Skip to main content
. 2022 Sep 16;10:1002171. doi: 10.3389/fbioe.2022.1002171

TABLE 1.

Chemically-powered MNRs for motile-targeting drug delivery.

Energy sources Composition Environment Motion behavior Loaded cargo/therapeutic drugs Biomedical application Ref.
H2O2 CNTDOX-Fe3O4-Tf/COX-Fe3O4-mAb nanobots In vitro PBS: 0.338 mm/s, DMEM: 0.831 mm/s, blood serum: 1.011 mm/s (0.5% H2O2) DOX hydrochloride Chemotherapy for tumor Andhari et al. (2020)
Dual-drive hybrid micromotors (PS@Fe3O4@Pt-PS) In vitro ≈12.5 μm/s (10% H2O2) N.A. Drug delivery in future Chen et al. (2020)
Graphene/FeOx-MnO2 micromotors In vitro Average speed 89 ± 59 μm/s (0.03% H2O2) N.A. N.A. Ye et al. (2018)
PEG-PS polymersome-based Janus nanomotors In vitro N.A. Fluorescein sodium salt (model drug) Drug delivery Peng et al. (2018)
Water PACT-guided microrobotic system In vitro, In vivo < 1 mm/min DOX Drug delivery Wu Z et al. (2019)
Qβ VLPs-loaded Mg-based micromotors In vitro, In vivo Average speed in intraperitoneal (IP) fluid ≈60 μm/s Qβ VLPs Cancer immunotherapy (ovarian cancer) Wang Cet al., (2020)
Mg-Fe3O4-based Magneto-fluorescent nanorobots In vitro 0.393 ± 0.07 mm/s in serum with 1.0 M NaHCO3 N.A. Capture and isolate tumor cells Wavhale et al. (2021)
L-arginine NO-driven nanomotors In vitro HLA10: 3 μm/s, HLA15:8 μm/s, HLA20:13 μm/s NO, HPAM, L-citrulline Various diseases (e.g., tumor) Wan et al. (2019)
Native acid Calcium carbonate micromotors In vitro 0.544 μm/s N.A. Drug delivery for cancer treatment Guix et al. (2016)
Micromotor toxoids In vitro, In vivo ∼200 μm/s Antigen Gastrointestinal drug delivery Karshalev et al. (2019)
Macrophage-Magnesium biohybrid micromotors In vitro Average speed ≈127.3 μm/s N.A. Endotoxin neutralization Zhang et al. (2019)
Poly (aspartic acid)/iron−zinc microrockets In vitro, In vivo ≈29.2 ± 7.9 μm/s (gastric acid simulant) DOX Chemotherapy (gastric cancer) Zhou et al. (2019)
Collagen (collagenase) Collagenase-powered MF-NPs coated microswimmers In vitro ≈22 μm/s (collagen solution) Multifunctional nanoparticles Potential for Cargo delivery Ramos-Docampo et al. (2019)
H2O2 (catalase) Ultrasmall stomatocyte polymersomes In vitro From 13.69 ± 1.11 to 20.52 ± 0.35 μm/s (2–20 mM H2O2) N.A. Potential for cargo delivery Sun et al. (2019)
Glucose (GOx) Dual enzyme-functionalized core-shell nanomotors In vitro N.A. Photosensitizer, upconversion nanoparticles Synergetic photodynamic and starvation therapy You et al. (2019)
Urea (urease) enzyme-powered Janus platelet micromotors In vitro ≈7 μm/s (200 mM urea concentration) DOX Various disease (e.g., breast cancer) Tang et al. (2020)
Multilayer-urea -based Janus Au/MMPs In vitro 21.5 ± 0.8 μm/s (physiological urea concentrations (10 mM)) N.A. Potential for drug delivery Luo et al. (2020)
Urease-powered silica NPs based nanomotors In vitro N.A. N.A. Targeted bladder cancer therapy Hortelao et al. (2018)
Enzyme-powered gated mesoporous silica nanomotors In vitro N.A. DOX, [Ru (bpy)3]Cl2 (bpy = 2,2′-bipyridine) Intracellular Payload Delivery Llopis-Lorente et al. (2019b)