks of current approaches and prom-
ising research avenues are discussed.
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Introduction

Spatial information embedded in medical three-
dimensional (3D) images is being increasingly used to 
personalize treatments by means of computer-assisted 
surgery (CAS). This novel image-based treatment 
modality enables clinicians to perform patient-specific 
virtual operations, 3D-print personalized medical 
constructs and perform robot-guided surgery.1 More-
over, CAS offers the unique possibility to conduct 
a limitless amount of different surgical simulations 
(osteotomies, grafts, implants, etc.) prior to surgery 
in a stress-free environment,1 and to predict surgical 
outcomes with minimal risk to the patient. Further-
more, such virtual simulations have proven to be useful 
for patient communication and medical education.2,3 As 
a result, CAS is currently being employed in multiple 
surgical branches involving the musculoskeletal system. 
In particular, CAS has advanced in the area of maxillo-
facial surgery.4

The current maxillofacial CAS workflow consists 
of different steps that are illustrated in Figure  1. The 
first step in the workflow is image acquisition. To date, 
numerous imaging modalities have become available 
on the market, including CT and MRI. CT imaging 
modalities are most commonly used to visualize bony 
structures due to their superior hard tissue contrast. 
CT scanners acquire X-ray projections of the patients’ 
anatomy from multiple angles. These projection data can 
be subsequently reconstructed into a 3D image using a 
wide variety of reconstruction methods. After the CT 
image acquisition step, image processing is necessary 
to convert the CT scans into a virtual 3D model in the 
standard tessellation language (STL) file format. This 
file format is supported by all FDA-approved medical 
software packages that are currently used for computer-
aided design (CAD) and computer-aided manufac-
turing. The most important step in this CT-to-STL 
conversion is image segmentation (Figure 1), in which 
clinicians define and delineate anatomies of interest 
such as bone. In the final step of the CAS workflow, the 
acquired STL models are exported to dedicated medical 
CAD software packages and used for surgical planning 
by virtually designing patient-specific implants, surgical 
guides and radiotherapy boluses.5

Each of the aforementioned steps (i.e. CT image 
reconstruction, bone segmentation and surgical plan-
ning) is a potential source of errors which can lead 
to inaccuracies in the final STL models and impair 
the treatment outcome.6 For example, imaging noise, 
metallic structures and patient movements can heavily 
affect the CT image quality after reconstruction. For 
image segmentation, the segmentation technique 
can have a considerable effect on the accuracy of the 
resulting model.6 Furthermore, the surgical planning 
step currently relies on extensive domain expertise 
and manual software input, which often hampers its 
reproducibility.

One way to overcome these limitations is to employ 
neural networks (NNs) during the different steps of this 
maxillofacial CAS workflow. These learning algorithms 
are different from traditional computer methods in 
that they can be trained to find characteristic features 
and patterns in data, without the need for explicit rules 
specified by domain experts. The most common NN is 
the multilayer perceptron (MLP), which consists of an 
input layer, several hidden layers and an output layer. 
Each of these layers comprises several computational 
building blocks called neurons. Within an MLP, neurons 
are connected to neurons in subsequent layers. The 
output of each neuron is the product of its input with a 
learned set of weights plus a learned bias. Finally, a non-
linear activation function is applied.7 It can be proven 
that MLPs can approximate any continuous function 
(universal approximation theorem,8 which gives them 
the ability to infer descriptive functions from data).

In the training phase, the weights and biases of a 
NN are learned from training data. During this training 
process, a large amount of input data is propagated 
through the NN to predict the values of the output 
layer. The goal of training is to minimize the differ-
ence between the NN prediction and the desired output 
by iteratively updating the weights and biases of the 
network. After optimizing these trainable parameters, 
NNs can be used to automatically perform specific tasks 
of the maxillofacial CAS workflow.

Recent advances in computational power and the 
development of novel NN algorithms have brought 

Figure 1  Schematic overview of the maxillofacial CAS workflow. CAS, computer-assisted surgery.
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about a paradigm shift in the CAS workflow.9 A wide 
variety of advanced NN architectures have been 
successfully employed for various tasks such as image 
reconstruction and segmentation. For example, convo-
lutional neural networks (CNNs) are especially useful 
for processing image data. These networks apply convo-
lutions instead of a set of multiplications to compute 
the output of the individual layers. Another important 
type of neural networks is the recurrent neural network 
(RNN), which can handle temporal dynamic data. 
However, due to the rapidly increasing number of 
studies published in the field, maxillofacial surgeons 
and medical engineers have been facing the difficult 
task of keeping up with all developments. Therefore, 
this scoping review aims to provide an overview of the 
different types of NN approaches that have been used 
during the three main steps required in the CAS work-
flow, i.e. CT image reconstruction, bone segmentation 
and surgical planning. Furthermore, the secondary goal 
of this review paper is to identify the current bottlenecks 
and possible next research steps regarding the applica-
tion of NNs in the maxillofacial CAS workflow.

Methods and materials

Existing literature on the application of NNs in the 
maxillofacial CAS workflow was obtained using 
Pubmed, Embase, Scopus, Web of Science, and Google 
Scholar. An initial database was generated with the 
following search terms:

(1)	 (CT OR CBCT OR computed tomography OR 
cone-beam computed tomography) AND (image 
reconstruction OR image processing OR image 
analysis OR image segmentation) AND (artificial 
intelligence OR deep learning OR neural network)

(2)	 (bone OR bones OR bony) AND ((implant OR 
prosthesis OR virtual model) AND (design OR 
planning OR construct OR model)) AND (artificial 
intelligence OR deep learning OR neural network)

It must be noted that there was no specific focus on 
maxillofacial surgery when defining the search terms. 
The reason for this is that we believe that many of the 
techniques and methods used in other fields can also 
be of relevance to maxillofacial CAS. Choosing more 
generic search terms thus allowed us to identify a wider 
variety of literature relevant that was potentially rele-
vant to maxillofacial CAS.

Publications were only included in the initial data-
base if  the search terms one or two were found in their 
title, abstract or keywords. After removing duplicates 
and adding literature found from references, a database 
of 6994 papers was acquired. The title and abstract of 
these publications were screened, resulting in 248 publi-
cations that were eligible for full-text reading. In order 
to assess whether papers were eligible for inclusion, the 
following inclusion and exclusion criteria were used:

Inclusion criteria:

•	 Described the development or implementation of a 
NN.

•	 Performed at least one of the three main steps re-
quired in the maxillofacial CAS workflow, i.e. CT im-
age reconstruction, bone segmentation and surgical 
planning. Although surgical planning is an extremely 
broad field, this review specifically focused on the 
designing and optimization of implants and virtual 
models.

•	 Evaluated on medical data sets or artificial medical 
phantoms.

Exclusion criteria:

•	 Used non-CT based imaging modalities.

The study selection process of the present study is shown 
in Figure 2.

Results and discussion

This review aimed to identify NN architectures, training 
strategies and workflows that can potentially benefit CT 
image reconstruction, bone segmentation or surgical 
planning, since these steps are pivotal in the CAS work-
flow. In total, 76 studies were included in this review: 
32 focusing on CT image reconstruction, 33 focusing 
on bone segmentation and 11 focusing on surgical plan-
ning. All studies are summarized in Table 1. In addition, 
Figure 3 shows the most popular NN approaches used 
in the reviewed studies.

Of the 32 reviewed studies for CT image reconstruc-
tion, 19 studies used simulated CT data to train and test 
their NN approach, 15 studies used clinical CT data, 
and 2 studies used CT data of physical phantoms. In 
contrast, all 33 bone segmentation studies used clin-
ical data sets to train and test the NN approaches. two 
surgical planning studies were performed based on 
clinical data sets in two studies, and the remaining nine 
studies were performed based on simulated data. Details 
of the data sets used to train the NN approaches are 
provided in Figure 4.

Training and testing of the NNs with clinical data was 
performed with a mean of 33 ± 42 CT volumes and 12 
± 16 CT volumes, respectively. The mean ratio between 
the amount of training and testing data was approxi-
mately 9:2. Furthermore, 13 of the 76 reviewed studies 
employed a leave-k-out testing strategy to improve vali-
dation of the NNs. In this cross-validation strategy, 
the available data are split into k folds, where one fold 
is alternately used as testing data, and the remaining 
folds serve as training data for the NN. This process is 
repeated k times such that all folds have been used for 
testing.

Quantitative evaluation of the NNs’ performances 
for CT image reconstruction tasks was most commonly 
performed using the peak signal-to-noise ratio (PSNR) 
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and the structural similarity index measure (SSIM) 
(Figure  5a). The bone segmentation NNs were most 
commonly evaluated using the dice similarity coeffi-
cient (DSC) (Figure 5b). No consistency was observed 
in the performance metrics used to evaluate the surgical 
planning step (Figure 5c). Moreover, 3 of the 11 surgical 
planning studies did not include quantitative perfor-
mance evaluations.

In the following subsections, we elaborate on the NN 
approaches that have been employed in each of the three 
steps of maxillofacial CAS.

Image reconstruction
Historically, CT image reconstruction (Figure  6) has 
been a notoriously difficult task, which aims to compute 
the density of objects or anatomical structures based 
on the attenuation of X-rays. To date, two different 

reconstruction methods have been predominantly 
employed in clinical settings: filtered backprojection 
(FBP) and iterative reconstruction (IR). FBP is an 
analytical method in which measured projection data 
are uniformly distributed across the CT scan with an 
angle that corresponds to the acquisition of the projec-
tion data. A filter is subsequently applied to reduce blur-
ring in the CT scan. By using projection data acquired at 
multiple angles with respect to the patient, a 3D CT scan 
can be reconstructed. IR approaches start similar to the 
FBP in that they use the measured projection data to 
reconstruct an initial CT scan. Based on this initial scan, 
a forward operation is performed to create artificial 
projection data. The artificial projection data are then 
compared to the measured projection data, which are 
used to update the initial CT scan. The forward opera-
tion and the scan update are repeated until the quality 

Figure 2  Overview of the study selection process of the present study.
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Table 1  Overview of the studies included in this review

CAS step Year CT imaging modality Anatomy
Neural network 
architecture Authors

CT image reconstruction 2005 Fan-beam Abdomen Radial basis-function 
NN

Hu10

2006 Parallel-beam Shepp-Logan phantom Radial basis-function 
NN

Guo11

2008 Parallel-beam Shepp-Logan phantom RNN Cierniak12

2008 Parallel-beam Shepp-Logan phantom RNN Cierniak13

2009 Fan-beam Shepp-Logan phantom RNN Cierniak14

2010 Parallel-beam Shepp-Logan phantom RNN Cierniak15

2010 Parallel-beam Shepp-Logan phantom RNN Cierniak16

2011 Parallel-beam;
Fan-beam

Shepp-Logan phantom RNN Cierniak17

2012 Parallel-beam Shepp-Logan phantom RNN Cierniak and Lorent18

2016 Parallel-beam, Fan-beam Chest CNN Würfl et al.19

2017 Fan-beam Shepp-Logan phantom, 
anthropomorphic phantom 
head

CNN Adler and Öktem20

2018 Parallel-beam,
Fan-beam

Ellipse phantom,
Shepp-Logan phantom,
Human phantoms

CNN Adler and Öktem21

2018 Multidetector row Abdomen CNN Chen et al.22

2018 Multidetector row Abdomen,
Chest,
Rat brain

CNN Gupta et al.23

2018 Multidetector row Abdomen CNN Han et al.24

2018 Fan-beam Chest CNN Liang et al.25

2018 Cone-beam Abdomen CNN Würfl et al.26

2019 Fan-beam Skull CNN Dong et al.27

2019 Parallel-beam Chest CNN Fu and de Man28

2019 Multidetector row Torso CNN He et al.29

2019 Multidetector row Chest CNN Lee et al.30

2019 Fan-beam Skull GAN Li et al.31

2019 Multidetector row Chest CNN Shen et al.32

2019 Fan-beam Abdomen CNN Wu et al.33

2019 – Shepp-Logan phantom CNN Zhang and Zuo34

2019 Cone-beam Chest CNN Zhang et al.35

2020 Fan-beam Prostate CNN Chen et al.36

2020 Translational CT Chest CNN Wang et al.37

2020 Parallel-beam Chest CNN Baguer et al.38

2020 Parallel-beam Chest CNN Ma et al.39

2020 Fan-beam;
Cone-beam

Chest CNN Wang et al.40

2020 Cone-beam Breast GAN Xie et al.41

Bone segmentation 2002 Multidetector row Chest, Skull MLP Zhang and Valentino42

2008 Multidetector row Phalanx MLP Gassman et al.43

2013 - Jaw, mouth, nose, eye, brain MLP Kuo et al.44

2017 Multidetector row Femur CNN Chen et al.45

2017 – Mandible, Spinal cord CNN Ibragimov and Xing46

2017 Multidetector row Femural head, bladder, 
intestine, colon

CNN Males et al.47

2018 Multidetector row Whole body CNN Klein et al.48

2018 Multidetector row Vertebrae CNN Lessman et al.49

2018 Multidetector row Skull CNN Minnema et al.50

2018 – Vertebrae Deep-belief  network Qadri et al.51

(Continued)
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of the CT scan is satisfactory or for a fixed number of 
iterations. To date, a wide variety of different IR algo-
rithms have been developed, including the algebraic 
reconstruction technique (ART), the simultaneous iter-
ative reconstruction technique (SIRT) and model-based 
iterative reconstruction (MBIR).

Over the last decade, NNs have opened up a wealth 
of opportunities in the field of CT image reconstruc-
tion, offering CT images with higher quality than with 
FBP, while requiring shorter reconstruction times than 

current IR reconstruction approaches. One of the first 
efforts in developing NNs for medical CT image recon-
struction can be traced back to 2005, when Hu et al 
proposed two different NN-based approaches.10 The 
first approach aimed to reconstruct 2D CT images 
using a Radial Basis Function NN (RBF-NN), which 
is a similar to the classical MLP, but uses a radial basis 
function as non-linear activation function. The input 
of this RBF-NN consisted of CT projection data, and 
the desired target consisted of previously reconstructed 

CAS step Year CT imaging modality Anatomy
Neural network 
architecture Authors

2018 Multidetector row Mandible CNN Yan et al.52

2018 Multidetector row Vertebrae CNN Zhou et al.53

2019 – Vertebrae CNN Dutta et al.54

2019 – Teeth CNN Gou et al.55

2019 Multidetector row Whole-body CNN Klein et al.56

2019 Multidetector row Orbital bones CNN Lee et al.57

2019 Multidetector row Vertebrae CNN Lessmann et al.58

2019 Cone-beam Mandible, teeth CNN Minnema et al.4

2019 Multidetector row Vertebrae CNN Rehman et al.59

2019 Cone-beam Skull CNN Torosdagli et al.60

2019 – Vertebrae CNN Vania et al.61

2019 Multidetector row Pelvic bones CNN Wang et al.62

2019 Micro-CT Teeth CNN Yazdani et al.63

2020 Cone-beam Teeth CNN Lee et al.64

2020 – Temporal bone CNN Li et al.65

2020 – Vertebrae CNN Yin et al.66

2020 Multidetector row Whole-body CNN Noguchi et al.67

2020 Multidetector row Vertebrae CNN Bae et al.68

2020 Multidetector row Cochleae CNN Heutink et al.69

2020 Cone-beam Skull CNN Zhang et al.70

2020 – Vertebrae Cascaded CNN Xia et al.71

2020 Cone-beam Teeth CNN Chen et al.72

2020 Cone-beam Teeth CNN Rao et al.73

Surgical planning 2000 – Skull MLP based on legendre 
polynomials

Hsu and Tseng74

2001 – Skull MLP based on legendre 
polynomials

Hsu and Tseng75

2001 Multidetector row Radius Bernstein Basis function 
network

Knopf and Al-Naji76

2010 n.a. Femur MLP Hambli77

2012 n.a. Femur MLP Campoli et al.78

2012 n.a. Bone microstructure Meshing growing neural 
gas (MGNG)

Fischer and Holdstein79

2016 n.a. Femur MLP Chanda et al.80

2018 n.a. Dental implant MLP Roy et al.81

2019 n.a. Spinal implant MLP Biswas et al.82

2020 – Skull GAN Kodym et al.83

2020 – Mandible GAN Liang et al.84

- : not specified; CNN: convolutional neural network; GAN: generative adversarial network; MLP: multilayer perceptron;NN: neural network; 
RNN: recurrent neural network; n.a.: not applicable.

Table 1  (Continued)
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CT scans. In the second approach, the RBF-NN was 
employed to iteratively estimate the intensities of the 
voxels in the CT scan. More specifically, an IR scheme 
was employed in which the RBF-NN was trained to 
update the voxel values in the CT scans. Although both 
RBF-NN-based approaches were initially used to recon-
struct small 32 × 32 images with only 8–16 projection 
angles, image sizes were increased to 128 × 128 in a later 
study by Guo et al.11

In a series of publications between 2008 and 2012,12–18 
Cierniak et al developed multiple RNNs to iteratively 
reconstruct CT scans after using traditional backprojec-
tion to create an initial CT scan. The proposed RNNs 
were essentially used as learnable filters for the FBP 
reconstruction method, replacing the fixed filters in 

FBP.17 Cierniak demonstrated that the proposed RNNs 
improved CT image quality compared to FBP. More-
over, it was shown that the proposed method was able 
to reconstruct projection data acquired from various 
CT scanning geometries such as fan-beam and parallel-
beam (Figure 6).

Although the aforementioned RBF-NN and RNNs 
initially demonstrated promising results, they have been 
rapidly surpassed by CNNs. CNNs have the ability of 
capturing spatially oriented patterns in imaging data, 
which makes them particularly suited to reconstruct 
CT scans. An example of  such a CNN approach was 
proposed by Würfl et al,19 who demonstrated that the 
traditional FBP method can be expressed in terms 
of  CNNs. Their CNN consisted of  a single convolu-
tional layer to mimic the filtering of  FBP, and a fully 
connected layer to learn the backprojection step. They 
found that the CNN achieved comparable results to 
traditional FBP while markedly reducing the computa-
tional complexity required to perform the reconstruc-
tion. In addition, they showed that their framework can 
be extended to mimic the Feldkamp David and Kress 
(FDK) algorithm that is commonly used to recon-
struct CT scans acquired with the cone-beam geometry 
(Figure 6).26

Another way of using CNNs for CT image recon-
struction is to incorporate them within IR algorithms. 
For example, Adler and Öktem replaced forward oper-
ations of the iterative gradient descent reconstruc-
tion algorithm20 and the primal-dual hybrid gradient 
algorithm21 by partially trainable CNNs. In addition, 
various CNN approaches have been developed to 

Figure 3  Most popular NN approaches in the maxillofacial CAS workflow over the past two decades. CAS, computer-assisted surgery; CNN, 
convolutional neural network; MLP, multilayer perceptron; NN, neural network; RNN, recurrent neural network.

Figure 4  The data sets that were used to train and test the NN 
approaches in the reviewed studies. NN, neural network.
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Figure 5  Analysis of the evaluation metrics used to quantify the performance of NN approaches in (a) CT image reconstruction, (b) bone 
segmentation and (c) surgical planning. DSC, dice similarity coefficient; RMSE, root meat-squared error; MSE, mean-squared error; PSNR, peak 
signal-to-noise ratio; SSIM, structural similarity index measure; STL, standard tessellation language.
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improve reconstruction quality34,36,37 and computational 
efficiency33 of IR algorithms.

A different strategy was taken by Chen et al, who 
developed a CNN-based framework to find a direct 
mapping between CT projection data and reconstructed 
CT scans.22 Their framework used 50 iteration-inspired 
layers that each consisted of three learned convolutional 
operations. This framework significantly outperformed 
state-of-the-art reconstruction approaches. Moreover, 
they showed that this approach can be effectively used 
on incomplete projection data, which is a common 
problem in clinical practice, since radiation dose often 
needs to be reduced in order to comply with the ‘as 
low as reasonably achievable’ (ALARA) principle. The 
CNN-based IR framework was further improved by Xie 
et al,41 who implemented a learnable back-projection 
step that was previously fixed.

A different way of finding a mapping between projec-
tion data and reconstructed CT scans was developed by 
Fu and De Man.28 However, instead of finding a direct 
mapping, they proposed a hierarchical CNN in which 
the difficult reconstruction problem was split up into 
multiple intermediate steps that can be easily learned. 
This approach does not only improve the quality of 
reconstructed CT scans, but also gives clinicians an 
insight into the intermediate steps learned by the CNN. 
Similarly, Wang et al,40 developed two coupled CNNs to 
convert sinograms into CT images. The first CNN takes 
sinograms as input and converts them to data that are 
better suitable for the FBP or FDK algorithms. The 
output of the FBP or FDK algorithms (in the image 

domain) is subsequently fed to the second CNN, which 
further improves the reconstructed image quality. Ma et 
al39 also aimed to reconstruct CT images directly from 
the projection data. However, instead of breaking down 
the reconstruction challenge into multiple steps, they 
applied a combination of fully connected layers and 
convolutional layers to reduce the memory space require-
ment. They showed that their proposed approach results 
in substantially better image quality than standard FBP.

Ever since it was introduced in 2015, the U-Net has 
become a popular CNN architecture for medical image 
analysis.85 The U-Net consists of two convolutional 
paths. The downsampling path (i.e. encoder) creates 
a low-dimensional representation of the input data in 
order to capture local patterns. The upsampling path (i.e. 
decoder) subsequently captures global patterns through 
a series of upsampling steps. Both paths of the U-net 
are interconnected with skip-connections that allow 
the network to combine learned patterns at various 
scales. Applications of U-Nets for medical CT image 
reconstruction include the estimation of incomplete 
CT projection data (e.g. sparse-view and limited-angle 
CT)27,37,38 and improving IR, specifically the projected 
gradient descent reconstruction algorithm, by replacing 
the forward projector with a U-Net.23 Furthermore, 
variants of U-Net such as dual-frame and tight-frame 
U-Net have been proposed to reduce streaking and 
blurring artifacts in sparse-view CT scans during post-
processing.24 Finally, U-Net has also been employed to 
predict deformation vector fields used to reconstruct 
4DCT images.35

Figure 6  Schematic overview of CT image reconstruction. First, CT projection data are acquired with one of the four commonly used CT 
geometries (i.e. fan-beam, parallel-beam, cone-beam and multidetector row). The acquired projection data are used to reconstruct a CT scan. This 
reconstruction step can be improved by training a NN. NN, NN, neural network.
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In summary, a wide variety of NN approaches have 
been proposed for CT image reconstruction (Table 1). In 
particular, CNNs have shown to be an incredibly inter-
esting research topic with many new recent publications. 
Three CNN approaches were identified that are partic-
ularly interesting for the current maxillofacial CAS 
workflow. The first CNN approach aims to replace the 
computationally demanding forward operations within 
current IR methods.20,21 This markedly reduces the time 
constraint of applying IR methods in the maxillofacial 
CAS workflow. The second interesting CNN approach 
identified in this study is capable of reconstructing 
CT scans from incomplete projection data.27,31,37 Such 
approaches would enable clinicians to acquire high-
quality CT scans of patients using low dose protocols. 
The third CNN approach replaces the total reconstruc-
tion process,22,28 which means that the CNN is trained to 
directly reconstruct CT scans from raw projection data. 
However, it must be noted that such fully learned recon-
struction approaches are computationally expensive 
and require large amounts of annotated training data, 
which are not always available.

Image segmentation
Image segmentation refers to the task of labelling 
voxels of an image as a particular class (Figure 7). In 
the context of maxillofacial surgery, this image segmen-
tation step is typically used to distinguish bony struc-
tures from soft tissues or air. Although a large variety 
of statistical methods have been developed for bone 
segmentation, they usually require the intervention of 
a medical professional in order to produce an accurate 
output, mainly due to the lack of reliable Hounsfield 
units and the limited signal-to-noise ratio of CBCT 
scans. It is therefore desirable to automate this task as 
far as possible, thereby relieving the medical profes-
sional from this labor-intensive and time-consuming 
task, while also increasing the accuracy and consistency 
of the segmentation results. We therefore reviewed the 
NNs used to automate CT bone segmentation tasks.

The first study describing the segmentation of bone 
in CT scans using NNs was published in 2002.42 In this 

study, a hierarchy of MLPs was trained on small patches 
of head and chest CT scans. The trained MLPs subse-
quently classified the center pixels of the patches and 
combined all separate pixel classifications to create a 
segmented image. Although similar MLPs were adopted 
by Gassman et al43 (2008) and Kuo et al44 (2013) to 
segment the phalanges and the nasal septum, respec-
tively, different input data were used to train the MLPs. 
Namely, Gassman et al provided spherical co-ordinates, 
probabilities and intensities of individual pixels as input 
for their MLP, whilst Kuo et al used single rows of CT 
scans.

Segmentation using NNs took a significant leap after 
the ground-breaking performance of a novel CNN 
architecture (AlexNet) developed by Krizhevsky et al. in 
2012.86 Similar to the aforementioned MLPs, this CNN 
architecture was trained using a patch-based approach 
in which the CNN aimed to classify the center voxels 
of small image patches. Inspired by the performance 
of this patch-based CNN, researchers have shown that 
such CNNs can achieve similar and in some cases supe-
rior performances compared to state-of-the art statis-
tical methods when segmenting the mandible,46,52 the 
spine51,61 and the skull50 in CT scans. Nevertheless, the 
clinical application of patch-based CNNs for segmen-
tation has been limited since many redundant convolu-
tion operations are necessary to classify all image voxels, 
which significantly slows down training and increases 
segmentation times.

In order to overcome this challenge, Ronneberger et 
al published a variation of the traditional CNN archi-
tecture, known as U-Net.85 U-Net can directly provide 
a segmented image as output (i.e. semantic segmen-
tation) which increases its computational efficiency 
compared to patch-based CNNs. As a result, this U-Net 
architecture has ever since been applied for several CT 
bone segmentation tasks. For example, Klein et al,48,56 
and Noguchi et al,67 applied U-net to segment bone 
in whole-body CT scans and reported that the U-Net 
performed significantly better than the standard segmen-
tation procedure, i.e. global thresholding combined 
with morphological operations. Furthermore, U-Net 
was used to segment vertebrae,54,59,68,71 teeth,55,72 pelvic 
bones,62 orbital bones,57 cochleae69 and cranial bones.70 
In a different study,45 a CNN architecture very similar to 
the U-Net, namely SegNet,87 was used to perform edge 
detection and multiscale segmentation of the femur in 
CT scans. Finally, Lessmann et al extended the standard 
U-Net architecture in order to both segment and iden-
tify an a priori unknown number of vertebrae.49,58 Their 
proposed architecture was able to automatically iden-
tify the individual vertebrae, whilst having comparable 
segmentation performance as the standard U-Net.

Since high segmentation performances have been 
achieved by U-net across a large number of studies, U-Net 
is currently considered the state-of-the-art for CT bone 
segmentation. Nevertheless, alternative CNN architec-
tures for medical image segmentation have also been 

Figure 7  Schematic representation of the bone segmentation task 
required for maxillofacial CAS. A NN can be trained to automatically 
perform this segmentation task. CAS, computer-assisted surgery; NN, 
neural network.
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widely employed in the reviewed papers. For example, 
Men et al proposed a deep dilated CNN (DDCNN), in 
which the first and last layers perform dilated convo-
lutions in order to extract multiscale features.47 Such a 
dilated convolution refers to the inflation of a convo-
lution kernel while leaving sparse spaces between its 
elements. This dilation thus increases the receptive 
field of the kernel without increasing the number of 
model parameters. Torosdagli et al60 segmented the 
mandible using a fully convolutional DenseNet, which 
is comparable to U-Net, but uses dense blocks instead 
of regular convolutional layers. These dense blocks 
comprise multiple densely connected convolutional 
layers, which means that each convolutional layer 
within the dense block is connected to all other layers 
in the block. Similarly, a UDS-Net64 has been proposed, 
consisting of a U-Net with a dense block and spatial 
dropout, to segment teeth. Furthermore, 3D-DSD net 
has been developed which consists of a U-Net with a 
dense block and additional skip connections.65 The 
use of dilated convolutions and dense connections was 
further exploited in the mixed-scale dense CNN (MS-D 
network),88 which was used to segment the mandible 
in cone-beam CT scans.4 In an MS-D network, each 
convolutional layer performs a dilated convolution and 
is densely connected to all other layers of the network. 
It was found that these properties allow the MS-D 
network to achieve comparable segmentation perfor-
mances as U-Net, while using far fewer trainable param-
eters.4 Finally, Zhou et al developed the so-called N-Net, 
which is similar to U-Net but has an additional stream 
of downsampling layers,53 whereas Rao et al modified 
the U-Net by replacing the normal convolutions with 
so-called Deep Bottleneck Architectures.73

In this section, different NN approaches used for 
bone segmentation in CT scans were reviewed. Similar 
to the NN approaches used for CT image reconstruc-
tion, bone segmentation seems to be increasingly 
performed using CNNs in favor of alternative NNs. 
The CNN approaches identified in this review can be 
roughly categorized into patch-based approaches and 
semantic segmentation approaches. The patch-based 
approaches allow extracting a large number of patches 
from relatively few CT scans, which facilitates CNN 
training. Semantic segmentation approaches, on the 
other hand, annotate each voxel of an image during a 
single forward pass through the CNN, which is typically 
far more computationally efficient than patch-based 
approaches. As a result, current state-of-the-art CNN 
approaches usually perform semantic segmentation. 
Examples of such widely used CNN architectures are 
U-Net,85 ResNet89 and MS-D network.88

Surgical planning
The final step in the maxillofacial CAS workflow is 
surgical planning. This step typically involves a combi-
nation of computer-simulated bone reconstruction and 
subsequent designing of appropriate patient-specific 

implants. For example, a simple method to reconstruct 
fractured bones in the skull is to mirror the bony struc-
tures from the contralateral healthy side.90 However, this 
technique is often constrained to small defects on one 
side of the skull. For larger defects, a complex proce-
dure involving various 3D-modelling software packages 
is required. The success of NNs in image reconstruc-
tion and image segmentation calls for the application of 
similar techniques during surgical planning and implant 
design. In this section, we therefore review different NN 
approaches that have been applied for surgical planning.

An interesting area for automated surgical plan-
ning is the reconstruction of skull plates because of the 
simplicity of the local anatomical geometry. Already 
in 2001, efforts were made to automatically design 
skull implants.74,75 The authors of these papers used a 
single-layer MLP in order to reconstruct cranial bone 
from CT images of patients with skull defects. In order 
to optimize training of the MLP, an approach relying 
on orthogonal functions (Legendre polynomials) was 
employed. The presented MLP was able to significantly 
speed up and improve the design of skull implants. 
However, while mathematically interesting, this partic-
ular approach is unlikely to generalize to larger defects 
on the side of the skull, since Legendre polynomials 
are insufficient to correctly approximate such complex 
defects. A similar approach was proposed by Knopf and 
Al-Naji,76 which also approximates anatomical features 
using an MLP with a single layer of polynomial func-
tions, specifically Bernstein polynomials. After being 
trained on a set of segmented CT slices, the network was 
able to reproduce the anatomical structure of healthy 
bone. The main advantage of this approach is that 
the output of the MLP is in the shape of curves that 
describe the bony structures, which can be easily loaded 
into CAD software. Nevertheless, it must be noted that 
most approaches based on curve fitting are currently 
restricted to the neurocranium where the geometry of 
the skull can be reasonably approximated by smooth 
curves.

A different way of employing NNs for surgical plan-
ning is to optimize parametrized implant designs. The 
advantage of working with parametrized designs is 
that the NNs do not require imaging data. In addition, 
since implant designs can often be described using a few 
parameters, relatively simple NN architectures can be 
used to optimize the parametrization of the design. This 
approach was, e.g. taken by Chanda et al,80 who opti-
mized parameterized hip implants based on the effects 
of initial micromotion, stress shielding, and interface 
stress. Using a combination of a single-hidden-layer 
MLP, a genetic algorithm and finite element analysis 
(FEA), the authors deduced that the standard implant 
design can be significantly improved. A similar combi-
nation of an MLP, a genetic algorithm and FEA was 
also used in a different study in order to find the best 
combination of material properties and geometry to 
generate patient-specific dental molar implants.81 This 
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approach was also used by Biswas et al,82 who optimized 
the design of patient-specific spine implants based on 
the bone condition, body weight and implant diameter.

Another well-attended problem in surgical planning 
is to predict how bone adapts to different loads. This 
bone adaptation can be caused by surgical implants and 
may lead to complications after surgery.91 To date, bone 
adaptation prediction has been commonly performed 
using FEA. However, researchers recently found that a 
combination of the well-established FEA method and an 
MLP can significantly speed up the computations.77 The 
inverse problem has also been studied, specifically the 
estimation of load parameters for a given bone porosity 
inferred from CT images. For example, Campoli et al78 
showed how a single-layer MLP can solve this inverse 
problem and compute the load for a femur. The network 
was specific to a single femur and was trained using 
simulated data. After the introduction of noise to the 
training data, the network was still able to successfully 
estimate the load parameters for the femur.

An interesting NN approach that does not rely on 
the geometric properties of bone was employed by 
Morais et al.92 They trained a CNN, specifically a deep 
convolutional autoencoder, to reconstruct fractured or 
missing parts of the skull. This autoencoder learned a 
representation of a healthy skull and was able to subse-
quently reconstruct a portion of the skull that was 
artificially removed. However, the accuracy and appli-
cability of this deep learning model to high-resolution 
data remains challenging due to the computing power 
necessary for training and validation. Moreover, the 
proposed method was only validated on MRI data and 
not yet on CT data.

A relatively new approach towards reconstructing 
tissue morphologies is to apply generative adversarial 
networks (GANs). GANs consist of two networks: an 
generative network for generating new, fictive images 
based on input images, and a discriminator for distin-
guishing the generated images from real images. In the 
context of morphology reconstruction, a GAN can be 
used to generate images of healthy tissues based on 
images of fractured or diseased tissues. The generated 
images can then be hardly, if  not at all, distinguished 
from real images of healthy tissues. From a clinical 
perspective, such generated healthy images can be 
extremely useful as they provide a surgeon a view of 
what the result should resemble. Furthermore, gener-
ating healthy images can be particularly helpful when 
constructing patient-specific implants. An example of 
a GAN applied in such a setting can be found in the 
study by Liang et al,84 who developed a GAN to recon-
struct the morphology of the mandible based on CT 
images of patients suffering from ameloblastoma or 
gingival cancer. Similarly, Kodym et al83 used a GAN to 
reconstruct the shape of defective skulls. Even though 
interesting approaches have been developed, relatively 
few studies have described NNs for surgical planning 
(Table  1). The majority of surgical planning studies 

included in this review implemented MLPs for applica-
tions such as dental implant design80 and prediction of 
bone adaptation.77,78 A possible explanation for the rela-
tively few studies describing NN-based surgical plan-
ning might be that it is extremely difficult to develop a 
single network to account for all variations that clini-
cians face during surgical planning. For example, there 
are numerous possibilities of designing implants or 
surgical tools, and choosing an adequate design heavily 
depends on the available software tools on the market, 
the type of imaging data used, and the personal pref-
erences of medical engineers. As a consequence, it is 
almost impossible to effectively train a NN to design 
implants if  no constraints are imposed. Although a few 
studies solved this problem by using a parametrized 
implant design to reduce the degrees of freedom,80,81 this 
leads to more generic and less patient-specific implants. 
Hence, automating personalized surgical planning and 
implant design using NNs remains difficult. Neverthe-
less, the field is still currently active, as demonstrated by 
the recent AutoImplant Challenge93 that was created to 
motivate participants to develop automated methods 
for cranial implant design.

Current challenges and future research
In order to further develop and validate NN approaches 
for the three main steps of the maxillofacial CAS work-
flow, challenges remain that need to be overcome. One of 
these challenges is the quantitative performance evalua-
tion. To date, the SSIM and MSE have been commonly 
used to assess image quality in the CT image reconstruc-
tion step, whereas the DSC is commonly used to assess 
segmentation performances (Figure  4). These generic 
metrics, however, do not always represent clinical rele-
vance. For example, maxillofacial surgeons often assess 
the surface of the bony structures in order to create a 
treatment plan and design implants. Therefore, surface-
based performance metrics might be preferred over the 
generic metrics. One possible way of evaluating segmen-
tation performance would be to convert segmented CT 
scans into virtual 3D models and subsequently calcu-
lating geometrical distances between a gold-standard 
virtual model and the NN-based virtual models.94 This 
approach enables the quantification of the surface 
quality of bony structures, and also allows the visual-
ization and interpretation of the differences between the 
two virtual models.

Another well-known limitation of most NN 
approaches is the need for large amounts of paired 
training data, i.e. input and target.95 Although an 
extremely large number of medical images are acquired 
on a daily basis that can be used as input to train a NN, 
they commonly lack appropriate annotations. Anno-
tating such medical images requires a high level of 
domain-specific expertise, in contrast to natural images 
that can be easily annotated through crowdsourcing. 
In order to avoid the challenge of acquiring annotated 
target images, an interesting research direction might 
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be to develop semi- and unsupervised NN training 
approaches, which do not depend on annotated data 
sets to learn.

To date, the development of NN approaches has 
been mainly performed in academic settings. Although 
many different NNs have shown to improve the effi-
ciency, accuracy and consistency in which clinical tasks 
can be performed, none of these NN approaches has, to 
the best of our knowledge, been approved for maxillo-
facial CAS by the United States Food & Drug Admin-
istration. As a consequence, the application of NNs in 
routine clinical tasks remains very limited. In order to 
allow for large-scale use of NNs in clinical settings, addi-
tional research is necessary that focus on the robustness 
of NNs when faced with large anatomical variations 
and different imaging characteristics. For example, two 
recent studies have already shown that a single CNN 
is able to accurately segment CT scans acquired using 
various CT scanners.50,68

The reconstruction of CT scans in the maxillofacial 
CAS workflow is typically optimized for visual interpre-
tation by clinicians. This optimization is to be expected 
since visual assessment is often fundamental to estab-
lish correct diagnoses. However, a CT scan optimized 
for human interpretation might not be the ideal input 
for CNNs to perform the subsequent segmentation and 
surgical planning tasks. Namely, CNNs solely extract 
patterns from the CT scans without taking visual aspects 
into account. A possible way of improving the quality 
of the CAS workflow may therefore be to jointly train 
two CNNs to simultaneously reconstruct and segment 
a CT scan. Such joint training approaches have already 
shown promising results in lung nodule detection,96 and 
may open up promising avenues when used in the maxil-
lofacial CAS workflow.

One of the limitations that was encountered in the 
reviewed publications is that the heterogeneity of the 
data used to train the NNs makes it particularly chal-
lenging to draw generic conclusions. NN models have 
been trained on CT images of various different anatom-
ical regions or phantoms that have been acquired using 
a plethora of different scanners, or through simulation. 
In order to validate a methodology, benchmark data 
sets should be developed which would enable a better 
comparison between the NN approaches. Furthermore, 
any work performed on simulated data and/or phantoms 
should be validated on clinical data, as it is challenging 
to assess the clinical applicability of NN approaches 
that have been solely validated on synthetic data.

Finally, it must be noted that research on artificial 
intelligence, and deep learning in particular, is evolving 
at an incredible rate due to the unprecedented interest 
and resource investment these fields. As a consequence, 
the state-of-the-art on this topic will naturally evolve 
rapidly. Nevertheless, this does not mean that a review 
cannot be useful. In fact, literature reviews may be argu-
ably even more important when considering such rapidly 
evolving topics, as they help to identify bottlenecks, and 
to suggest new lines of research to advance the field.

Conclusion

This scoping review describes different NN approaches 
used in the three main steps of the maxillofacial CAS 
workflow, i.e. CT image reconstruction, bone segmen-
tation and surgical planning. In recent years, CNNs 
have rapidly become the most popular NN approach 
for CT image reconstruction and image segmentation, 
whereas MLPs remain the most common approach in 
surgical planning. Although CT image reconstruction 
and bone segmentation have been widely explored fields 
of research, additional research is required on the appli-
cation of NNs for surgical planning. In order to reach 
the full potential of NNs for maxillofacial CAS, future 
research should focus on overcoming the challenges 
addressed in this review.
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