Skip to main content
. 2022 Sep 16;13:1015035. doi: 10.3389/fphar.2022.1015035

TABLE 2.

Comprehensive information about the pharmacological effects and mechanisms of sinomenine in models of intracerebral hemorrhage, traumatic brain injury, Alzheimer’s disease, Parkinson’s disease, disorders associated with neuronal hyper-activation, depression, multiple sclerosis, and morphine dependence.

Pharmacological effect Object Drug administration Possible mechanisms References
Intracerebral hemorrhage
 Suppress brain edema and neurologic damage Mice *20 mg/kg Shift microglia to an anti-inflammatory phenotype Shi et al. (2016)
*i.p.
*once daily, 3 days
 Prevent neuronal death and apoptosis induced by conditioned medium from microglia treated with erythrocyte lysate *Neuron; *Microglia *0.1 or 1 mM, *60 min before erythrocyte lysate simulation Shift microglia to an anti-inflammatory phenotype Yang et al. (2014)
Traumatic brain injury
 *Suppress neurological deficits and brain water increase Mice *30 or 70 mg/kg Increase Nrf-2-mediated antioxidant response Fu et al. (2018)
*i.p.
 *Suppress neuronal apoptosis *24 h
 *Alleviate cerebral edema and neuronal apoptosis Mice *10, 30, or 50 mg/kg Increase Nrf-2-mediated antioxidant response Youqing Yang et al. (2016)
*i.p.
 *Improve motor performance *24 h
 *Attenuate neuroinflammation Rabbits *10, 30, or 50 mg/kg Shift microglia to an anti-inflammatory phenotype Sharma et al. (2020)
*i.p.
*30 min after surgery, 1 day
Alzheimer’s disease
 Prevent cell death induced by conditioned medium from oligomeric Aβ-treated astrocytes *HT22 cells *100 μM
*1.5 h before stimuli
Prevent pro-inflamamtory mediator production Shukla and Sharma (2011), Singh et al. (2020)
*Cultured hippocampal neurons
*C8D1A cells
*Cultured human astrocytes
*BV-2 microglia
 Reverse trimethyltin-induced 1) increase in discrimination index in novel object detection, 2) impairment of alternation in the short-term Y maze, 3) decrease in step-through latency in the passive avoidance paradigm, and 4) increase in probe trial error and latency in the Barnes maze task in rats Rats *100 mg/kg *Increase Nrf-2-mediated antioxidant response Rostami et al. (2022)
*p.o. *Suppress AChE activity
*1 h after stimuli, once daily, 3 weeks *Suppress BACE1 activity
Parkinson’s disease
 *Suppress MPTP-induced motor impairment, *increase TH-positive neurons Mice *20 mg/kg Enhance autophagy by inhibiting the Akt-mTOR signaling Bao et al. (2022)
*i.p.
*5 days before MPTP treatment and another 4 days for a total of 9 days
 *Prevent LPS- or MPP+-induced impairment of dopamine take up *prevent LPS-induced decrease in TH-positive neurons Midbrain neuron-enriched cultures 10−6, 10−5, 10−14, or 10−13 M Inhibit iNOS expression and TNF-α, PGE2, and NO production Qian et al. (2007)
Disorders associated with neuronal hyper-activation
 *Prevent kainate-induced status epilepticus, *prevent kainate-induced hippocampal DNA fragmentation and neuronal reduction Rats *50 mg/kg *Enhance antioxidant response Ramazi et al. (2020)
*p.o.
*once daily, started 4 days before till day 3 after kainate injection *Inhibit neuroinflammation
 Suppress pentylenetetrazole-induced decrease in seizure latency and duration Rats *20, 40, or 80 mg/kg *Inhibit NLRP1-inflammasome complex activation and neuroinflammation Gao et al. (2018)
*i.p.
*once daily, 29 days
 *Shorten sleep latency *Mice *40 mg/kg *Promote Cl- flux Yoo et al. (2017)
*p.o.
 *Prolong total sleep time *Hypothalamic neurons *administered 60 min before behavioral tests *Increase GABAA receptor and GAD65/67 expression
Depression
 Reverse CUS-induced depression-like behaviors Mice *30, 100 or 300 mg/kg *Reverse NLRP3-inflammasome complex activation Liu et al. (2018)
*p.o.
*once daily, 21 days *Reverse p38 and NF-κB activation
 Reverse CSDS-induced depression-like behaviors Mice *20 or 40 mg/kg Restore the BDNF-CREB signaling Li et al. (2018)
*i.p.
* once daily, 14 days
Multiple sclerosis
 Reduce neurological scores associated with clinical symptoms of multiple sclerosis Mice *100 mg/kg Suppress neuroinflammation Kiasalari et al. (2021)
*i.p.
*once daily, 18 or 19 days
 *Prevent weight loss Mice *50, 100, or 200 mg/kg Suppress neuroinflammation Zeng et al. (2007)
*i.p.
 *Delay disease progression associated with EAE *once daily, 5 days
 Reduce EAE scores Mice *15 mg/kg Suppress neuroinflammation Yan et al. (2010)
*i.p.
*treated from day 1–40 after MOG35-55 immunization
Morphine dependence
 Prevent morphine-induced increase in time spent in the non-preferred white compartment in the conditioned place preference test Mice *80 mg/kg *Reduce TH and NR2B expression Fang et al. (2017)
*i.p.
*on days 5–7 after the preconditioning phase and the first and second sessions on day 4 *Increase MOR expression
 Prevent morphine-induced conditioned place preference Mice *60 mg/kg *Inhibit morphine-induced activation of astrocytes Ou et al. (2018)
*i.p.
*45 min before morphine injection, 3 days
 Reverse morphine-induced 1) increase in Fusobacteria and decrease in Actinobacteria, 2) decrease in tight junction proteins and OPRM1 and OPRD1, and 3) increase in levels of DRD2A, HTR2A, BDNF, and NTRK2 in the zebrafish brain and/or intestine Zebrafish 80 mg/kg Regulate the homeostasis of gut microbiota Chen et al. (2020)