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Objectives:  To determine the efficacy of a deep-learning (DL) tool in assisting dentists in 
detecting apical radiolucencies on periapical radiographs.
Methods:  Sixty-eight intraoral periapical radiographs with CBCT-proven presence or 
absence of apical radiolucencies were selected to serve as the testing subset. Eight readers 
examined the subset, denoted the positions of apical radiolucencies, and used a 5-point confi-
dence scale to score each radiolucency. The same subset was assessed by readers under two 
conditions: with and without Denti.AI DL tool predictions. For the two sessions, the perfor-
mance of the readers was compared. The comparison was performed with the alternate free 
response receiver operating characteristic (AFROC) methodology.
Results:  Localization of lesion accuracy (AFROC-AUC), specificity and sensitivity (by 
lesion) detection demonstrated improvements in the DL aided session in comparison with the 
unaided reading session. Subgroup performance analysis revealed an increase in sensitivity 
for small radiolucencies and in radiolucencies located apical to endodontically treated teeth..
Conclusion:  The study revealed that the DL technology (Denti.AI) enhances dental profes-
sionals' abilities to detect apical radiolucencies on intraoral radiographs.
Advances in knowledge:  DL tools have the potential to improve diagnostic efficacy of dentists 
in identifying apical radiolucencies on periapical radiographs.
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Introduction

The term “artificial intelligence (AI)” was coined in 1956, 
at a workshop that took place at Dartmouth College.1 
Scientists hypothesized that a machine can be trained 
to learn through experimental “trial and error” much 
like humans do.2 Since then, AI has been progressing 
very rapidly in the medical field and is showing the most 

promise in providing non-specialists with easily acces-
sible, expert-level predictions.3

Deep learning (DL) is a class of artificial intelligence 
algorithms that allows a computer program to learn 
from input data for further interpretation of previously 
unseen samples. In dentistry, multiple computer-aided 
detection and DL tools have emerged recently for the 
assessment of dental caries.4–7 Additionally, neural 
networks and DL algorithms have been utilized in 
applications that include predicting dental pain,8 teeth 
numbering and classification,9 in deciding if  extractions 
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are necessary prior to orthodontic treatment,10 and 
for detecting periodontal bone loss on panoramic 
radiographs.11,12

In DL, a convolutional neural network (CNN) is 
a class of artificial neural network most commonly 
applied to analyze visual imagery. Deep CNNs have 
been used in the field of endodontics to detect apical 
lesions on panoramic radiographs and CBCTs.13–17

In addition, they have been utilized in analyzing 
the root morphology of mandibular first molars 
and to evaluate vertical root fractures on panoramic 
radiographs.18,19

Denti.AI (Denti.AI Technology Inc., Toronto, CA, 
http://denti.AI) is a software that uses DL technology 
to assist in the detection of carious lesions, apical radio-
lucencies, tooth numbering, and dental charting.9 The 
apical radiolucency detection module is based on DL 
techniques, specifically deep CNNs. The key aspect 
of these CNNs is that these detection features are not 
designed by humans, but automatically extracted and 
learned from the raw data, such as pixels of images.20,21

While computer-aided detection of apical radio-
lucencies might benefit both experienced radiologists 
and general practitioners, we anticipate that this would 
be more relevant to the latter population due to their 
greater numbers and need for efficient screening tools.

In this study, we aim to investigate the effectiveness 
of using the Denti.AI system to assist dentists in the 
task of detecting apical radiolucencies on periapical 
radiographs.

Methods and materials

Case selection and ground truth
Ethical approval was granted by the University Biomed-
ical Institutional Review Board. The dental school’s 
Oral and Maxillofacial Radiology CBCT referral 
database was searched for all volumes acquired for 
endodontic purposes between August 2014 and March 
2019. The finalized radiology reports were analyzed 
for findings related to apical radiolucencies including: 
“apical rarefying osteitis”, “apical radiolucent lesions”, 
or “apical widening of the PDL space”. All radiology 
reports of those volumes were written by one of the 
three board-certified oral and maxillofacial radiolo-
gists with at least 10 years of experience. If  a report was 
found to contain evidence of an apical radiolucency, 
the accompanying CBCT volume was downloaded 
and re-examined by the primary investigator. Measure-
ments of the lesions were then recorded in all dimen-
sions; mesiodistal, buccolingual, and apico-coronal. 
Apical radiolucencies measuring less than 2 mm at their 
widest dimension were excluded to reduce the potential 
imperfect reference standard bias subsequent to beam 
hardening artifacts resulting from endodontic treatment 
fill-material.22 In addition, the exclusion criteria encom-
passed radiographs of patients under 18 years old.

Once a case was considered, the patients’ records 
were searched for a corresponding, same-site intraoral 
periapical radiograph to be added to the study. The 
inclusion criteria for periapical radiographs comprised 
diagnostically acceptable radiographs acquired within 
a six-month window of the accompanying CBCT. For 
control cases, periapical radiographs of teeth with 
CBCT verified sound periodontium were uploaded in 
the negative subgroup. The intraoral images were all 
verified to have no evidence of apical radiolucencies on 
CBCT volumes and associated reports. At the time of 
this writing, the authors are not aware of any previous 
investigation utilizing CBCT as a reference standard. 
Previous studies have used consensus panels, which we 
considered not as robust as a CBCT reference standard.

After applying the inclusion and exclusion criteria, 
a total of (n = 184) positive intraoral radiographs were 
collected and divided into a testing (n = 130) and a 
model-tuning (n = 54) subsets. One hundred and thir-
ty-two periapical radiographs with sound apical peri-
odontium were collected to serve as controls. The final 
testing subset was comprised of 68 images that were 
randomly selected from the testing positive (130) and 
control sets (132) by assigning a number to each case 
and using a random number generator. Table 1 displays 
an overview of the distribution of cases between positive 
and control, number of lesions, along with the extent of 
radiolucencies and endodontic treatment status.

The AI model was pre-trained ahead of  this study 
on images obtained from sites other than the dental 
schools’ clinics (>1000 images). The model-tuning 
subset (n = 54) of  images obtained in the dental 
school’s clinics was added to further adapt the model 
to the devices used in the clinics.

The model-tuning and testing sets were de-identi-
fied and uploaded to Denti.AI. The collected radio-
graphs were annotated using the Denti.AI labeling 
tool.

Apical radiolucencies were then divided by:

Table 1  General Descriptive Statistics. Provides an overview of 
the positive and control samples and the distribution of radiolucent 
lesions by extent and endodontic treatment status

Cases
Number of periapical 

radiographs Number of teeth

Num-
ber of 
lesions

Positive cases 38 152 56

Control cases 30 116 0

Total cases 68 268 56

56 lesions extent and treatment status
Extent Number of lesions
Small (2–5 mm) 31

Large (>5 mm) 25

Treatment status Number of lesions
Endodontically treated 31

Not endodontically treated 25

http://birpublications.org/dmfr
http://denti.AI
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(1)	 Extent: small radiolucency (2–5 mm) or large radio-
lucency (≥ 5 mm)

(2)	 Treatment status: endodontically-treated or untreat-
ed teeth.

Corresponding tags were added for each annotated 
lesion showing the extent of the lesion and treatment 
status of the tooth.

Devices and imaging instruments
The CBCT volumes were all previously acquired 
using either Orthophos XG 3D, Orthophos SL 3D 
(Dentsply Sirona, Charlotte, NC), CS 9000 or CS 
9300 (Carestream Dental, Atlanta, GA). The 68 peri-
apical radiographs were obtained using photostimu-
lable phosphor (PSP) plates scanned using ScanX (Air 
Techniques, Hicksville, NY), Soredex Digora Optime 
(Kavo Dental, Charlotte, NC), or using Sirona 
Schick33 Direct Digital Sensor (Dentsply Sirona, 
Charlotte, NC), or XDR Anatomic Sensor (Cyber 
Medical Imaging, Los Angeles, CA). The inclusion of 
multiple units and sensor types allowed for additional 
generalizability of  the results.

Reader study execution
Eight readers performed a cross-over reading scenario. 
The eight readers were comprised of  six operative 
dentistry residents, a general dentist and an endo-
dontist. Each reader analyzed the same testing subset 
collection of  68 images under two conditions; without 
and with the aid of  AI predictions. The reading 
sessions were separated by a washout period of  more 
than one month.

Readers underwent a calibration session conducted 
by the primary investigator. The training included 
sample images and practice annotations. For the first 
session, without the assistance of  AI predictions, the 
readers were instructed to use the labeling tool to draw 
bounding boxes around sites with suspected apical 
radiolucencies, i.e., annotate apical radiolucencies 
(AR). Boxes had to cover the finding with the margin 
not exceeding 2 mm beyond any side of  the AR. In 
addition, they were asked to add confidence score 
tags that reflected their confidence regarding the pres-
ence of  their decision; a (1-5) confidence rating scale 
was used for this step. The tags were as follows: C1: 
not confident, C2: slightly confident, C3: somewhat 
confident, C4: moderately confident, and C5: very 
confident.

For the second reading session, the task was to review 
the same periapical radiographs and either confirm or 
modify the bounding box, add a new finding or delete 
the prediction generated by the Denti.Ai system based 
on the output of the DL tool.

Statistical analysis
RJafroc R-library (version 2.0.1 https://dpc10ster.​
github.io/RJafroc/) was used to evaluate the 

performance.23 Dorfman-Berbaum-Metz with Hillis' 
improvements (DBMH) method of  analysis was 
applied which is a method for multireader multicase 
(MRMC) analysis that uses the jackknife technique 
and conventional analysis of  variance (ANOVA).24 
MRMC analysis allows for the assessment of  the 
significance of  shift in dentists’ performance after 
using AI predictions and provides a quantitative 
measure of  the performance of  a diagnostic test across 
varying reader skills. The random-reader random-case 
(RRRC) option of  the MRMC analysis was evaluated. 
Instead of  the significance of  shift in performance 
applying only to the participating group of  dentists 
or radiographs included in the study, RRRC allows 
for the results to be more generalizable to encompass 
other dentists reading new cases.

The following common definitions were applied:

(1)	 Lesion: an apical radiolucency that is shown on the 
image in the form of a bounding box; each lesion 
annotated by the reader is supported by a confi-
dence score.

(2)	 Case: an image that is interpreted by the reader, i.e. 
a periapical radiograph. The inferred receiver oper-
ating characteristic rating paradigm was applied to 
define a confidence rating for the case annotated by 
the reader: the highest rating was used in the case of 
multiple lesions shown.

Alternative Free-Response Receiver Operating Char-
acteristic (AFROC) AUC metric was evaluated as the 
primary endpoint for comparing the performance of 
the readers for the two reading scenarios. AFROC 
AUC measures the area under the AFROC curve. This 
curve shows a trade-off  between lesion localization 
fraction and the false-positive fraction for the range 
of  decision thresholds. The lesion localization fraction 
shows how many ground truth lesions were correctly 
detected by the reader, i.e. sensitivity on the by-lesion 
basis.

False-positive fraction shows how many actual 
negative cases were mistakenly classified as posi-
tive, i.e. 1 - specificity on a by-case basis. AFROC 
was chosen as the main metric of  performance as it 
both provide aggregated measurement over different 
thresholds and accounts for localization accuracy.

Secondary endpoint analysis included the following 
metrics: sensitivity (by case) specificity (by case), 
and sensitivity (by lesion). The specificity (by lesion) 
metric was not calculated. That is mainly because 
this metric depends on true-negatives and there is no 
meaningful way to calculate true-negative lesions, as 
there are an undefined number of  locations where 
the lesions might be shown on an image. Subgroup 
performance analysis was conducted to measure the 
effect of  the DL tool for different characteristics of 
lesions. The analysis was stratified based on apical 
radiolucency extent and endodontic treatment status 
of  the tooth.

http://birpublications.org/dmfr
https://dpc10ster.github.io/RJafroc/
https://dpc10ster.github.io/RJafroc/


� birpublications.org/dmfr

4 of  7

Dentomaxillofac Radiol, 51, 20220122

A Deep Learning Tool to Improve Detection of Apical Radiolucencies
Hamdan et al

Table 2  Primary and Secondary Endpoints. Provides statistics on Primary and Secondary study endpoints: AFROC AUC, Sensitivity (by case), 
Specificity (by case), and Sensitivity (by lesion)

Primary and Secondary Endpoints (68 images, 56 lesions, eight readers)

AFROC CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.892 0.833 0.951 0.071 0.022 0.119 0.005 8.6%

Read 1 0.822 0.749 0.894

Sensitivity by Case CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.931 0.884 0.978 −0.007 −0.043 0.030 0.712 −0.7%

Read 1 0.938 0.904 0.971

Specificity by Case CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.733 0.644 0.822 0.138 0.048 0.277 0.005 23.1%

Read 1 0.596 0.506 0.685

Sensitivity by Lesion CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.888 0.831 0.946 0.067 0.017 0.117 0.010 8.2%

Read 1 0.821 0.759 0.884

Figure 1  Averaged AFROC-AUC Curves The AFROC curves are averaged for the eight readers and two reading modes: unaided (blue) and 
aided (red). The gap between the two curves reflects the improvement in the aggregated measure of performance (AFROC-AUC) between the 
AI-aided readings and the unaided readings. LLF: lesion localization fraction (sensitivity), FPF: false-positive fraction (1 - specificity).

http://birpublications.org/dmfr


birpublications.org/dmfr

5 of  7

Dentomaxillofac Radiol, 51, 20220122

A Deep Learning Tool to Improve Detection of Apical Radiolucencies
Hamdan et al

Results

Primary and secondary endpoints
Table  2 shows the primary and secondary endpoint 
results. With the AI-aided session, AFROC indicated 
a clinically important 8.6% improvement over the 
unaided reading session (p = 0.005). Figure 1 displays 
the improvement in the aggregated measure of perfor-
mance (AFROC AUC) between the aided and unaided 
reads. Figure 2 shows examples of improved localization 

and specificity in the detection of apical radiolucencies 
using the software. Secondary endpoints results showed 
improved specificity by case (p = 0.005) and sensitivity 
by lesion (p = 0.01) between the two sessions—a 23.1% 
improvement in specificity by case along with an 8.2% 
improvement in sensitivity by lesion was demonstrated 
after the AI-aided session. There was no difference in 
the sensitivity by case metric between the two sessions 
(p = 0.712).

Figure 2  The effect of Denti.AI software: examples. Top image: an additional radiolucency was detected by readers during the AI-aided read. 
Bottom image: a false-positive lesion was removed during the second read, corresponding with AI prediction results.

Table 3  Subgroup Statistics. Provides statistics on cohorts of lesions differentiated by the extent (small and large), and tooth treatment status 
(endo-treated and non-endo-treated)

Subgroup Statistics (eight readers)

Small Extent (31 lesions)

Sensitivity by Lesion CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.859 0.808 0.910 0.109 0.058 0.160 <0.001 14.5%

Read 1 0.750 0.684 0.816

Large Extent (25 lesions)

Sensitivity by Lesion CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.925 0.876 0.974 0.015 −0.021 0.051 0.409 1.6%

Read 1 0.910 0.866 0.954

Endodontically treated (31 lesions)

Sensitivity by Lesion CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.956 0.933 0.978 0.125 0.069 0.181 <0.001 15%

Read 1 0.831 0.762 0.899

Non-endodontically treated (25 lesions)

Sensitivity by Lesion CI
Lower

CI
Upper

Read 2 – Read 1 CI
Lower

CI
Upper

P-Value %

Read 2 (Aided by AI) 0.805 0.726 0.884 −0.005 −0.053 0.043 0.827 −0.6%

Read 1 0.810 0.754 0.866

http://birpublications.org/dmfr
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Subgroup analysis stratified by lesion characteristics
Table  3 shows the subgroup analysis by extent and 
endodontic treatment status. There was an improve-
ment in the sensitivity by lesion detection between the 
two sessions for small apical radiolucencies (p < 0.001), 
and for radiolucencies associated with endodontically 
treated teeth (p < 0.001). With the aid of AI, the sensi-
tivity for small lesions increased by 14.5% and by 15% in 
endodontically treated teeth.

Discussion

In accordance with the purpose of this research, the 
findings showed that using Denti.AI resulted in an 
improvement in the localization of apical radiolucencies 
by dentists. This is clinically relevant for dentists as they 
are responsible for selecting the most appropriate radio-
graphic modality, interpreting the results, and making 
appropriate treatment decisions based on these inter-
pretations. If  radiographs are viewed inattentively, this 
could result in patients being over- or undertreated.25 
Subgroup analysis results displayed an improvement 
in the detection of small lesions and lesions apical to 
endodontically treated teeth. Further studies with larger 
sample sizes are necessary to validate the above findings.

In endodontics, CNNs have been applied to tasks that 
include the detection of apical lesions with panoramic 
radiography and CBCT. In one study, a moderately 
deep CNN trained on a limited set of panoramic images 
showed satisfactory ability to detect apical lesions. 
Based on the consensus of six examiners, the AUC of 
the CNN was 85%. Sensitivity and specificity were 65% 
and 87%, respectively. A subgroup analysis for tooth 
type was also performed showing a higher sensitivity in 
molars than in other tooth types, whereas specificity was 
lower.13 Another study that was based on clinically vali-
dated ground truth investigated the detection of peri-
apical radiolucencies on panoramic radiographs. The 
periapical radiolucencies included infections, granu-
lomas, cysts, and tumors. Results demonstrated that the 
DL algorithm achieved a better performance than 14 of 
24 participating oral and maxillofacial surgeons within 
the cohort.14 Excellent results were found in a study that 
used a DL algorithm for the automated segmentation 
of CBCT images and the detection of periapical lesions 
with lesion detection accuracy of 93%.16 In another 
attempt to evaluate a CNN method for detecting apical 
pathosis with CBCT, 153 periapical lesions obtained 
from 109 patients were included, and the AI system was 
able to detect 92.8% (142/153) of the periapical lesions.17

The previous studies were designed to assess the diag-
nostic efficacy of DL systems in detecting periapical 
lesions as standalone systems compared with clinicians. 
Our investigation is novel in that it seeks to determine 
the effect of a specific DL system on the performances 
of dental professionals. We posit that assessing the 

ability of the DL software to assist the clinician is of 
equal value to the readership.

Various observer studies have been conducted to eval-
uate the accuracy of periapical radiographs, panoramic 
radiographs, and CBCT images in the diagnosis of apical 
radiolucent lesions. While studies showed varying results, 
we used CBCT volumes as a reference standard since they 
have been shown to have much higher diagnostic accuracy 
than 2D imaging modalities. In one study, small and large 
artificial periapical lesions were prepared in the periapical 
region of the distal root of six molar teeth in human mandi-
bles. The ROC Az (AUC) values were 0.79 and 1.00 for 
intraoral radiographs and CBCT, respectively.26 It was also 
reported that (20%–39%) of AP radiolucencies were diag-
nosed with CBCT and missed with intraoral radiography.27 
In another study of 156 roots, CBCT detected more lesions 
(34%) than periapical radiographs (p < 0.001).28 Further-
more, one study assessed 120 untreated apical periodon-
titis sites and 120 healthy sites on panoramic radiographs. 
Findings included a low sensitivity of 34.2%, a diagnostic 
accuracy of 65% and a high specificity 95.8%.29 A major 
advantage of using CBCT as the reference is the ability to 
detect apical radiolucencies in anatomically challenging 
areas such as the posterior maxilla, where anatomic overlap 
takes place in two-dimensional images.30 CBCT can display 
the details of the lesions and adjacent structures and provide 
correct clinical diagnosis as it shows destruction of cortical 
bone that could not be detected with periapical radiog-
raphy.31 Furthermore, the prevalence of apical pathology 
undetected on periapical radiographs is concerningly high, 
with 30–50% of mineral loss being needed to visualize the 
lesions.32 Thus, the limitations of periapical radiographs as a 
diagnostic tool should not be disregarded, mainly to reduce 
false-negative results.33,34

For the average performance for all eight readers, the 
results of this study with the AI-aided session showed an 
8.6% improvement in AFROC AUC compared with the 
unaided reading session (p = 0.005). Additionally, spec-
ificity by case and sensitivity by lesion showed 23.1 and 
8.2% improvements, respectively. These results reflect that 
the detection of apical radiolucencies by clinicians can be 
improved using the Denti.AI system. Sensitivity by case did 
not show a clinically important difference between sessions 
(0.7%, p = 0.712). In the context of this study, a case is the 
radiograph itself. The study’s limitations include a small 
testing sample size and a limited number of observers.

Conclusions

This study demonstrates Denti.AI system’s potential in 
aiding dentists in detecting and localizing apical lesions 
on intraoral images. The 8.6% improvement in AFROC 
AUC is clinically relevant. Further studies with a more 
diverse and larger group of readers and cases would add 
more robust evidence on the effects of DL on particular 
cohorts of lesions and readers.

http://birpublications.org/dmfr
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