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Abstract

Recently, deep learning approaches have become the main research frontier for biological image 

reconstruction and enhancement problems thanks to their high performance, along with their 

ultra-fast inference times. However, due to the difficulty of obtaining matched reference data 

for supervised learning, there has been increasing interest in unsupervised learning approaches 

that do not need paired reference data. In particular, self-supervised learning and generative 

models have been successfully used for various biological imaging applications. In this paper, 

we overview these approaches from a coherent perspective in the context of classical inverse 

problems, and discuss their applications to biological imaging, including electron, fluorescence 

and deconvolution microscopy, optical diffraction tomography and functional neuroimaging.
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I. Introduction

Biological imaging techniques, such as optical microscopy, electron microscopy, x-ray 

crystallography have become indispensable tools for modern biological discoveries. Here, 

an image sensor measurement y ∈ Y from an underlying unknown image x ∈ X is usually 

described by

y = H(x) + w, (1)
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where w is the measurement noise and H:X Y is a potentially nonlinear forward mapping 

arising from the corresponding imaging physics. In practice, the resulting inverse problem 

to obtain x from the sensor measurement y is ill-posed. Over the past several decades, 

many tools have been developed to address such ill-posed inverse problems, among which a 

popular one is the regularized least squares (RLS) that employs regularization (or penalty) 

terms to stabilize the inverse solution:

x = arg min
x

c(x, y) + R(x) where c(x, y) ≜ y − H(x)
2
2 . (2)

In this objective function, the regularization term R(·) is usually designed in a top-down 

manner using mathematical and engineering principles, such as sparsity, total variation, or 

entropy-based methods, among others.

Recently, deep learning (DL) approaches have become mainstream for inverse problems 

in biological imaging, owing to their excellent performance and ultra-fast inference time 

compared to RLS. Most DL approaches are trained in a supervised manner, with paired 

input and ground-truth data, which often leads to a straightforward training procedure. 

Unfortunately, matched label data are not available in many applications. This is particularly 

problematic with biological imaging problems, as the unknown image itself is intended for 

scientific investigation that was not possible by other means.

To address this problem, two types of approaches have gained interest: self-supervised 

learning and generative model-based approaches. Self-supervised learning aims to generate 

supervisory labels automatically from the data itself to solve some tasks, and has found 

applications in many machine learning applications [1]. For regression tasks, such as image 

reconstruction and denoising, this is typically achieved by a form of hold-out masking, 

where parts of the raw or image data are hidden from the network and used in defining 

the training labels. For image denoising, it was shown that this idea can be used to train 

a deep learning approach from single noisy images [2]. Furthermore, with an appropriate 

choice of the holdout mask, the self-supervised training loss was shown to be within an 

additive constant of the supervised training loss [3], providing a theoretical grounding for 

their success for denoising applications. For image reconstruction, the use of self-supervised 

learning was proposed in [4] for physics-guided neural networks that solve the RLS 

problem, showing comparable quality to supervised deep learning. In this case, the masking 

is performed in a data fidelity step, decoupling it from the regularization problem, and 

also facilitating the use of different loss functions in the sensor domain. Self-supervised 

learning techniques have been applied in numerous biological imaging applications, such as 

fluorescence microscopy [3], electron microscopy [2], [5], and functional neuroimaging [6].

Another class of unsupervised learning approaches are based on generative models [7], such 

as generative adversarial nets (GAN) that have attracted significant attention in the machine 

learning community by providing a way to generate a target data distribution from a random 

distribution. In the paper on f-GAN [8], the authors show that a general class of so-called 

f-GAN can be derived by minimizing the statistical distance in terms of f-divergence, and 

the original GAN is a special case of f-GAN, when the Jensen-Shannon divergence is used 
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as the statistical distance measure. Similarly, the so-called Wasserstein GAN (W-GAN) 

can be regarded as another statistical distance minimization approach, where the statistical 

distance is measured by Wasserstein-1 distance [7]. Inspired by these observations, cycle-

consistent GAN (cycleGAN) [9], which imposes one-to-one correspondence to address the 

mode-collapsing behavior, was shown to be similarly obtained when the statistical distances 

in both measurement space and the image space can be simultaneously minimized [10]. The 

cycleGAN formulation has been applied for various biological imaging problems, such as 

deconvolution microscopy [11] and super-resolution microscopy [10], where the forward 

model is known or partially known.

Given the success of these unsupervised learning approaches, one of the fundamental 

questions is how these seemingly different approaches relate to each other and even to 

the classic inverse problem approaches. The main aim of this paper is therefore to offer a 

coherent perspective to understand this exciting area of research.

This paper is composed as follows. In Section II, classical approaches of biological image 

reconstruction problems and modern supervised learning approaches are introduced, and the 

need for unsupervised learning approaches in biological imaging applications is explained. 

Section III then overviews the self-supervised learning techniques, which is followed by 

generative model-based unsupervised learning approaches in Section IV. Section V discusses 

open problems in unsupervised learning methods, which is followed by conclusion in 

Section VI.

II. Background on Biological Image Reconstruction and Enhancement

A. Conventional solutions to the regularized least squares problem

The objective function of the RLS problem in Eq. (2) forms the basis of most conventional 

algorithms for inverse problems in biological imaging. As this objective function does not 

often have a closed form solution, especially when using compressibility-based regularizers, 

iterative algorithms are typically used.

For the generic form of the problem, where H(·) can be non-linear, gradient descent is a 

commonly used algorithm for solution:

x(k) = x(k − 1) − ηk∇xc x(k − 1), y − ηk∇xR x(k − 1) , (3)

where x(k) is the solution at the kth iteration, and ηk is the gradient step. While gradient 

descent remains popular, it requires taking the derivative of the regularization term, which 

may not be straightforward in a number of scenarios. Thus, alternative methods have 

been proposed for the types of objective function in Eq. (2), relying on the use of the so-

called proximal operator associated with R(·). These methods encompass proximal gradient 

descent and its variants, and variable splitting methods, such as alternating direction method 

of multipliers and variable splitting with quadratic penalty. Among these, variable splitting 

approaches are popular due to their fast convergence rates and performance in a number 

of applications even with non-convex objective functions. In particular, variable splitting 
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approaches decouple the c(x, y) and R(x) terms by introducing an auxiliary variable z 
constrained to be equal to x, as:

arg min
x, z

c(x, y) + R(z) s.t. x = z (4)

This constrained optimization problem can be solved in different ways, with the simplest 

being the introduction of a quadratic penalty that leads to the following alternating 

minimization:

z(k − 1) = arg min
z

μ x(k − 1) − z 2 + R(z) (5a)

x(k) = arg min
x

y − H(x) 2 + μ x − z(k − 1) 2
(5b)

where x(0) = −η∇xc(0, y) can be initialized with a single gradient descent step on the 

data consistency term and z(k) is an intermediate optimization variable. The sub-problems 

in Eq. (5a) and (5b) correspond to a proximal operation and a data consistency step, 

respectively. While for generic H(·) and R(·), convergence cannot be guaranteed, under 

certain conditions, which are more relaxed for gradient descent, convergence can be 

established. Nonetheless, both gradient descent, and algorithms that utilize the alternating 

data consistency and proximal operation iteratively have found extensive use in inverse 

problems in biological imaging. Moreover, plug-and-play (PnP) and regularization by 

denoising (RED) approaches show that powerful denoisers can be used as a prior for 

achieving state-of-the-art performance for solving inverse problems, even if they do not 

necessarily have closed form expressions. Unfortunately, the main drawbacks of these 

methods include lengthy computation times due to their iterative nature, and sensitivity 

to hyper-parameter choices, which often limit their routine use in practice.

B. Deep learning based reconstruction and enhancement with supervised training

Deep learning (DL) methods have recently gained popularity as an alternative for estimating 

x from the measurement model in Eq. (1). In the broadest terms, these techniques learn a 

parametrized nonlinear function that maps the measurements to an image estimate. Early 

methods that utilized DL for reconstruction focused on directly outputting an image estimate 

from (a function of) the measurement data, y, using a neural network. These DL methods, 

classified under image enhancement strategies, learn a function Fθe(y). In particular, the 

input to the neural network is y if the measurements are in image domain or a function of y, 

such as the adjoint of H(·) applied to y for linear measurement systems, if the measurements 

are in a different sensor domain. The main distinctive feature of these enhancement-type 

methods is that H(·) is not explicitly used by the neural network, except potentially for 

generating the input to the neural network. As such, the neural network has to learn the 

whole inverse problem solution without the forward operator. While this leads to very fast 

runtime, these methods may face issues with generalizability especially when H(·) varies 

from one sample to another [12].
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An alternative line of DL methods fall under the category of physics-guided or physics-

driven methods. These methods aim to solve the objective function in Eq. (2) explicitly 

using H(·), and implicitly learning an improved regularization term R(·) through the use 

of neural networks. These methods rely on the concept of algorithm unrolling [12], where 

a conventional iterative algorithm for solving Eq. (2) is unrolled for a fixed number of 

iterations, K. For instance, for the variable splitting algorithm described in Eq. (5a)–(5b), 

the unrolled algorithm consists of an alternating cascade of K pairs of proximal and data 

consistency operations. In unrolled networks, the proximal operation in Eq. (5a) is implicitly 

implemented by a neural network, while the data consistency operation in Eq. (5b) is 

implemented by conventional methods that explicitly use H(·), such as gradient descent with 

the only learnable parameter being the gradient step size. These physics-guided methods 

have recently become the state-of-the-art in a number of image reconstruction problems, 

including large-scale medical imaging reconstruction challenges, largely due to their more 

interpretable nature and ability for improved generalization when faced with changes in the 

forward operator H(·) across samples [12]. Thus, the final unrolled network can be described 

by a function Fθr(y; H) that explicitly incorporates the forward operator and is parametrized 

by θr.

For both of these deep learning approaches, supervised training, which utilizes pairs of 

input and ground-truth data, remains a popular approach for inverse problems in biological 

imaging. For a unified notation among enhancement and reconstruction approaches, we use 

Fθ(y) to denote the network output for measurements y. In supervised learning, the goal is to 

minimize a loss of the form

min
θ

Ex, yℒ x, Fθ(y) , (6)

where ℒ( ⋅ , ⋅ ) is a loss function that quantitatively characterizes how well the neural 

network Fθ(·) predicts the ground truth data for the given input.

In practice, the mapping function in Eq. (6) is approximated by minimizing the empirical 

loss on a large database. Consider a database of N pairs of input and reference data, 

yn, xref
n

n = 1
N

. Supervised learning approaches aim to learn the parameters θ of the function 

Fθ(·). In particular, during training, θ are adjusted to minimize the difference between the 

network output and the ground-truth reference. More formally, training is performed by 

minimizing

min
θ

1
N ∑

n = 1

N
ℒ xref

n , Fθ yn . (7)

Note that the loss function does not need to be related to the negative log-likelihood, 

c(x, y) of the RLS problem given in Eq. (2). While the mean squared error (MSE) loss, 
1
N ∑n = 1

N xref
n − Fθ yn 2

, remains popular, a variety of other loss functions such as ℒ1, 

adversarial and perceptual losses are used for supervised deep learning approaches.
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C. Motivation for unsupervised deep learning approaches

While supervised deep learning approaches outperform classical methods and provide state-

of-the-art results in many settings, acquisition of reference ground-truth images are either 

challenging or infeasible in many biological applications.

For example, in transmission electron microscopy (TEM), acquired projections are 

inherently low-contrast. A common approach for high-contrast images is to acquire 

defocused images which in turn reduces the resolution. Moreover, in TEM, acquisition 

of the clean reference images are not feasible due to limited electron dose used during 

acquisition to avoid sample destruction. Similarly, in scanning electron microscopy (SEM), 

the lengthy acquisition times for imaging large volumes remains a main limitation. While 

it is desirable to speed up the acquisitions, such acceleration degrades the acquired 

image quality [5]. Fluorescence microscopy is commonly used for live-cell imaging, but 

the intense illumination and long exposure during imaging can lead to photobleaching 

and phototoxicity. Hence, safer live-cell imaging requires lower intensity and exposure. 

However, this causes noise amplification in the resulting images, rendering it impractical 

for analysis. These challenges are not unique to listed microscopy applications. In many 

other biological applications, such as optical diffraction tomography, functional magnetic 

resonance imaging or super resolution microscopy, such challenges exist in similar forms. 

Hence, unsupervised deep learning approaches are essential for addressing the training of 

deep learning reconstruction methods in biological imaging applications.

III. Self-supervised learning methods

A. Overview

Self-supervised learning encompasses a number of approaches, including colorization, 

geometric transformations, content encoding, hold-out masking and momentum contrast 

[1]. Among these methods, hold-out masking is the most commonly used strategy for 

regression-type problems, including image denoising and reconstruction. In these methods, 

parts of the image or raw measurement/sensor data are hidden from the neural network 

during training, and instead are used to automatically define supervisory training labels from 

the data itself. An overview of this strategy for denoising is shown in Fig. 1. While the 

masking idea is similar, there is a subtle difference between the denoising and reconstruction 

problems. In denoising, H(·) is the identity operator, thus all the pixels in the image are 

accessible, albeit in a noise-degraded state. This allows for a theoretical characterization 

of self-supervised learning loss with respect to the supervised learning loss, verifying the 

practicality of self-supervision. This has also led to attention for self-supervised denoising 

from the broader computer vision community. On the other hand, theoretical results have 

not been established for image reconstruction due to the incomplete nature of available data, 

yet reported empirical results from variety of DL algorithms, especially physics-guided ones 

incorporating the forward operator, show that it can achieve similar reconstruction quality 

as supervised learning algorithms. In order to capture these inherent differences between the 

two problems, we will next separately discuss self-supervised deep learning for denoising 

and reconstruction methods.

Akçakaya et al. Page 6

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Self-supervised deep learning for denoising

1) Background on denoising using deep learning: Image denoising concerns 

a special case of the acquisition model in Eq. (1), where H(·) is the identity operator. 

In this case, the objective function for the inverse problem in Eq. (2) becomes arg 

minx y − x 2
2 + R(x). In deep learning methods for denoising, this proximal operation is 

replaced by a neural network, which estimates a denoised image <xdenoised = Fθd(y) through 

a θd-parametrized function. While supervised deep learning methods provide state-of-the-art 

results for denoising applications, absence of clean target images render the supervised 

approaches inoperative for a number of biological imaging problems as discussed earlier.

Noise2Noise (N2N) was among the first works that tackled this challenge, where a neural 

network was trained on pairs of noisy images and yielded results on par with their 

supervised counterparts. Given pairs of noisy images arising from the same clean target 

image each with its own i.i.d. zero-mean random noise components (y = x + w, y = x + w), 
N2N aims to minimize an MSE loss of the form

min
θd

Ey, y Fθd(y) − y 2 = min
θd

Ex, y Fθd(y) − x 2 + Ew w 2

− 2E w, Fθd(y) − x
(8)

= min
θd

Ex, y Fθd(y) − x 2 + Ew w 2, (9)

where the last term in Eq. (8) becomes zero since Ew = 0. Note that the last term 

in Eq. (9) does not depend on θd. Hence, the θd
⋆ that minimize the N2N loss, 

Ex, y, w Fθd(y) − (x + w) 2, is also a minimizer of the supervised loss Ex, y Fθd(y) − x 2. We 

note that different loss functions such as L1 loss can also be used with N2N [13].

In practice, training is performed by minimizing empirical loss on a database with N pairs 

of noisy images yn = xn + wn, yn = xn + wn
n = 1
N

. N2N trains a neural network for denoising 

by minimizing

min
θd

∑
n = 1

N
Fθd yn − yn 2 . (10)

The key assumption of N2N is that the expected value of the noisy image pairs are 

equivalent to the clean target image. While N2N eliminates the need for acquiring noisy/

clean pairs used for supervised training, which is either challenging or impossible in most 

applications, the N2N requirement for pairs of noisy measurements may nonetheless be 

infeasible in some biological applications.

2) Self-supervised training for deep learning-based denoising: Self-supervised 

learning methods for image denoising build on the intuitions from the N2N strategy, while 
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enabling training from single noisy measurements in the absence of clean or paired noisy 

images. Following the N2N strategy, the self-supervised loss can be generally stated as

min
θd

Ey Fθd(y) − y 2 . (11)

However, the naive application of Eq. (11) leads to the denoising function Fθd to be identity.

Noise2Void (N2V) was the first work to propose the use of masking to train such a neural 

network. Concurrently, Noise2Self (N2S) proposed the idea of J-invariance to theoretically 

characterize how the function Fθd can be learned without collapsing to the identity function. 

To this end, consider an image with m pixels, and define a partition (or index set) of an 

image as J ⊆ {1, . . . , m}. Further, let xJ denote the pixel values of the image on the partition 

defined by J. With this notation, J-invariance was defined as follows [3]: For a given set 

of partitions of an image J = J1, …, JN , where ∑i = 1
N Ji = m, a function Fθd:ℝm ℝm

is J-invariant if the value of Fθd(y)J does not depend on the value of yJ for all J ∈ J. In 

essence, the pixels of an image are split into two disjoint sets J and Jc with |J|+|J|c = m, and 

J-invariant denoising function Fθd(y)J uses pixels in yJc to predict a denoised version of yJ. 

The objective self-supervised loss function over J-invariant functions can be written as [3]

Ey Fθd(y) − y 2 = Ex, y Fθd(y) − x 2 + Ex, y y − x 2

− 2Ex, y Fθd(y) − y, y − x
(12)

= Ex, y Fθd(y) − x 2 + Ex, y y − x 2

− 2ExEy ∣ x Fθd(y) − y, y − x
(13)

= Ex, y Fθd(y) − x 2 + Ex, y y − x 2 . (14)

Note that for each pixel j in Eq. (13), the random variables Fθd(y)j ∣ x and yj|x are 

independent if Fθd is J-invariant, while the noise is zero-mean by assumption. Hence, 

the third term in Eq. (13) vanishes. Eq. (14) shows that minimizing a self-supervised loss 

function over J-invariant functions is equivalent to minimizing a supervised loss up to a 

constant term (variance of the noise). Thus, self-supervised denoising approaches learns a 

J-invariant denoising function Fθd over a database of single noisy images by minimizing the 

self-supervised loss

arg min
θd

∑
n = 1

N
∑

J ∈ J
Fθd yJcn − yJ

n 2 . (15)
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Implementation-wise, it is not straightforward to just set the pixels specified by J to zero, 

since this will affect the way convolutions will be computed. Thus, during training of 

self-supervised techniques such as N2V or N2S, the network takes yJc = 1Jcy + 1Jκ(y) as 

input [3], where κ(·) is a function assigning new values to masked pixel locations, J. The 

new pixel values in J indices of the network input are either a result of a local averaging 

filter that excludes the center, or random values drawn from a uniform random distribution 

[3]. In the former case, J-invariance can be achieved by using a uniform grid structure for 

the masks J, where the spacing is determined by the kernel size of the averaging filter, while 

for the latter case, a uniform random selection of J may suffice [3].

At inference time, two approaches can be adapted: 1) inputting the full noisy image on the 

trained network, 2) inputting a partition J containing |J| sets and averaging them.

C. Self-supervised learning for image reconstruction

Self-supervised learning for image reconstruction neural networks provides a method for 

training without paired measurement and reference data. One important line of work 

entails a method called self-supervised learning via data undersampling (SSDU) [4], which 

generalizes the hold-out masking of Section III–B2 for physics-guided image reconstruction.

For m-dimensional y, consider an index set Θ ⊆ {1, . . . , m} of all the available 

measurement coordinates. In physics-guided DL reconstruction, the measurements interact 

with the neural network through the data consistency operations. To this end, let HΘ(·) be 

the operator that outputs the measurement coordinates corresponding to the index set Θ. In 

SSDU, hold-out masking is applied through these data consistency operations. Thus, while 

the index set Θ is used in the data consistency units of the unrolled network, the loss itself is 

calculated in the sensor domain on the indices specified by ΘC [4]. Hence, SSDU minimizes 

the following self-supervised loss

min
θr

1
N ∑

n = 1

N
ℒ yΘC

n , HΘC
n Fθr yΘ

n , HΘ
n , (16)

where the output of the network is transformed back to the measurement domain by 

applying the forward operator HΘC
n

 at corresponding unseen locations in the training, ΘC. 

An overview of this strategy is given in Fig. 2.

Note that unlike in the denoising scenario, the measurements for reconstruction can be in 

different sensor domains, and thus the training algorithm does not have access to all the 

pixels of the image. Thus, the concept of J-invariance is not applicable in this setting. 

Therefore, from a practical perspective, Θ is chosen randomly. In [4], which focused on 

a Fourier-based sensor domain, a variable density masking approach based on Gaussian 

probability densities was chosen. This inherently enabled a denser sampling of the low-

frequency content in Fourier space, which contain most of the energy for images, for 

use in the data consistency units. However, a Gaussian density for masking requires a 

hyper-parameter controlling its variance. Thus, in later works, SSDU was extended to a 

multi-mask setting [14], where multiple index sets Θl l = 1
L  were used to define the loss
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min
θr

1
N ∑

n = 1

N
∑
l = 1

L
ℒ yΘl

C
n , HΘl

C
n Fθr yΘl

n ; HΘl
n . (17)

When utilizing multiple hold-out masks for the data consistency units, uniform random 

selection of the masks becomes a natural choice, also eliminating the need for an additional 

hyper-parameter. Furthermore, the use of multiple Θl l = 1
L  also leads to an improved 

performance, especially as H(·) becomes increasingly ill-posed [14]. During inference time, 

SSDU-trained reconstruction uses all available m measurements in y in the data consistency 

units for maximal performance [4].

Note that because the masking happens in the data consistency term, the implementation is 

simplified to removing the relevant indices of the measurements for the data consistency 

components, and does not require a modification of the regularization neural network 

component or its input, unlike in the denoising scenario. This also enables a broader range of 

options for the loss ℒ. While the negative log-likelihood, c(x, y) of the RLS problem is an 

option, more advanced losses that better capture relevant features have been used [4].

Apart from the hold-out masking strategy discussed here, there is a line of work that 

performs self-supervision using a strategy akin to that described in Eq. (11), where all the 

measurements are used in the network and for defining the loss [15]. More formally, such 

approaches aim to minimize a loss function of the form

min
θe

1
N ∑

n = 1

N
ℒ yn, Hn Fθe yn; Hn . (18)

We note that y denotes all the acquired measurements and H transforms the network 

output Fθe( ⋅ ) to sensor domain. However, the performance of such naive application of 

self-supervised learning approaches suffers from noise amplification due to overfitting [4].

D. Biological Applications

1) Denoising: Even though N2N requires two independent noisy realizations of the 

target image for unsupervised training, which may be hard to meet in general, it has been 

applied to light and electron microscopy under Gaussian or Poisson noise scenarios. In 

cryo-TEM, the acquired datasets are inherently noisy, since the electron dose is restricted 

to avoid sample destruction [5]. Cryo-CARE [5] was the first work to show that the N2N 

can be applied to cryo-TEM data for denoising. Cryo-CARE was further applied on 3D 

cryo-electron tomogram (cryo-ET) data showing its ability to denoise whole tomographic 

volumes. Several other works have also extended N2N for denoising cryo-EM data.

N2V was the first work showing the denoising can be performed from single noisy 

measurements. N2V has been extensively applied to EM datasets showing improved 

reconstruction quality compared to conventional blind denoising methods such as BM3D 

[2]. In follow-up works, Bayesian post-processing has been used to incorporate pixel-wise 

Gaussian or histogram-based noise models [16] for further improvements in the denoising 
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performance. However, their application is limited as it requires the knowledge of the noise 

model, which might be challenging to know as a prior in number of applications. Moreover, 

the noise could be a mixture of noise type hence further hindering their applications. 

A follow-up work on [16] show that the prior noise model knowledge requirement in 

probabilistic N2V models can be tackled by learning the noise model directly from the noisy 

image itself via bootstrapping [17]. Another extension of this method, called structured N2V, 

was also proposed to mask a larger area rather than a single pixel for removing structured 

noise in microscopy applications. Similarly, Noise2Self and its variants have also been 

applied to various microscopy datasets [3].

Fig. 3 shows denoising results using a conventional denoising algorithm BM3D, and 

self-supervised learning algorithm Noise2Self on two different microscopy datasets. These 

datasets contain only single noisy images, hence supervised deep learning and N2N can 

not be applied. Results show that self-supervised learning approaches visually improve the 

denoising performance compared to conventional denoising algorithms.

2) Reconstruction: DL-based ground-truth free reconstruction strategies has been 

applied in variety of medical imaging applications. SSDU was one of the first self-

supervised methods to be applied for physics-guided medical imaging reconstruction in MRI 

[4]. Concurrently, there were approaches inspired by N2N that was used in non-Cartesian 

MRI [18], where pairs of undersampled measurements were used for training. Similar to 

the denoising scenario, a main limitation of these methods is the requirement of pairs of 

measurements, which may be challenging in some imaging applications. Furthermore, the 

naive self-supervised learning strategy of Eq. (18) was also used for MRI reconstruction, by 

using all acquired measurements for both input to the network and defining the loss [15]. 

However, this approach suffered from noise amplification, as expected.

While such self-supervised methods have found use in medical imaging, their utility 

in biological imaging are just being explored. Recent work has started using such self-

supervised deep learning methods to functional MRI, which remains a critical biological 

imaging tool for neuroscientific discoveries that expand our understanding of human 

perception and cognition. In a recent work [6], multi-mask SSDU was applied to a Human 

Connectome Project style fMRI acquisition that was prospectively accelerated by 5-fold 

simultaneous multi-slice imaging and 2-fold in-plane undersampling. Note that ground-truth 

data for such high spatiotemporal resolution acquisitions cannot be acquired in practice, 

thus prohibiting the use of supervised learning. The results shown in Fig. 4 indicate that the 

self-supervised deep learning method based on multi-mask SSDU significantly outperforms 

the conventional reconstruction approaches, both qualitatively in terms of visual quality, and 

quantitatively in terms of temporal signal-to-noise ratio.

IV. Generative model-based methods

A. Overview

Generative models cover a large spectrum of research activities, which include variational 

autoencoder (VAE), generative adversarial network (GAN), normalizing flow, optimal 

transport (OT), among others [7]. Due to their popularity, there are so many variations, so 
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one of the main goals of this section is to provide a coherent geometric picture of generative 

models.

Specifically, our unified geometric view starts from Fig. 5. Here, the ambient image space 

is X, where we can take samples with the real data distribution μ. If the latent space is Z, 

the generator G can be treated as a mapping from the latent space to the ambient space, 

G:Z X, often realized by a deep network with parameter θ, i.e. G ≜ Gθ. Let ζ be a fixed 

distribution on the latent space, such as uniform or Gaussian distribution. The generator Gθ 
pushes forward ζ to a distribution μθ = Gθ#ζ in the ambient space X. Then, the goal of the 

generative model training is to make μθ as close as possible to the real data distribution μ. 

Additionally, for the case of auto-encoding type generative models (e.g. VAE), the generator 

works as a decoder Gθ:Z X, while another neural network-encoder Fϕ:X Z maps 

from sample space to the latent space. Accordingly, the additional constraint is again to 

minimize the distance d(ζφ, ζ).

Using this unified geometric model, we can show that various types of generative models 

only differ in their choices of distances between μθ and μ, or ζφ and ζ and how to train the 

generator and encoder to minimize the distances.

B. VAE approaches for unsupervised learning in biological imaging

1) Variational autoencoder (VAE): In VAE, the generative model pθ(x) is considered 

as a marginalization of the conditional distribution pθ(x|z), combined with simple latent 

distribution p(z) [7]:

logpθ(x) = log ∫ pθ(x ∣ z)p(z)dz . (19)

The most straightforward way to train the network is to apply maximum likelihood on pθ(x). 

However, since the integral inside (19) is intractable, one can introduce a distribution qϕ(z|x) 

such that

log pθ(x) = log ∫ pθ(x ∣ z) p(z)
qϕ(z ∣ x)qϕ(z ∣ x)dz

≥ ∫ log pθ(x ∣ z) p(z)
qϕ(z ∣ x) qϕ(z ∣ x)dz

= ∫ log pθ(x ∣ z)qϕ(z ∣ x)dz − DKL qϕ(z ∣ x) p(z) ,

(20)

where DKL is the Kullback–Leibler divergence (KL) divergence, and the first inequality 

comes from Jensen’s inequality. The final term in (20) is called evidence lower bound 

(ELBO), or variational lower bound in the context of variational inference. While infeasible 

to perform maximum likelihood on pθ(x) directly, we can maximize the ELBO.

In the VAE, by using the reparametrization trick together with the Gaussian assumption, one 

has:
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z = Fϕ
x(u) = μϕ(x) + σϕ(x) ⊙ u, u N(0, I), (21)

Where Fϕ
x(u) refers to the encoder function for a given image x which has another 

noisy input u, and ⨀ denotes the element-wise multiplication. Note that (21) enables back-

propagation. Incorporating (21) with (20) gives us the loss function to minimize for an 

end-to-end training of the VAE:

ℓV AE (θ, ϕ)

= 1
2∫X

∫ ‖x − Gθ μϕ(x) + σϕ(x) ⊙ u ‖2r(u)dudμ(x)

+ 1
2 ∑

i = 1

d ∫
X

σi2(x) + μi2(x) − log σi2(x) − 1 dμ(x) .

(22)

Here, the first term in (22) can be conceived as the reconstruction loss (d(μ, μθ) in Fig. 

5), and the second term is originated from KL divergence can be interpreted as penalty-

imposing term (d(ζ, ζϕ) in Fig. 5).

Once the network is trained by minimizing (22), one notable advantage of VAE is that we 

can generate samples from pθ(x|z) simply by sampling different noise vectors u. Specifically, 

the decoder has explicit dependency on u, and the model output is expressed as

x(u) = Gθ μϕ(x) + σϕ(x) ⊙ u , u N(0, I) . (23)

Notably, we can utilize (23) to sample multiple reconstructions by simply sampling different 

values of u. Naturally, this method has been applied to many different fields, and in the 

following we review its biological image applications.

2) Biological Applications: One notable application of VAE in the field of biological 

imaging is Bepler et al. [19]. The work is motivated by the problem of modeling continuous 

2D views of proteins from single particle electron microscopy (EM). The goal of EM 

imaging is to estimate 3D electron density of a given protein from multiple random noisy 

2D projections. The first step in this process requires estimation of the conformational states, 

often modeled with Gaussian mixture model, which is discrete. Subsequently, modeling 

with Gaussian mixture models produces sub-optimal performance when aiming to model 

protein conformations. Hence, to bridge this gap, Bepler et al. [19] propose spatial-VAE to 

disentangle projection rotation and translation from the content of the projections.

Specifically, spatial-VAE [19] uses spatial generator network, first introduced in 

compositional pattern producing networks (CPPNs), where the generator G takes in as 

input the spatial coordinates, and outputs a pixel value. Moreover, as shown in Fig. 6(b), 

latent variable z is concatenated with additional parameters φ, Δt, representing rotation, and 

translation, respectively. More precisely, the conditional distribution is given as

log p(x ∣ z) = log pθ(x ∣ z, φ, Δt) (24)
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= ∑
i = 1

n
log pθ xi ∣ tiR(φ) + Δt, z , (25)

where R(φ) = [cos φ, − sin φ; sin φ, cos φ] is the rotation matrix, and n is the dimensionality 

of the image. It is straightforward to extend the encoder function to output disentangled 

representations, which is given as

Fϕ
x(u) =

μz(x)
μφ(x)
μΔt(x)

+
σz(x)

sφσφ(x)
sΔtσΔt(x)

⊙ u, (26)

where sφ, sΔt are chosen differently for each problem set. (26) shows that Gaussian priors 

are used for all the different parameters. Notably, by constructing spatial-VAE as given 

in (24), (26), translation and rotation are successfully disentangled from other features. 

Consequently, continuous modeling of parameter estimation in the particle projections 

of EM via spatial-VAE may substantially improve the final reconstruction of 3D protein 

structure.

Another recent yet important work, dubbed DIVNOISING, utilizes a modified VAE for 

denoising microscopy images [20]. As illustrated in Fig. 6(c), DIVNOISING tries to 

estimate the posterior p(x|y) ∝ pNM(y|x)p(x), where x is the true signal, y is the noise-

corrupted version of x, p(x) is the prior, and pNM(y|x) is the noise model, which is typically 

decomposed into a product of independent pixel-wise noise models. Note that the input 

image y is not a clean image, as in the other works. Instead, the encoder of DIVNOISING 

takes in a noisy image y to produce the latent vector z. In this VAE setup, one can 

replace the conditional distribution pθ(x|z) with a known noise model in case we know 

the corruption process, or learnable noise model in case we do not know the corruption 

process, and unsupervised training is required. With this modification, one can perform 

semi-supervised training in which the noise model is measured from paired calibration 

images, or bootstrapped from the noisy image. More interestingly, it is also possible 

to perform unsupervised training with a modification to the decoder. Once the VAE of 

DIVNOISING is trained, one can perform inference by varying the samples u, and acquire 

multiple estimation of denoised images. When the user wants to acquire a point estimate of 

the distribution, one can either choose the mean (i.e. MMSE) of the sampled images, or get 

maximum a posteriori (MAP) estimate by iteratively applying mean shift clustering to the 

sampled images.

C. GAN approaches for unsupervised learning in biological imaging

1) Statistical Distance Minimization: In GAN, the generator G, and the discriminator 

D, play a minimax game, complementing each other at every optimization step. Formally, 

the optimization process is defined as:

min
G

max
D

ℒGAN(D, G), (27)
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where

ℒGAN(D, G) ≜ Ex[log D(x)] + Ez[log (1 − D(G(z)))] . (28)

Here, D(x) is called as the discriminator, which outputs a scalar in [0, 1] representing the 

probability of the input x being a real sample. While the discriminator struggles to learn the 

classification task, the generator tries to maximize the probability of D making a mistake. 

i.e. generating samples closer and closer to the actual distribution of x.

To understand the geometric meaning of GAN, we first provide a brief review of f-GAN [8]. 

As the name suggests, f-GAN starts with f-divergence as the statistical distance measure:

Df(μ ν) = ∫
Ω

f dμ
dν dν (29)

where μ and ν are two statistical measures and μ is absolutely continuous with respect 

to ν. The key observation is that instead of directly minimizing the f-divergence, a very 

interesting thing emerges if we formulate its dual problem. In fact, the “dualization” trick is 

a common idea in generative models. More specifically, if f is a convex function, the convex 

conjugate of its convex conjugate is the function itself, i.e.

f(u) = f * * (u) = sup
τ ∈ I*

uτ − f*(τ) (30)

If f*:I* ℝ. Using this, for any class of functions T mapping from X to ℝ, we have the 

lower bound

Df(μ‖ν) ≥ sup
τ ∈ I*∫X

τ(x)dμ(x) − ∫
X

f*(τ(x))dν(x) (31)

Where f*:I* ℝ is the convex conjugate of f. Using the following transform [8]

τ(x) = gf(V (x)) (32)

where V :X ℝ without any constraint on the output range, and gf :ℝ I* is an output 

activation function that maps the output to the domain of f*, f-GAN can be formulated as 

follows:

min
G

max
gf

ℒfGAN G, gf (33)

where

ℒfGAN G, gf ≜ Ex μ gf(V (x)) − Ez ζ f* gf(V (G(z))) . (34)

Here, different choices of the functions f, gf lead to distinct statistical measures and 

variations of f-GANs, and for the case of Jensen-Shannon divergence, the original GAN 

as in (28) can be obtained. Therefore, we can see that f-GANs are originated from statistical 

distance minimization.
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Note that f-GAN interprets the GAN training as a statistical distance minimization after 

dualization. Similar statistical distance minimization idea is employed for the Wasserstein 

GAN, but now with a real metric in probability space rather than the divergence. More 

specifically, W-GAN minimizes the following Wasserstein-1 norm:

d(μ, ν) ≜ W 1(μ, ν): = min
π ∈ Π(μ, ν)∫X × X

x − x′ dπ x, x′ (35)

where X is the ambient space, μ and ν are measures for the real data and generated data, 

respectively, and π(x, x′) is the joint distribution with the marginals μ and ν, respectively.

Similar to f-GAN, rather than solving the complicated primal problem, a dual problem is 

solved. The Kantorivich dual formulation from the optimal transport theory leads to the 

following dual formulation of the Wasserstein 1-norm:

d(μ, ν) = sup
D ∈ Lip1(X) ∫

X
D(x)dμ(x) − ∫

X
D x′ dν x′ , (36)

where Lip1(X) denotes the 1-Lipschitz function space with domain X, and D is the 

Kantorovich potential that corresponds to the discriminator. Again, the measure ν is 

for the generated samples from latent space Z with the measure ζ by generator G(z), 

z ∈ Z, so ν can be considered as pushforward measure ν = G#μ. Therefore, Wasserstein 

1-norm minimization problem can be equivalently represented by the following minmax 

formulation:

ℒGAN(G, D) = min
G

max
D ∈ Lip1(X) ∫X

D(x)dμ(x) − ∫Z
D(G(z))dζ(z) .

This again confirms that W-GAN is originated from the statistical distance minimization 

problem.

2) Biological Applications: Since the birth of GAN, myriad of variants have been 

introduced in literature and used for biological imaging applications. While the earlier 

works based on deep learning focused on developing supervised methods for training (e.g. 

DeepSTORM [24]), the later works started to employ conditional GAN (cGAN) into the 

reconstruction framework. More specifically, instead of applying the original form of the 

GAN that generates images from random noise, these applications of GAN are usually 

conditioned on specific input images.

For example, in the context of tomographic reconstruction, TomoGAN [25] aims at low 

dose tomographic reconstruction, where the generator takes in as input noisy images from 

low dose sinogram, and maps it into the distribution of high dose images. Another model 

for 3-D tomographic reconstruction, dubbed GANrec, was proposed in [26]. Different from 

TomoGAN, GANrec takes in as input the sinogram, so that the generator needs also to 

learn the inverse mapping of the forward Radon transform. One unique aspect is that 

the discriminator D learns the probability distribution of the clean sinogram. A similar 
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approach is used for super resolution [27], [28]. Specifically, in [28] a super-resolution (SR) 

approach for Fourier ptychographic microscopy (FPM) is introduced, which proposes to 

reconstruct a temporal sequence of cell images. Namely, only the first temporal sequence 

needs to be acquired in high resolution to train the GAN network, after which the trained 

network is utilized for reconstruction at the following temporal sequences. They also 

propose to use a Fourier domain loss, imposing additional constraint on the content. For 

super-resolution microscopy, ANNA-PALM [27] was introduced to achieve high-throughput 

in live-cell imaging, designed for accelerating PALM by using much less number of frames 

for restoring the true image.

These approaches that add condition to GANs in fact corresponds to pix2pix [21] or cGAN. 

Unlike GANs illustrated in Fig. 7(a), which takes random noise vector z as input, pix2pix 

has additional loss function ℒcontent  that measures the content distance (see Fig. 7(b)). 

Specifically, ℒcontent  measures the content space distance between the generated image 

and the matched target image, which is used in addition to the ℒGAN that measures the 

statistical distance. Therefore, pix2pix attempts to balance between the paired data and 

unpaired target distributions. In fact, the addition of content loss is important to regularize 

the inverse problems. Unfortunately, the methods cannot be regarded as unsupervised, since 

the content loss ℒcontent  requires a matching label. Hence, to overcome this limitation, 

several works that do not require any matched training data were proposed.

One interesting line of work stems from ambientGAN [22], where the forward measurement 

model can be integrated into the framework. As in Fig. 7(c), the generator of ambientGAN 

generates a sample from a random noise vector, and the discriminator takes in the 

measurement after the forward operator Hφ parameterized by φ, rather than the reconstructed 

image. Since only the function family of the forward operator is known, the specific 

parameters are sampled from a feasible distribution, i.e. φ ∼ Pφ. Although the real and 

fake measurements do not match, ambientGAN enables training on the distribution, rather 

than on realized samples. From a statistical distance minimization perspective, ambientGAN 

can be interpreted as the dual problem for the statistical distance minimization in the 

measurement space. To understand this claim, suppose that we use a W-GAN discriminator, 

and consider the following primal form of the optimal transport problem that minimizes the 

1-Wasserstein distance in the measurement space:

min
π ∈ Π(μ, ν)∫X × Y

Hφ(x) − y dπ(x, y) . (37)

Then, the corresponding dual cost function becomes

ℒGAN(G, D) = max
D ∈ Lip1(X)∫Y

D(y)dν(y) − ∫
X

D Hφ(x) dμ(x) (38)

= max
D ∈ Lip1(X)∫Y

D(y)dν(y) − ∫
X

D Hφ(G(z)) dζ(z) . (39)
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where the last equation again comes from the change of variables formula. If we further 

assume that φ ∈ Φ is random from the distribution Pφ, (39) can be converted to

ℒGAN(G, D) = max
D ∈ Lip1(X)∫Y

D(y)dν(y) − ∫
Φ
∫

X
D Hφ(G(z)) dζ(z)dPφ, (40)

which is equivalent to the ambientGAN loss function.

In the original work of ambientGAN, simple forward measurement models such as 

convolve+noise, block+patch, 2D projection, etc. were used [22]. A variant of ambientGAN 

was introduced in the context of cryo electron microscopy (cryo-EM) in [23], dubbed 

cryoGAN. Data acquisition in cryo-EM is performed on multiple 3D copies of the same 

protein, called “particles”, which are assumed to be structurally identical. To minimize the 

damage held on samples, multiple particles are frozen at cryogenic temperatures, and all 

particles are simultaneously projected with parallel electron beam to acquire projections. 

Here, unlike in the original ambientGAN, cryoGAN considers the latent particle itself to be 

a learnable parameter. The overall flow of cryoGAN is as shown in Fig. 7(d). It is interesting 

that there exists no generator in cryoGAN. Rather, x, the 3D particle to be reconstructed, 

is the starting point of the overall flow. As in ambientGAN, x goes through a complex 

random forward measurement process which involves 3D projection, convolution with the 

sampled kernel, and translation. Gradients from the discriminator backpropagates to x, and 

x is updated directly at every optimization step. Unlike conventional reconstruction methods 

for cryo-EM based on marginal maximum-likelihood which demands estimation of the 

exact projection angles, cryoGAN does not require such expensive process. Note that the 

loss function of cryoGAN is equivalent to (38). Therefore, by using the statistical distance 

minimization approach, cryoGAN attempts to estimate the unknown 3D particular x directly 

without estimating the projection angles for each particle.

Another, more recent work was proposed in [29], which is an upgraded version of cryoGAN, 

called multi-cryoGAN. While cryoGAN is able to reconstruct a single particle that explains 

the measured projections, it does not take into account that the measured particle is not 

rigid, and hence can have multiple conformations. To sidestep this issue, multi-cryoGAN 

takes an approach more similar to the original ambientGAN, where a random noise vector 

is sampled from a distribution, and the generator G is responsible for mapping the noise 

vector into the 3D particle. The rest of the steps follow the same procedure in ambientGAN, 

although the complicated forward measurement for cryo-EM is utilized. One advantage of 

multi-cryoGAN is that once the networks are trained, multiple conformations of the particle 

can be sampled by varying the noise vector z. Subsequently, this introduces flexibility in the 

networks.

A related work was also proposed in the context of unsupervised MRI reconstruction in 

[10]. More specifically, this work follows the overall flow depicted in Fig. 7(c). However, 

the input is not a random noise vector, but an aliased image, inverse Fourier-transformed 

from the under-sampled k-space measurement. The generator is responsible for conditional 

reconstruction, making the input image free of aliasing artifacts. The reconstruction goes 

through the random measurement process in the context of MR imaging, which corresponds 
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to Fourier transform, and random masking. Then, the discriminator matches the distribution 

of the aliased image, inverse Fourier transformed from the measurement. The authors 

showed that even with the unsupervised learning process without any ground-truth data, 

reconstruction of fair quality could be performed.

D. Optimal transport driven CycleGAN approaches for unsupervised learning for 
biological imaging

Another important line of work for unsupervised biological reconstruction comes from 

optimal transport driven cycleGAN (OT-cycleGAN) [10], which is a generalization of the 

original cycleGAN [9]. Unlike pix2pix, cycleGAN does not utilize ℒcontent  from paired 

label, so it is fully unsupervised. In contrast to the ambientGAN or cryoGAN, which 

is based on the statistical distance minimization in the measurement space, cycleGAN 

attempts to minimizes the statistical distance in both measurement and the image domain 

simultaneously, which makes the algorithm more stable.

OT-cycleGAN can be understood from the geometric description illustrated in Fig. 8. 

Specifically, let us consider the target image probability space X equipped with the measure 

μ, and the measurement probability space Y equipped with the measure ν as in Fig. 8. In 

order to achieve a mapping from Y to X and vice versa, we can try to find the transportation 

mapping from the measure space (Y, ν) to (X, μ) with the generator Gθ:Y X, a neural 

network parameterized with θ, and the mapping from the measure space (X, μ) to (Y, ν)
with the forward mapping generator Hφ:X Y, parametrized with v. In other words, the 

generator Gθ pushes forward the measure ν in X to μθ in Y, and Hφ pushes forward the 

measure μ in Y to the measure νφ in X. Then, our goal is to minimize the statistical distance 

d(μ, μθ) between μ and μθ, and the distance d(ν, νφ) between ν and νϕ simultaneously.

Specifically, if we use the Wasserstein-1 metric, the statistical distance in each space can be 

computed as:

W 1 μ, μθ = inf
π ∈ Π(μ, ν)∫X × Y

x − Gθ(y) dπ(x, y) (41)

W 1 ν, νφ = inf
π ∈ Π(μ, ν)∫X × Y

y − Hφ(x) dπ(x, y) . (42)

If we minimize them separately, the optimal joint distribution π* for each problem may be 

different. Accordingly, we attempt to find the unique joint distribution which minimizes the 

two distances simultaneously using the following primal formulation:

min
π ∈ Π(μ, ν)∫X × Y

x − Gθ(y) + Hφ(x) − y dπ(x, y) . (43)

One interesting finding made in [10] is that the primal cost in (43) can be represented in a 

dual formulation
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min
θ, φ

max
Dx, Dy

ℒcycleGAN θ, φ; Dx, Dy ,
(44)

where

ℒcycleGAN θ, φ; Dx, Dy ≜ λℒcycle(θ, φ) + ℒGAN θ, φ; Dx, Dy , (45)

where ℒcycle, ℒGAN refers to cycle-consistency loss and discriminator GAN loss, 

respectively. DX and DY are discriminators in X and Y. The corresponding OT-cycleGAN 

network architecture can be represented as in Fig. 9.

In fact, one of the most important reasons OT-cycleGAN is suitable for biological 

reconstruction problems, is that the prior knowledge about the imaging physics can be 

flexibly incorporated into the design of OT-cycleGAN to simplify the network. Specifically, 

in many biological imaging problems, the forward mapping Hφ is known or partially known. 

In this case, we do not need to use complex deep neural networks for forward measurement 

operator. Instead, we use a deterministic or parametric form of the forward measurement 

operation, which makes the training much simpler.

In addition, in comparison with ambientGAN in (37), OT-cycleGAN primal formulation in 

(43) has an additional term x − Gθ(y)  that enforces the reconstruction images to match 

the target image distributions, which further regularizes the reconstruction process. In fact, 

the resulting OT-cycleGAN formulation is closely related to the classical RLS formulation 

in (2). Specifically, the transportation cost in (43) resembles closely to the cost function 

in (2), except that regularization term R(x) in (2) is replaced by the deep learning-based 

inverse path penalty term x − Gθ(y) . However, instead of solving x directly as in (2), 

OT-cycleGAN tries to find the joint distribution π* that minimizes the average cost for 

all combination of x ∈ X and y ∈ Y. This suggests that OT-cycleGAN is a stochastic 

generalization of the RLS, revealing an important link to the classical RLS approaches.

1) Applications: Thanks to the versatility of cycleGAN, which learns the distributions in 

both measurement and image spaces, OT-cycleGAN has been adopted to numerous tasks in 

biological imaging.

For example, cycleGAN was used with linear blur kernel for blind and non-blind 

deconvolution in [11]. More specifically, [11] focused on the fact that the forward operator 

of deconvolution microscopy is usually represented as a convolution with a point spread 

function (PSF). Hence, even for the non-blind case, the forward mapping Hφ:X Y is 

partially known as a linear convolution. Leveraging this property, one of the generators 

in cycleGAN, F in Fig. 9 is replaced with a linear convolutional layer, taking into the 

account the physics of deconvolution microscopy. By exploiting the physical property, the 

reconstruction quality of deconvolution microscopy is further enhanced. Even more, in the 

case of non-blind microscopy, it was shown that the forward mapping is deterministic so that 

optimization with respect to the discriminator DY is no longer necessary, which simplifies 

the network architecture, and makes the training more robust. A similar simplification 
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of cycleGAN leveraging the imaging physics of microscopy was also proposed in super-

resolution microscopy [10]. Interestingly, the simplified form of cycleGAN could generate 

reconstructions of higher resolution, quantified in Fourier ring correlation (FRC). Other 

than simplifying the mapping Hφ:X Y with a linear blind kernel, a deterministic k-space 

sub-sampling operator for MR imaging was extensively studied [30].

When such simplification is not possible, the most general form of cycleGAN, where two 

sets of generator/discriminator pair are used, can be utilized, but still the key concept of 

statistical distance minimization can be utilized in the design. One work, which utilizes 

cycleGAN for deconvolution microscopy is [32], where the authors propose to use spatial 

constraint loss on top of cyclic loss to further impose emphasis on the alignment of the 

reconstruction. The cycleGAN method adopted in [32] is a 2D cycleGAN, so the authors 

propose a 3-way volume averaging of the reconstructed results in the x − y, y − z, and x 
− z plane. However, in contrast to [11], two neural network based generators are used for 

both forward and inverse paths. In another work, an unsupervised reconstruction method 

called projectionGAN for optical diffraction tomography (ODT) was proposed [31]. Missing 

cone problem in ODT arises because the measurement angles of the imaging device does 

not cover the whole solid angle, hence leaving a cone-shaped wedge in the k-space empty. 

The authors focus on the fact that when parallel beam projection is performed to the 3D 

distribution of refractive-index (RI), the acquired projections are sharp with high quality 

when the projection angle is aligned with the measurement angle YΩ , and are blurry 

and with artifacts when the projection angle is not aligned YΩc . Hence, the resolution 

of the blurry projections are enhanced via distribution matching between YΩ and YΩc

with cycleGAN, after which follows filtered back projection (FBP) to acquire the final 

reconstruction from the enhanced projections. By the projectionGAN enhancement step, the 

missing cone artifacts are greatly resolved, achieving accurate reconstruction, as illustrated 

in Fig. 10. As shown in the figure, with other methods we see elongation along optical axes 

which makes the structure of the cell vague and noisy (x − z, y − z plane). This problem is 

much resolved with ProjectionGAN, where we observe clear boundaries and micro-cellular 

structures. Underestimated RI values are also corrected.

For optical microscopy, content-preserving cycleGAN (c2GAN) was proposed [33], showing 

applicability of cycleGAN to various imagnig modalities and data configurations. c2GAN 

introduces saliency constraint to cycleGAN framework, where the saliency constraint 

imposes an additional cycle-consistency after thresholding the images at certain values. This 

simple fix is derived from the fact that many biological images contain salient regions of 

higher intensity, while the rest is covered with low-intensity background. Thus, by adding 

the saliency constraint, cycleGAN can concentrate more on the salient features. The authors 

applied c2GAN to biological image denoising, restoration, super-resolution, histological 

colorization, and image translation such as phase contrast images to flourescence-labeled 

images, showing how cycleGAN can be easily adopted to many different tasks of biological 

imaging.
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V. Discussion

A. Open problems

The performance improvement from DL-based techniques has been one of the main 

drivers of their mainstream adaptation in a large number of imaging applications. This is 

largely driven by the application-specific tailoring of the regularization strategies during 

the training phase of DL reconstruction algorithms. Thus, the use of unsupervised training 

strategies in the absence of matched reference data is critical for the continued utility of DL 

reconstruction in a number of biological imaging scenarios.

This overview article focused on two unsupervised learning strategies that tackle seemingly 

different aspects of the training process. Self-supervised learning uses parts of the available 

data to predict the remaining parts, in effect repurposing some of the available data 

as supervisory labels. Generative models aim to minimize a statistical distance measure 

between an underlying target distribution and the generated data distribution. While these 

goals do not necessarily appear complementary, there are self-supervisory methods, such 

as content generation, which utilize properties of generative models. Similarly, there are 

generative models that utilize concepts of prediction of data from self-supervision [34]. 

Thus, a synergistic viewpoint that tie these two different lines of work for unsupervised 

learning of image reconstruction approaches may further improve the performance of DL-

based methods in the absence of reference training data.

Self-supervised learning techniques have enabled the training on large datasets containing 

only noisy or incomplete measurements. However, in some biological applications, it may 

not always be feasible to obtain large training datasets. Hence, it is desirable to perform 

training from a single measurement. However, training on a single noisy measurement often 

leads to overfitting, requiring early stopping. Recently, self-supervised learning methods 

have been proposed to perform reconstruction and enhancement for a single measurement 

without overfitting [35], [36]. Particularly, for image denoising, a dropout regularization 

technique has been incorporated with a hold-out self-supervised learning framework for 

avoiding overfitting [35]. For image reconstruction, a zero-shot self-supervised learning 

approach has been proposed to split available measurements: two of which are used in the 

data consistency and the loss as in SSDU, while the third is used as a validation set to 

determine the early stopping criteria [36]. These works may be essential for developing new 

frameworks for training biological imaging applications with sparse datasets.

Recently, the two closely related methods, score-based models [37], and diffusion models 

[38] have caught the attention with their outstanding ability to train generative models 

without any adversarial training. Remarkably, one cannot only generate random samples 

from the distribution, but also apply a single estimated score function to solve various 

problems such as denoising [39], inpainting [37], and even reconstruction. Since these 

score-based generative methods are extremely flexible in that they do not require any 

problem-specific training, they may open up exciting new opportunities for developing new 

unsupervised learning based methods for biological image reconstruction and enhancement.
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Another interesting direction is feature disentanglement. Unsupervised feature 

disentanglement methods were proposed in different fields including generative modelling 

of material structure [40]. Although seemingly unrelated, the fundamental problem of 

biological image reconstruction and enhancement can be viewed as disentangling salient 

signal from the noisy measurement. By exploiting widely used tools, for instance adaptive 

instance normalization for feature disentanglement, one could build a new approach to 

biological imaging.

B. Availability of training databases

While the early works in biological imaging applications relied on utilizing imaging datasets 

that were released for other purposes, such as segmentation or tracking challenges, there 

have been substantial recent efforts in the release and use of publicly available biological 

imaging data. The BioImage Archive, Image Data Resources (IDR), BioImage.IO and 

Electron Microscopy Public Image Archive (EMPIAR) constitute some of these efforts. 

Moreover, there are platforms such as Zenodo and Figshare that host and distribute 

biological imaging data. The increasing availability of such large databases of raw 

measurement data for different biomedical imaging modalities may further facilitate 

development of DL-based reconstruction and enhancement strategies.

VI. Conclusion

Deep learning methods have recently become the state-of-the-art approaches for image 

reconstruction. While conventionally, such methods are trained using supervised training, 

the lack of matched reference data has hampered their utility in biological imaging 

applications. Thus, unsupervised learning strategies, encompassing both self-supervised 

methods and generative models, have been proposed, showing great promise. Self-

supervised methods devise a way to create supervisory labels from the incomplete 

measurement data itself to train the model. Hold-out masking strategy is especially useful 

for both image denoising and reconstruction. With recent advances, one can perform training 

with as little as a single noisy measurement. Generative model based methods encompass 

diverse methods for image denoising and reconstruction, with VAE and GAN being the 

two most prominent strategies. Both methods can be seen as the optimization problem of 

statistical minimization, with different choices for statistical distance measure leading to 

seemingly unrelated methods for training the generative model.

These strategies are still being developed and applied to biological imaging scenarios, 

creating opportunities for the broader signal processing community in terms of new 

technical developments and applications.
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Fig. 1. 
Overview of self-supervised learning for denoising. Black pixels denote masked-out 

locations in the images, while 1J is the indicator function on the indices specified by the 

index set J.
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Fig. 2. 
Overview of the self-supervised learning methods for image reconstruction using hold-out 

masking. Black pixels denote masked-out locations in the measurements and DC denotes the 

data consistency units of the unrolled network.

Akçakaya et al. Page 28

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Denoising results from fluorescence microscopy datasets Fluo-N2DH-GOWT1 and Fluo-

C2DL-MSC using a traditional denoising method BM3D and a self-supervised learning 

method Noise2Self (N2S). We note that supervised deep learning is not applicable as these 

datasets contain only single noisy images.
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Fig. 4. 
Reconstruction results from an fMRI application [6] using conventional split-slice GRAPPA 

technique and self-supervised multi-mask SSDU method [14]. (a) Split-slice GRAPPA 

exhibits residual artifacts in mid-brain (yellow arrows). Multi-mask SSDU alleviates these, 

along with visible noise reduction. (b) Temporal SNR (tSNR) maps show substantial gain 

with the self-supervised deep learning approach, particularly for subcortical areas and cortex 

further from the receiver coils. (c) Phase maps for the two reconstructions show strong 

agreement, with multi-mask SSDU containing more voxels above the coherence threshold.
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Fig. 5. 
Geometric view of deep generative models. Fixed distribution ζ in Z is pushed to μθ in X
by the network Gθ, so that the mapped distribution μθ approaches the real distribution μ. In 

VAE, Gθ works as a decoder to generate samples, while Fϕ acts as an encoder, additionally 

constraining ζϕ to be as close to ζ. With such geometric view, auto-encoding generative 

models (e.g. VAE), and GAN-based generative models can be seen as variants of this single 

illustration.
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Fig. 6. 
VAE architecture. Fϕ encodes x, and combined with random sample u to produce latent 

vector z. Gθ decodes the latent z to acquire x. u is sampled from standard normal 

distribution for the reparameterization trick. (a) VAE. (b) spatial-VAE [19], disentangling 

translation/rotation features from different semantics. (c) DIVNOISING [20], enabling 

superviesd/unsupervised training of denoising generative model by leveraging the noise 

model pNM(y|x).
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Fig. 7. 
Illustration of GAN-based methods for biological image reconstruction. (a) GAN, (b) 

pix2pix [21], (c) AmbientGAN [22], (d) cryoGAN [23]. x, y denote data in the 

image domain, and the measurement domain, respectively. G, D refers to generator, 

discriminator, respectively. H defines the function family of the forward measurement 

process, parameterized with φ. Networks and variables that are marked in blue have 

learnable parameters optimized with gradient descent.
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Fig. 8. 
Geometric view of cycleGAN. (Y, ν) is mapped to (X, μ) with Gθ, while Hφ does the 

opposite. The two mappers, i.e. generators are optimized by simultaneously minimizing d(μ, 
μθ), d(ν, νφ).
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Fig. 9. 
Network architecture of cycleGAN. Gθ:Y X, Hφ:X Y are the generators responsible 

for inter-domain mapping. DX, DY are discriminators, constructing ℒGAN. GAN loss is 

simultaneously optimized together with ℒcycle
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Fig. 10. 
ProjectionGAN for the reconstruction of ODT [31]. (a) Conventional Rytov reconstruction 

via Fourier binning, (b) Gerchberg-Papoulis (GP) algorithm, (c) model-based iterative 

method using the total variation (TV), and (b) reconstruction via projectionGAN. Artifacts 

including elongation along the optical axes can be seen in the x − z, y − z cutview of (a),(c). 

The result shown in (b) is contaminated with resdual noise in the x − z, y − z planes. Result 

shown in (d) has high-resolution reconstruction without such artifacts, along with boosted RI 

values.
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