Skip to main content
. 2022 Sep 16;10:1002171. doi: 10.3389/fbioe.2022.1002171

TABLE 2.

External-field-powered MNRs for motile-targeting drug delivery.

Energy sources Representative examples Environment Motion behavior Loaded cargo/therapeutic drugs Biomedical application Ref.
Light NIR Pt NPs modified polymer multilayer micromotors In vitro Maximum speed ≈62 μm/s N.A. Photothermal therapy Wu et al. (2014)
MPCM@JMSNMs In vitro 0.9 μm/s ∼ 5.98 μm/s Propidium iodide Drug delivery for cancer Xuan et al. (2018)
Membrane-cloaked Janus polymeric motors In vitro 2.33 μm/s ∼ 19.8 μm/s Heparin Drug delivery and Photothermal therapy for thrombus Shao et al. (2018)
Photothermally-driven polymersome nanomotors In vitro ≈1.9 μm/s ∼ 6.2 μm/s Propidium iodide Intracellular Drug delivery Shao et al. (2020)
Platelet-derived porous nanomotors In vitro Maximum speed ≈4.5 μm/s Urokinase Thrombus therapy Wan et al. (2020)
In vivo Heparin
Janus calcium carbonate particle micromotors In vitro 2.9 μm/s ∼ 7.3 μm/s DOX Drug delivery Zhou et al. (2021)
X-ray Half-copper-coated silica (Cu/SiO2) Janus microparticles In vitro Maximum speed ≈1.2 μm/s N.A. Potential for enhancing diagnosis and radiotherapy Xu Z et al. (2019)
UV Photoelectrochemical TiO2-Au-nanowire-based motors In vitro Speed of 5.6 ± 1.5 μm/s N.A. Ocular disease (neural RGC stimulation) Chen et al. (2021)
Ultrasound Asparaginase-modified nanowire motors In vitro 5 μm/s ∼ 60 μm/s Asparaginase Cancer cells inhibition Uygun et al. (2017)
Cas9-sgRNA@AuNW motors In vitro ≈22 μm/s Cas9-sgRNA Complex Drug delivery (e.g., gene therapy) Hansen-Bruhn et al. (2018)
Liquid metal nanomachines In vitro 4.6 μm, 420 kHz, 47.4 μm/s N.A. Photothermal therapy for cancer Wang et al. (2018)
AuNS functionalized polymer multilayer tubular nanoswimmers In vitro 5 μm/s ∼ 80 μm/s N.A. Potential for various biomedical applications (e.g., gene delivery) Wang Q et al. (2019)
RBCM-micromotors In vitro Maximum speed ≈56.5 μm/s Oxygen and ICG Photodynamic cancer therapy Gao et al. (2019)
Magnetic field Multifunctional nanorobot systems (MF-NRS) In vitro 4.5 ± 2.2–10.37 ± 5.3 mm/s DOX Chemo-phototherapy for cancer Jin et al. (2019)
In vivo
HADMSC-based medical microrobots In vitro N.A. Mesenchymal stem cell Cartilage repair Go et al. (2020)
In vivo
Bilayer hydrogel sheet-type intraocular microrobots In vitro N.A. DOX Ocular disease (e.g., retinoblastoma) Kim et al. (2020)
Leukocyte-inspired mult-ifunctional microrollers In vitro 600 μm/s DOX Various diseases (e.g., cancer) Alapan et al. (2020)
Photosynthetic bohybrid nanoswimmers In vitro Maximum speed ≈78.3 μm/s Chlorophyll Cancer treatment Zhong et al. (2020)
In vivo
Sequential magneto-actuated and optics-triggered biomicrorobots In vitro Average speed: 13.3 ± 4.5 μm/s ICG nanoparticles Various disease (e.g., cancer) Xing et al. (2021)
In vivo
ICG/R837 loading and DPA-PEG coating magnetic nanoparticles In vivo N.A. ICG and immune-ostimulator R837 hydrochloride Photothermal/immunotherapy for cancer Zhang et al. (2020)
Magnetic tri-bead microrobots In vitro Average velocity: 14.5 μm/s DOX Photothermal therapy and chemotherapy Song et al. (2021)
Magnetic-actuated “capillary container” In vitro N.A. N.A. Selective fluid colle-ction, drug delivery Zhang Y et al. (2021)
Personalized magnetic micromachines In vitro Maximum speed: 9.3–9.8 μm/s Cell tracker deep red dye Potential for drug delivery Ceylan et al. (2021)
Au-Ni nanowires In vitro 6.35–21.5 μm/s DOX and ssDNA Drug delivery Karaca et al. (2021)
Nickel-based spherical Janus magnetic microrobots In vitro 0.97 ± 0.27 mm/s N.A. Potential for drug delivery Wrede et al. (2022)