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Artificial intelligence‑informed 
planning for the rapid response 
of hazard‑impacted road networks
Li Sun1*, John Shawe‑Taylor2,3 & Dina D’Ayala1

Post-hazard rapid response has emerged as a promising pathway towards resilient critical 
infrastructure systems (CISs). Nevertheless, it is challenging to scheme the optimal plan for 
those rapid responses, given the enormous search space and the hardship of assessment on the 
spatiotemporal status of CISs. We now present a new approach to post-shock rapid responses of 
road networks (RNs), based upon lookahead searches supported by machine learning. Following 
this approach, we examined the resilience-oriented rapid response of a real-world RN across Luchon, 
France, under destructive earthquake scenarios. Our results show that the introduction of one-step 
lookahead searches can effectively offset the lack of adaptivity due to the deficient heuristic of 
rapid responses. Furthermore, the performance of rapid responses following such a strategy is far 
surpassed, when a series of deep neural networks trained based solely on machine learning, without 
human interventions, are employed to replace the heuristic and guide the searches.

The modus operandi of modern urban systems is increasingly contingent upon the enduring functionality of an 
array of critical infrastructure systems (CISs), which are becoming increasingly sophisticated and interconnected, 
in response to societal demands1,2. Therefore, resilience of those CISs will be strategically crucial to the well-being 
of urban systems under disruptive events, such as natural hazards and pandemics, etc. Conceptually, CIS resil-
ience has been widely characterized as their capacity to absorb the effects of a disruption on their performance, 
dependent on their robustness, and restore that performance, in a prompt and sound pattern3. Nonetheless, many 
of those CISs that rely on components and sub-systems developed sometimes over centuries have proven to be 
inadequately resilient to those disruptive events, and significant death toll, as well as socio-economic losses can be 
thus triggered4. In particular, statistical studies conducted by the United Nations have revealed that, earthquake-
induced death toll accounts for nearly 60% of the global fatalities from disasters, throughout the past decades5.

One of the root causes identified for the lack of CIS resilience lies in the inability of state-of-the-art disaster 
management systems to deliver expeditious and effective recoveries in the immediate aftermath of hazards, which 
could significantly exacerbate earthquake-initiated losses. Against this backdrop, recent studies have revealed 
that, instead of the indiscriminate characterization on the criticality associated with different time-windows 
throughout catastrophes, the minimization of functionality losses of CISs, through rapid responses in the imme-
diate aftermath should be explored as a new, promising blueprint for future resilient CISs6. In this respect, hazard 
resilience of the road network (RN) in an exposed region is a critical requisite, as it underpins the mobility in 
the wake of damaging events such as earthquakes, and can therefore hinder the recovery of other CIS, whose 
damaged components cannot be accessed, and hence prompt repairs cannot be delivered7–9. In view of such a 
criticality, RNs are the focus of this study. Nevertheless, it will be highlighted that, given the dimensions of the 
state space of real-world CISs like RNs, it remains challenging to scheme an “optimal” plan of the post-hazard 
rapid response campaign in an expeditious pattern using conventional stochastic optimization routines10,11.

To address such a challenge, we present different approaches to the effective and viable strategy of post-shock 
rapid response of real-world RNs subject to earthquake hazards, in this study. Initially, heuristic-based strate-
gies are considered, based on simple ranking criteria. However, such strategies show limited adaptability when 
realistic topology of RNs and actual damage status are considered. Hence, based upon those heuristics, a looka-
head-based strategy is introduced to deliver the decision-making on the rapid response in a recursive and more 
adaptive way12. Notwithstanding its benefits, the lookahead search approach proves to be computationally costly, 
and thus potentially infeasible, when large RNs are considered. To overcome such an obstacle, a learning-based 
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strategy, which marries the lookahead search with deep reinforcement learning13,14, is proposed. In such a strat-
egy, by learning the “experiences” generated from a large amount of hypothetical, different earthquake/damage 
scenarios, a deep neural network is trained and employed to guide the search, bypassing the need of iterative 
simulations associated with the lookahead-based strategy. In particular, to examine the generalization capacity of 
the learning, an initial (1st generation) neural network is purposely trained based upon the experiences associ-
ated with a naïve heuristic of rapid responses, whereupon no sophisticated domain knowledge is imparted. The 
dataset of experiences generated by this neural network are then employed to train the subsequent generations, 
each of which is expected to yield a better training dataset for the next one. In practice, there is a limit to the 
performance improvement of such a learning-based strategy, which can be reached after a few recurrences (see 
“Methods” section).

To measure the planning capability of the learning-based strategy, we apply the three different strategies 
described above to a real-world, regional-scale RN in Luchon, France, affected by catastrophic earthquake sce-
narios. Our study consistently shows that the introduction of lookahead searches can significantly compensate 
for the lack of adaptivity of post-shock rapid responses driven by heuristic-based strategies. With regard to the 
third strategy, without domain knowledge instilled, the deep reinforcement learning-oriented neural network 
trained following the pipeline proposed in this research is found to enable an increasingly accurate assessment of 
the global damage status of the RN, in an autonomous way. Correspondingly, performance of the rapid response 
guided by such a strategy is demonstrated to outperform the two previous ones, by better accounting for the 
interdependence between the concurrent rapid responses and full repairs. Hence, findings in this paper can be 
leveraged to inform the decision-making of the resilience-oriented rapid response of real-world infrastructure 
systems under damaging events. Besides, owing to its scalability and adaptivity, the modelling framework can 
be employed to shed light on risk governance of large-scale, globally networked socio-economic systems, where 
interconnected dependences are ubiquitous15–17.

Results
Earthquake hazard scenarios.  Luchon is a well-known historic and touristic region, located in one of 
the valleys of Pyrenees connecting France to Spain. Despite its relatively small size, the road network embedded 
in Luchon is hierarchical, given the different tier of the routes included, namely, the national, departmental and 
rural ones. Such a network is also sufficiently heterogenous, given the radically-different span and seismic fragil-
ity of the 118 bridges present along its segments. Based on the recorded seismic activities across the region, three 
epicentres close to the central area of Luchon, which are thus expected to induce the most widespread damage, 
have been chosen in this study18 (see Fig. 1).

Damage assessment.  Our methodology assesses the impact of those scenarios on the system-level, physi-
cal functionality status of the RN, by determining the damage state of each individual bridge through fragil-
ity analysis (see Supplementary Table  S2). Without losses of generality, representative damage scenarios are 
obtained through the realization of 1000 Monte Carlo (MC) simulations of the RN under seismic scenario of 
Epicentre No. 1 and magnitude of 7, one of which is presented in Fig. 1, showing the generated geographic distri-
bution of bridges with moderate and severe damage, respectively.

Post‑shock rapid responses guided by heuristic‑based strategies.  We firstly examine the behav-
iour of rapid responses following the span- and betweenness-based heuristics, respectively, under the seismic 
scenario discussed above. In principle, the span-based heuristic6, which prioritizes those bridges with shorter 
spans (which is a straightforward indicator of the repairability of bridges), is attempting to maximize the number 
of severely-damaged bridges being partially repaired in a short time frame after the main shock. By comparison, 
the betweenness-based heuristic is governed by the restoration of the functionality of those bridges, which are 
most critical to the global connectivity of the RN. Based upon the multi agent-based model (ABM) developed 
(see “Methods” section), rapid response will be delivered to severely-damaged bridges by Agent A, while the full 
repair will be delivered to moderately-damaged bridges, by Agent B.

Testing on the set of MC simulations, the median proportion of severely damaged bridges awaiting rapid 
response is tracked in Fig. 2a. It can be found that, the trajectories associated with those two distinct heuristics 
start to diverge on the 18th day after the shock, notwithstanding the same behavioural attributes of the agents (see 
Table 2). For the span-based heuristic, the series of long plateaux reveal that the rapid response is encumbered by 
the presence of the other damaged bridges (see “Methods” section), so the complete delivery of rapid responses 
takes 212.25 days. By comparison, the betweenness-based heuristic, by targeting different repair sequences, short-
ens such a duration to 107.75 days, a reduction of 49.2%.

In Fig. 2b, the restoration of moderately damaged bridges, delivered by Agent B, is tracked. Such an endeavour 
is also found to be substantially affected by the two different heuristics adopted by Agent A, due to their interde-
pendence. In the case of the span-based heuristic, the full repair campaign turns out to be significantly stalled by 
the not-yet repaired severely-damaged bridges. Until the end of the 7th month after the shock, which is approxi-
mately the end of the concurrent rapid response campaign, the full-repair of each moderately-damaged bridge 
takes on average 55 days, substantially longer than the expected time, given the scope of the efficiency attribute of 
such an agent (namely, Em), as shown in Table 2. The repair of the remaining bridges speeds up thereafter, and is 
eventually completed on the 333.5th day. Such an outcome highlights that the span-based heuristic will not only 
lead to stagnant rapid response endeavours, it will also fail to bolster the contemporaneous full repairs, given its 
significant lack of adaptivity, as well as the absence of the coordination between the two campaigns. However, 
when the betweenness-based heuristic is adopted by Agent A, the full repair has been substantially improved, 
and is finalized in 172.75 days, 51.8% of that needed by the span-based heuristic. Such results have highlighted 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16286  | https://doi.org/10.1038/s41598-022-19637-z

www.nature.com/scientificreports/

the profound impact of the topological configuration of large-scale infrastructure systems on the post-hazard 
recovery, and the critical role of appropriate rapid response strategies.

Given the significant uncertainty associated with the seismic damage and successive recovery of RNs, it may 
be insufficient to use the median performance as the sole indicator of the performance of different strategies. It is 
important to consider that when an earthquake strikes, we would like to be assured the strategy is likely to work 
well for that particular damage scenario. The median tells us that there is a 50% chance it will take less than that 
time. In order to have higher confidence in our estimates, higher conditional quantiles of the behaviour of the 
post-shock rapid response are also employed to measure the performance of the array of strategies developed in 
this research. Specifically, 75%- and 95%-quantile of the duration of the rapid response campaign for all those 
strategies are compiled in Table 1. The drop of the 75%-quantile of the duration of the betweenness-based heuristic 
can be found to reach 61.3%, compared to the corresponding outcome of the span-based one.

To better understand the overall impact of different rapid response strategies on the network performance, 
besides the duration of the whole campaign, we further introduce the gross weighted losses (GWLs), which 
measure the system-level recovery state of RNs by aggregating their connectivity losses, throughout the whole 
rapid response campaign (see “Methods” section).

Based on the fitted probabilistic density functions (PDFs) following lognormal distribution presented in Fig. 3 
(the comparison between the simulation outcomes and the corresponding fittings is presented in Supplementary 
Table 1), the median, 75%- and 95%-quantile of the GWL with regard to the betweenness-based heuristic, from 
which the rapid response and the full repair both benefits, yields a 57.7%, 64.9% and 63.8% reduction, respec-
tively, compared to the corresponding outcome of the span-based heuristic.

Post‑shock rapid responses guided by the lookahead‑based strategy.  We examined the behav-
iour of the rapid response based upon the lookahead-based strategy (see “Methods” section), under the same 
earthquake scenario. It is noteworthy that, the one-step lookahead is followed by the span-based heuristic by 
design, which has already been demonstrated to be substantially less effective than the betweenness-based one. 

Figure 1.   Topology of the Road Network in Luchon, France. The map shows the location of the three Epicentres 
included in this study. The damage state of the global RN is obtained by conducting seismic fragility analysis19–21, 
under the earthquake scenario with Epicentre No. 1 and magnitude of 7, as the maximum magnitude obtained 
by the source area model across the region22. The figure is plotted by ArcGIS.
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(a) Agent A performance                                                                   (b) Agent B performance                                      
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Figure 2.   Time-varying, median number of unrestored bridges throughout the rapid response campaign, under 
different guiding strategies proposed. This plot tracks the median behaviour of the repair agent of severely- 
and moderately-damaged bridges, respectively, pursuant to 1000 simulations run. By doing so, their overall 
performance can be benchmarked against each other, and therefore highlighted. (a) The proportion of severely-
damaged bridges, remaining to receive rapid response delivered by Agent A following each strategy. (b) The 
proportion of moderately-damaged bridges, remaining to be fully repaired by Agent B, with respect to each of 
the strategy adopted by Agent A.

Table 1.   Performance of rapid responses guided by different strategies.

Span-based Betweenness-based (baseline) Lookahead-based 1st generation 2nd generation

Duration (days) GWL (103) Duration (days) GWL (103) Duration (days) GWL (103) Duration (days) GWL (103) Duration (days) GWL (103)

Median 212.25 2.86 107.75 1.21 79.75 1.01 87.75 1.13 81.5 1.00

75%-quantile 343 4.96 132.75 1.74 99 1.43 109.75 1.68 99.5 1.37

95%-quantile 360 8.15 184 2.95 136.63 2.47 169 3.16 134.75 2.27
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Figure 3.   Probabilistic distribution of GWLs under scenario with epicentre No. 1 and magnitude of 7. 
1000 simulations have been run for the rapid response under each of the different strategies. Accordingly, 
probabilistic density functions (PDF) has been fitted based to the dataset obtained from those simulations. The 
contrast among the behaviour of the rapid response according to those strategies as measured by GWL, is thus 
illustrated.
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By doing so, the competitive edge of such a new strategy can be examined, with regard to the betweenness-based 
heuristic, herein considered as the performance baseline.

As shown in Fig. 2a, driven by the lookahead search, the rapid response is completed by the 79.75th day fol-
lowing the shock, corresponding to just 37.6% of the duration regarding the pure span-based heuristic. When 
compared to the baseline, despite trailing in the initial stage, the lookahead-based strategy starts outperforming, 
from the 31st day after the shock. Specifically, it can be observed that the trajectory associated with such a strat-
egy has an almost-constant slope throughout the entire rapid response campaign, obtaining a 26.0% reduction 
in the time to finalize.

On the other hand, it should be noted that, the concurrent full repair is found to benefit less from the 
lookahead-based strategy, compared to the betweenness-based one (Fig. 2b), as it takes 183.75 days to complete 
the repair of all the moderately-damaged bridges, longer than the 172.75 days of the baseline strategy. Nonethe-
less, in terms of the GWL, such a strategy results in a median and 75%-quantile decrease of 16.5% and 17.8%, 
respectively, compared to the baseline. Moreover, the corresponding 95%-quantile is also found to be 16.3% lower, 
indicating that the lookahead strategy outperforms the baseline substantially, even in extreme cases (Table 1).

Post‑shock rapid responses guided by the learning‑based strategy.  We firstly trained the 1st gen-
eration Deep Neural Network (DNN), based upon the dataset of “experiences” generated following the span-
based heuristic, which has been applied to 8000 random earthquake scenarios (see “Methods” section). Accord-
ingly, we further investigated whether the rapid response driven by the lookahead search contingent upon the 
DNN can match or approximate the behaviour associated with the lookahead-based strategy with the span-based 
heuristic, presented above.

From Fig. 2a, it can be found that the median rapid response paths shaped by the lookahead search with the 
heuristic and the 1st generation DNN, respectively, are almost overlapping throughout the whole campaign, 
which proves that the trained DNN is able to interpret the nuanced variation of the system-level damage status 
of the road network, and mimic the decision-making of the lookahead-based strategy, resulting in a 10% increase 
on this strategy’s duration. Modest differences are also observed, in terms of GWL, which is the training target 
of the DNN (see “Methods” section), yielding the median values that are 12% higher than that associated with 
the lookahead-based strategy.

In view of the proven capability of the DNN with respect to the replication of the behaviour of the span-
based heuristic, measured by both the duration and GWL associated with rapid responses, the effectiveness of 
the training paradigm proposed in this study has also been confirmed. Hence, compared to the pure span-based 
heuristic, the 1st generation DNN itself can now serve as a better experience generator, which is thereby employed 
to train a second generation of DNN. In other words, without domain (human) knowledge, the learning cycle 
itself is expected to push the performance boundary of the rapid response further, through granting the agent 
stronger planning capabilities.

Such an expectation is met, in light of the performance of the 2nd generation DNN, as shown in Fig. 2a and 
Table 1, which show a uniform 25% reduction (approximately) in the duration, compared to the baseline, across 
the median, 75%- and 95%-quantiles. In parallel, those three quantiles of GWL regarding such a DNN are found 
to yield a 11.5%, 18.5%, and 28.2% drop, respectively, with regard to those results of the 1st generation one. 
Therefore, these results have suggested that the performance of the rapid response associated with the self-learnt, 
2nd generation DNN is able to coherently outperform its predecessor. More significantly, the more extreme the 
case is, the more pronounced the advantage obtained by the subsequent learning cycle could be.

Results in Figs. 2a and 3 show that the 3rd and 4th generation of the DNN do not improve further on the 
performance of the 2nd generation, indicating that the DNN generated through learnings has already “saturated” 
the performance of the corresponding strategy. Therefore, it further reveals that, with affordable computational 
costs, such a proposed strategy can autonomously scheme an optimal plan for a real-world, regional scale RN 
affected by disruptive events.

Instantiation of the behaviour pattern of rapid responses guided by different strategies.  To 
further discover how the learning cycle introduced above can enable the rapid response agent to outperform the 
previous strategies developed in this research, for the learning-based strategy (with the 2nd generation DNN) and 
the betweenness-based strategy (as the baseline), we examine their decisions throughout one particular realiza-
tion of the simulation, where the initial damage status has already been presented in Fig. 1. Regarding the total 
of 19 severely-damaged bridges, the order in which they were sequenced by the two different strategies are traced 
and presented in Fig. 4, together with the resulting time-varying quantity thereof.

Guided by those two different strategies, the decision-makings of the agent are found to be deviating from 
each other, from the very beginning of the rapid response campaign. Regarding the betweenness-based strategy, 
the agent will depart from the “City Centre” (see Fig. 1), which is also set to be the rapid response centre, to restore 
the Bridge No. 61, whose betweenness value is the highest among the 19 severely-damaged ones. By contrast, for 
the learning-based strategy, before the Bridge No. 61, the agent starts with the Bridge No. 75, which is very close 
to the rapid response centre, and therefore no other damaged bridge en route. It shall be highlighted that, until 
the completion of the rapid response of the 4th bridge (i.e. No. 98), such a strategy is indeed trailing behind the 
baseline, due to the different sequence of decision-makings. Nevertheless, as Fig. 4 reveals, since the “critical 
moment” that is the 16th day after the shock, the learning-based strategy not only starts to catch up with, but 
also outperform the betweenness-based one. Guided by the former, the agent will travel along the shortest path 
between Bridges No. 98 and No. 99, whose betweenness value is the 3rd highest. As shown in Fig. 5b, there are 
no unrepaired bridge along the path between those two bridges, indicating no delays in the delivery of the rapid 
response to that particular bridge. Similarly, following such a strategy, the agent will then continue to deliver 
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1st 61 75
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3rd 99 55
4th 1 98
5th 111 99
6th 116 107
7th 75 111
8th 117 117
9th 68 116
10th 107 109
11th 54 79
12th 55 96
13th 12 12
14th 79 9
15th 9 54
16th 96 1
17th 11 11
18th 66 68
19th 109 66

0 20 40 60 80 100 120 140
0

20

40

60

80

100

Pe
rc
en

ta
ge

of
un

re
st
or
ed

br
id
ge
s(
%

)

Time (Days)

Betweenness-based
2nd generation

"Critical moment"

Figure 4.   Post-shock rapid response shaped by the learning-based and the baseline strategies. The time-varying 
quantity of remaining severely-damaged bridges, which are under rapid responses following such two different 
strategies, are tracked. Especially, the “critical moment”, when the two trajectories bifurcated has also been 
highlighted.

Figure 5.   Global damage status of the Road Network at “critical” decision-moment. The plot is a “snapshot” of 
the damage status of the global RN at the 4th decision-moment of (a) the betweenness-based strategy, and (b) the 
learning-based strategy, respectively. The trajectory of the rapid response guided by those two different strategies 
significantly diverge thereafter, having a far-reaching impact on the whole campaign. The figures are plotted by 
ArcGIS.
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rapid responses to the Bridges No. 107, No. 111, and No. 117, respectively, the connectivity among which is not 
disrupted by other still-damaged bridges either. Therefore, it takes only 19.25 days for the agent to complete the 
rapid response of all the four bridges listed above. As shown in Fig. 4, the betweenness value of the last three 
bridges are the 10th, 5th, and 8th highest, respectively, amidst the 19 ones. The prompt execution of their rapid 
responses is thereby crucial to the minimization of the gross weighted losses, that is the optimization objective of 
the strategy. Indeed, as highlighted in Figs. 4 and 5, the agent then continues by addressing Bridges No. 116, No. 
109, and No. 79 (whose paths are not blocked, as well), re-establishing the connectivity of the whole southwest 
part of the RN, and thereby creating a clear shortest path between the valley and the epicentral area. The whole 
campaign clearing all the severely-damaged bridges takes a total of 75 days, with regard to such a strategy.

Conversely, informed by the betweenness-based strategy, the agent is directed to Bridge No. 111, after the 
completion of the rapid response of the Bridge No. 1. The shortest path between these two bridges is disrupted 
by a set of severely- and moderately-damaged bridges en route (see Fig. 5a), and the rapid response thus takes a 
substantially longer time. A similar situation is recurring during the whole sequence, with several long plateaux, 
due to the absence of adaptivity of this strategy. The overall duration of the rapid response is 136 days that is 1.8 
times longer, compared to the learning-based one. Accordingly, the resulting GWL values are 1.9401e+03 and 
1.1810e+03, for the two strategies, respectively.

Discussion
We have proposed a “toolkit” consisting of heuristic-, lookahead-, and learning-based strategies of the post-hazard 
rapid response of large-scale critical infrastructure systems under disruptive events, as a pathway towards future 
hazard-resilient urban systems. The approach is illustrated by considering the post-earthquake recovery behav-
iour of road networks (RNs), where the partial repair on severely-damaged bridges under seismic hazards, is 
introduced as the rapid response. It has been highlighted that, following catastrophic earthquakes, it is extremely 
challenging to scheme an “optimal” rapid response plan of real-world RNs, when faced with widespread damage 
of various components, like bridges. Mathematically, the dimension of the search space grows exponentially with 
the amount of seismically-damaged bridges. Given the number of bridges subjected to the rapid response plan, 
denoted as N, there would then be a total of N! (approximately 2.43 × 1018, if N = 20) permutations of possible 
sequences, accordingly. Such a massive search space will render any brute-force paradigm computationally unaf-
fordable and even unviable, especially, in the sense that rapid responses are inherently supposed to be planned 
and completed, in an expeditious and efficient pattern6.

As a simple alternative, we propose initially a heuristic-based strategy that is driven by a single and simple 
criterion, straightforward to implement and thereby feasible for stakeholders and decision-makers. The results 
show that the choice of the criterion does indeed play a decisive role with regard to the effectiveness of rapid 
responses. Specifically, when the bridge span that is essentially a measure on the ease of the repair, is considered 
to inform the strategy, our study shows that the delivery of rapid responses is not achievable in a reasonable 
timeframe with only one repair squad, as the path from one bridge to the next might be obstructed by bridges of 
larger span, or bridges needing minor repairs, especially, in the earlier phase of the campaign. This shows that a 
criterion based purely on component’s indicators is not sufficient to identify a valid strategy. By comparison, when 
the betweenness that is significantly more system-oriented, is employed as the criterion for the rapid response, the 
agent can complete the entire campaign, in nearly half the time. As the betweenness is indicative of the relevance 
of individual components, such a strategy can be assumed as the reference baseline for this class of problems.

However, the applicability of heuristic-based strategies to larger-scale infrastructure systems is limited by their 
lack of adaptability into the spatiotemporal evolution of the status of those systems throughout the post-hazard 
recovery phase. As an endeavour to remedy that deficiency, the lookahead-based method that allows to locally 
improve the strategy after each instantiation, is therefore proposed in this research. We have confirmed that, 
by introducing just one-step lookahead, which is often computationally tractable, the resulting rapid response, 
even based upon a component-oriented criterion, can still outcompete the baseline, both in terms of the dura-
tion and gross weighted losses. It thereby highlights the criticality of the review and reorientation (if necessary) 
of the sequential decision-making at each decision-moment throughout the rapid response campaign, when 
more agents are involved and their looped interaction is evolving as a result of the progress of their tasks, i.e. 
when the system or intertwined systems under recovery have a dynamic nature. The insight generated from the 
lookahead searches can be employed as an effective tool, to offset the potential losses of adaptivity, due to the 
limitations of the chosen heuristic criterion.

In view of the advantage associated with the lookahead searches, we managed to leverage the latest advances 
in deep reinforcement learning14,23 to enable the rapid response agent to keep pushing further the performance 
boundary autonomously, through an increasingly insightful understanding on the “value” of particular damage 
statuses of the global CIS of interest, with respect to the optimization objective. Hence, the third strategy in the 

Table 2.   Behavioural attributes of the agents.

Agent Attribute Lower Upper Distribution Average recovery time (days)

A
Vs (km/h) 15 20 Uniform

Es (%) 50 100 Uniform 1.5

B
Vm (km/h) 5 10 Uniform

Em (%) 5 10 Uniform 15
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toolkit, which marries lookahead searches with deep reinforcement learning, has been established and termed the 
learning-based strategy.

By training a total of four generation of DNNs, we have shown that, owing to the set of hybrid features delin-
eating the damage status of the RN on both the component- and system-levels, the 1st generation DNN, that is 
trained based upon the span-based heuristic has enabled the replication of the behaviour of the lookahead-based 
strategy, where the same heuristic is incorporated. It is noteworthy that, similar to the case of lookahead-based 
strategy, we purposively choose to train the DNN, starting from such a naïve heuristic, to better fathom the self-
learnt planning capability of the rapid response agent, without human knowledge. To this end, the following 
generations of DNN have all been trained from their own antecedent and are found to enable the rapid response 
performance surpassing that associated with the previous strategies in the toolkit, in a convincing way.

Furthermore, from one particular realization of the rapid response driven by the learning-based strategy, we 
further highlight that, owing to the planning capability granted by the learning cycles, the rapid response agent is 
able to balance the trade-off between the criticality and recoverability (which will further involve the connectivity 
pursuant to the real-time topology of the global network and the ease of the repair) of each single hazard-dam-
aged component, in a sequential and adaptive way. Therefore, the agent could circumvent the encumbrances from 
the existence of the other damaged bridges throughout almost the entire campaign, by sometimes deliberately 
eschewing the harvest of the “low-hanging fruits”, which is the pattern of the corresponding baseline strategy. 
Hence, the intelligence-demanding objective of the GWL minimization has been fulfilled in such an approach, 
given the stark contrast between the performance of the rapid response driven by the two different strategies. 
Similar to the case of board games24,25, such a finding has also demonstrated that, through learning, the agent 
could autonomously explore the massive state space and complicated dynamics of real-world CISs throughout 
hazard events and outperform human experience-driven restorations. It can be thereby further concluded that, 
throughout the cycle where the better experience dataset will lead to better DNNs, which will, in turn, help to 
generate an even better experience dataset, the impact of the looped interdependence between the concurrent 
full-repair and the rapid response has also been better captured by the agent through the training.

To examine the consistency of the behavioural pattern of the proposed strategies that has been obtained 
regarding Epicentre No. 1 and discussed above, we apply them to scenarios generated on the basis of other 
epicentre locations (see Epicentres No. 2 and No. 3 in Fig. 1), which will therefore induce different spatial distri-
butions of damage of the same RN. Seismic damage sustained by the RN tend to be less severe, as the epicentre 
location becomes farther from the city centre. Accordingly, the GWL associated with the corresponding rapid 
response campaign also decreases, in the case of the same strategy adopted. Nonetheless, the overall behaviour 
of the rapid response remains consistent with the one associated with Epicentre No. 1, as shown by the fitted 
probability density functions of GWL, in Supplementary Fig. 2. Besides, it can be noted that the performance 
of the learning-based strategy has been saturated after the 2nd generation DNN, as well, for both of those two 
epicentres. In particular, the reduction in the 95%-quantile of GWL vis-à-vis the lookahead- and the learning-
based strategies compared to the baseline, are also close to the observed results regarding Epicentre No. 1. The 
fact that the performance of the learning-based strategies is independent of the epicentre location, indicates that 
the pre-emptive training of the DNN without necessitating sophisticated knowledge, is a viable option, which 
can override the inherent uncertainties of unpredictable hazard events26.

In light of the planning capabilities of the agent granted by the modelling framework established in this 
paper, the research is also relevant and crucial to the development of future, autonomous and AI-capable hazard 
recovery robots27, which can significantly reduce the risk exposure of human beings, across those inaccessible 
and inhabitable environments, in the wake of natural and/or man-made catastrophes28.

Meanwhile, it is also noteworthy that, the adaptivity of the rapid response is found to have a knock-on effect 
on the contemporaneous full repairs, which have been delayed paradoxically, as a consequence. Essentially, such 
an outcome suggests that the rapid response agent, whom we are training, has charted a pathway to fulfil the 
optimization goal, sometimes at the expense of its counterpart, who does not reorient its prioritization strategy 
in this study.

Finally, we would like to raise the question of the generality of the pattern associated with the findings of 
this research, in view of the possible discrepancy between the assumptions (e.g. the value of the behavioural 
attributes of the agents, as well as the physical model regarding the time needed by both the rapid response and 
full repair) made in this paper and the real-world cases. In parallel, it is also worthwhile to explore the scalability 
of the learning-based strategy developed in this study, when applied to significantly-larger RNs or some other 
CISs. It is certainly the case that the research is not able to give a definitive answer to those questions, nonetheless 
the consistency of the pattern of the results across different hazard scenarios, measured by the extremely high 
quantiles, does, we believe, lend some confidence to the applicability of the established modelling framework, 
when it comes to real-world CISs.

Methods
Agent‑based model (ABM) on post‑hazard rapid response of road networks.  We examine the 
post-shock rapid response of RNs, through a multi agent-based model (ABM) established in this research, as a 
bottom-up and adaptive computational approach to the large-scale socio-economic systems29,30. In this study, 
only seismic damage of bridges in the RN will be considered, while the road segments have been assumed to be 
intact31. Under hazard events, the repair and/or reconstruction of severely-damaged bridges will often last sev-
eral months32–34, and the resultingly longstanding connectivity losses of the RN will thus pose a grave challenge 
to the emergency transfer and the restoration of many other critical infrastructure systems, and ultimately, the 
resilience of the whole urban community, where such a RN is embedded17. Therefore, in this study, based on the 
damage they have sustained, those earthquake-damaged bridges will be divided into two groups, namely, the 
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severely- and moderately-damaged ones, respectively. In particular, the partial repair, whose goal is to restore 
the functionality of those severely-damaged bridges to an incomplete, yet minimal acceptable level, has been 
characterized as the rapid response, in this research6. To account for and delineate the looped interdependence 
between the contemporaneous rapid responses and full repairs6, two agents, who are referred to as Agent A 
and Agent B, and set to be delivering the rapid response to those severely-damaged bridges, and the full repair 
to moderately-damaged ones, respectively, both in order, have been incorporated into the ABM established. It 
shall be highlighted that, the three different strategies proposed in this paper, namely, the heuristic—(see Note 
1 in the Supplementary Information), the lookahead-, and the learning-based strategies, respectively, will all be 
employed to guide Agent A. Meanwhile, the strategy of Agent B will always be betweenness-based, regardless of 
the one adopted by its counterpart.

In this ABM, the rapid response will be modelled by two behavioural attributes of Agent A, namely, Es and Vs, 
which stand for its benchmark restoration efficiency, and the travel velocity, respectively. Similarly, the behaviour 
of Agent B will be tracked in the same way (but with an inherently lower recovery rate) as Agent A (except the 
reduction of its repair efficiency attribute, which is not modelled for such an agent), with two attributes, namely, 
Em and Vm, which refer to the efficiency and the travel velocity with regard to full repairs, respectively. In each of 
the realization of the simulation, the behaviour attributes of both the two agents will be sampled from uniform 
distributions, whose lower and upper bounds are presented in Table 2. Accordingly, to account for the collec-
tive impact of the uncertainty of the earthquake-initiated damage and the behavioural attributes of the agents 
on the system-level rapid responses, 1000 Monte Carlo simulations will be run for all the different strategies 
developed in this research.

In this study, for both the lookahead- and learning-based strategies, the gross weighted loss (GWL) has been 
set as an inclusive optimization objective of Agent A. Regarding each of the realization of the rapid response 
campaign, GWL is computed following Eq. (1):

Here, Tf denotes the time point when the rapid response has been delivered to all the severely-damaged 
bridges. Bk and RSk,t refer to the betweenness value of bridge k (k = 1, 2,…, Nb, where Nb is the total number of 
bridges of the road network of interest), and the recovery state of such a bridge at the time point t, respectively. 
For each individual bridge, its recovery state can be 0, 1, 2 or 3, indicating totally recovered (or intact under the 
seismic hazard), minor damage but not yet recovered, severe damage and partially recovered, and severe damage 
but not yet recovered, respectively.

From the perspective of graph theory, the betweenness is one of the most important measures on the criticality 
of each single node, with regard to the connectivity of the corresponding network35. In this study, the between-
ness centrality of bridge k , denoted as B(k), will be computed following Eq. (2):

Here σtot refers to the total number of shortest paths associated with the whole RN of interest, while σst(k) 
assume a value of 1, if the shortest path goes through k, and 0 otherwise.

If we assume a uniform distribution over all possible journeys within the network, Bk can be viewed as the 
probability of a random journey being affected by the damage to bridge k, while RSk,t can be deemed as the 
measure on the level of the impact that recovery state has on that journey at time point t. Hence, GWL sums the 
expected impact of the state of the whole RN throughout the whole rapid response period, while taking account 
of the heterogeneity of the network. It can therefore be employed as an insightful measure on the total impact of 
the losses of the effective connectivity of the whole RN, and ultimately, the overall socio-economic losses incurred. 
Furthermore, given its proportional sensitivity to the bridge criticality, justifiably, a betweenness-based heuristic, 
which sequences all the severely-damaged bridges according to their betweenness value (in the descending order) 
can be spawned, which has been included in the heuristic-based strategies, as a greedy one and the baseline (for 
the other strategies in “toolkit” proposed in this research).

Agent‑based model on rapid responses guided by the lookahead‑based strategy.  The two 
heuristic-based strategies proposed in this study, i.e. the span- and betweenness-based ones (see Note 1 in the 
Supplementary Information), rely on an initial assessment and the rapid response sequence generated pursuant 
to a particular ranking criterion, without exploration on the time-varying state space of the RN due to both rapid 
responses and full repairs. In order to account for such evolutions, we have established a new strategy marrying 
the lookahead search with the heuristics mentioned above.

As shown in Fig. 6, supposedly, given Ns severely-damaged bridges immediately following one particular 
earthquake scenario, Agent A will first run a “virtual” one-step lookahead search, which can be described as 
follows.

For each bridge p ∈ Ns, similar to Supplementary Eqs. (1)–(3), the corresponding time to complete its rapid 
response, denoted as TL1, p, can be obtained by Eq. (3):

(1)GWL =
∑Tf

t=0

Nb
∑

k=1

Bk × RSk,t .

(2)B(k) =

∑

s �=k �=t σst(k)

σtot
.

(3)
TL1,p = T1,p +

Fr,p
Es×

np , if Span
(

p
)

≤ 50 m or,

TL1,p = T1,p +
Fr,p

Es×
np ×

(

Span(p)
50

)2
, if Span

(

p
)

> 50 m.
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Here,  T1,p denotes the time needed for the rapid response crew to reach bridge p, while Fr,p stands for the func-
tionality to be restored with regard to such a bridge. As explained in Note 1 in the Supplementary Information, 
ω (ω < 1) is a pre-defined reduction coefficient, while np stands for the number of unrepaired bridges standing 
on the shortest path, along which Agent A is travelling to tackle the next targeted bridge.

By replacing Tf with TL1, p, the resulting GWL associated with this one-step run, referred to as GWLL1, p, 
can be then computed according to Eq. (1). For each bridge p, starting from the time point TL1, p, as well as the 
corresponding GWLL1, p, Agent A will continue to deliver the rapid response to the remaining (Ns − 1) bridges, 
following the span-based heuristic. To that end, a particular rapid response sequence will be formulated, by 
ranking those (Ns − 1) bridges based on their spans, in the ascending order. For each individual bridge q in such 
a sequence, the resulting GWL throughout the loop of its rapid response, denoted as GWL1, p(q), can be obtained 
following the Eq. (4):

where TH1,p(q) and TH1,p(q − 1) stand for the time point when the rapid response has been delivered to the 
bridge q and the one before it, in that heuristic-generated sequence, respectively. In case of q = 1 (among those 
Ns − 1 ones), TH1,p(q − 1) = TL1, p. Until the rapid response has been delivered to all the (Ns − 1) bridges, the GWL 
associated with the heuristic rollout, referred to as GWLH1,p, will be computed following the Eq. (5):

Accordingly, the GWL vis-à-vis the full rapid response sequence starting with the bridge p, denoted as 
GWLF1,p, can be obtained by aggerating the GWLL1, p and GWLH1, p.

As revealed in Eq. (6), pursuant to the optimization objective, from the current state onward, the bridge i, 
associated with the particular trajectory among a total of Ns ones, which yields the minimum value of GWL, will 
be thereby picked by Agent A, as the targeted one.

As illustrated in Fig. 6, at the next decision-moment, i.e. the time point when the rapid response of bridge i 
has been wrapped up, Agent A will pick the next targeted bridge, among the remaining ones, following the same 
decision-making loop that has been elaborated above. Therefore, the whole rapid response campaign will be 
shaped in such a recursive way, until its finalization with respect to all the Ns bridges.

(4)GWL1,p
(

q
)

=

TH1,p(q)
∑

t=TH1,p(q−1)

Nb
∑

k=1

Bk × RSk,t ,

(5)GWLH1,p =

Ns−1
∑

q=1

GWL1,p
(

q
)

.

(6)i =
p
arg min GWLF1,p

(

p = 1, 2, ...,Ns

)

.

Figure 6.   Lookahead-based strategy incorporating lookahead search and the heuristic. This figure illustrates 
how the lookahead searches can be run recursively, at each decision-moment, throughout the whole rapid 
response campaign. Essentially, driven by the combined outcome associated with the one-step lookahead, and 
the rollout of the succeeding heuristic, such a strategy is able to serve as the “move recommender” for the agent.
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Agent‑based model on rapid responses guided by the learning‑based strategy.  As explained 
above, the search following Eq. (6) will be driven by the outcome associated with the combined one-step looka-
head and the following heuristic. However, given the inherently ad hoc nature of the damage status of the global 
infrastructure system under hazard events, the rollout of one particular, heuristic-generated rapid response 
sequence can very likely misinterpret the looped dynamics between the concurrent rapid response and the full 
repair.

Inspired by the latest breakthrough in the deep learning technique that is applicable to large-scale, complex 
networks36–38, we have trained a deep neural network (DNN), which generalizes the “past” experiences generated 
by massive amount of the hypothetical hazard scenarios, and can thereby “foresee” the expected losses onwards 
of the global infrastructure system, given a particular damage status thereof. Predicated upon its discernment, 
such a DNN can be employed to replace the rollout of the heuristic, and guide the lookahead searches.

To that end, without targeting any particular earthquake scenario, we will train the first generation of such a 
feedforward neural network, based upon the experiences generated from 8000 hypothetical earthquake scenarios 
with the epicentres uniformly located in the area with latitude ranging from 42.7° to 43° N, and longitude from 
0.5° to 0.8° E (see Fig. 1). The magnitude of all of those scenarios have been set to be 7, to avoid trivial simula-
tion outcomes.

As an attempt to better appraise the generalization potentiality of such a learning-based strategy, the initial 
DNN will be trained from the experiences generated following the span-based strategy, which has been proven 
to be significantly less effective than the betweenness-based one (i.e. the betweenness-based), with regard to all 
those 8000 earthquake scenarios.

For any single scenario leading to Ns ones of severely-damaged bridges, given the damage status of the global 
RN at the jth (j = 1, 2,…, Ns) decision-moment, denoted as Sj, the corresponding GWL(Sj) will be obtained by 
aggregating all resulting GWLs onwards, following Eq. (1), until the end of the rapid response campaign. Par-
ticularly, to enable the DNN to better discover the mathematical link between each pair of the Sj and the corre-
sponding GWL(Sj) through the training, an array of the component- and system-level features will be generated, 
to translate Sj into the input of the DNN, as illustrated in Fig. 7.

Specifically, given the amount of bridges of the RN in Luchon, a total of 118 component-level features on the 
jth decision-moment, denoted as CFj, k, will be incorporated and quantified at first, following Eq. (7):

In parallel, the system-level features in this neural network will be characterized as the connectivity among 
the (fixed set of the) 20 most seismically-fragile bridges (plotted in Supplementary Fig. 3), at such a moment. 
Therefore, the dimension of the array of the system-level features will be 190.

Mathematically, let m equal to (g − 1) × 20 − 0.5 × (g − 1) × g + h, where g (= 1, 2,…, 19) and h (= g + 1, g + 2,…, 
20) stands for the gth and hth bridges (among those 20 bridges), as the origin and the destination bridge, 
respectively, the corresponding system-level feature, referred to as SFj, m, will be determined according to Eq. (8):

(7)CFj, k = Bk × RSj,k (j = 1, 2, . . . ,Ns; k = 1, 2, . . . , 118).

Figure 7.   The architecture of the deep neural network. This plot illustrates how a “snapshot” of the damage 
status of the global RN can be translated into the set of “hybrid” features of the DNN, which can thereby foresee 
the corresponding GWL, from that status onwards. Besides, the learning-based strategy with the trained DNN 
will be employed to engender the experience dataset of better DNNs throughout training cycles, as well as the 
formation of rapid response strategies, when applied in the aftermath of real-world hazards. The map in the 
figure is plotted by ArcGIS.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16286  | https://doi.org/10.1038/s41598-022-19637-z

www.nature.com/scientificreports/

Here, Bas refers to the number of bridges associated with the shortest path between the gth and hth bridge, 
while cj,l is the coefficient indicating the impact on the connectivity, pursuant to the recovery state of each of 
those bridges, on the jth decision-moment. Specifically, Cj,l would equal to 0.5, when the corresponding bridge 
remains either moderately-, or severely-damaged. Meanwhile, Cj,l value will be 0.75, when it comes to a severely-
damaged bridge, where the rapid response has been delivered already.

Given the input and training target that have been obtained at the jth decision-moment, a particular batch 
of the experience, denoted as Ej = [CFj, k; SFj, m| GWL(Sj)] (k = 1, 2,…,118; m = 1, 2,…,190), will be established. 
Accordingly, based upon the whole rapid response campaign associated with such a particular scenario, a total 
of Ns batches of the experiences, can be therefore generated.

By integrating experiences generated pursuant to all those different 8000 scenarios, the total amount of 
batches of the experiences included in the entire training dataset is approximately 112,000, given the average 
amount of severely-damaged bridges equal to 14. Correspondingly, the architecture of the whole DNN will 
thereby comprise an input layer (308 × 1), two hidden layers (the dimension of both of which is 36 × 1), and an 
output layer (1 × 1), respectively, as illustrated in Fig. 7.

In such a learning-based strategy, for the Kth (K ≥ 2) generation of the DNN with the same architecture shown 
in Fig. 7, their training dataset will be engendered by the one-step lookahead search married with the (K − 1)th 
network, instead of the span-based strategy employed, when it comes to the 1st generation one. Mathematically, 
in the course of the dataset production for the Kth generation DNN, given a damage status (denoted as Sj) of 
the whole RN, at the jth decision-moment, under an earthquake scenario inducing Ns ones of severely-damaged 
bridges, the next bridge for the rapid response will be selected following Eq. (9):

Here, GWLLj,p refers to the GWL associated with the one-step lookahead conditioned on the choice of the 
pth bridge, among the remaining (Ns − j + 1) ones. Meanwhile, GWLPK−1(VSj+1(p)) denotes the GWL predicted 
by the (K − 1)th generation of the DNN, associated with the “virtual state” on the (j + 1)th decision-moment, 
resulting from the “completion” of the rapid response of the pth bridge. In practice, the traning of the newer 
generation DNNs can be terminated, when the performace of the learning-based strategy has been stabilized (i.e. 
saturated). Finally, when applied to the same earthqauke scenraio, the resuting rapid response behvaior of such a 
strategy with the 1st generation DNN will be similar to that associated with the lookaheasd-based strategy, where 
decision-makings will be driven by the span-based heuristic (in addition to the preceding one-step lookahead), 
whom such a DNN has been trained to mimic.

Data availability
All data and models necessary to interpret, replicate and build upon the methods or findings reported in the 
article are available by L.S. (li.sun@ucl.ac.uk), upon request.
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