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Abstract

Genome-wide association studies (GWAS) have identified more than 75 genetic variants associated with Alzheimer’s disease (ad).
However, how these variants function and impact protein expression in brain regions remain elusive. Large-scale proteomic datasets of
ad postmortem brain tissues have become available recently. In this study, we used these datasets to investigate brain region-specific
molecular pathways underlying ad pathogenesis and explore their potential drug targets. We applied our new network-based tool,
Edge-Weighted Dense Module Search of GWAS (EW_dmGWAS), to integrate ad GWAS statistics of 472 868 individuals with proteomic
profiles from two brain regions from two large-scale ad cohorts [parahippocampal gyrus (PHG), sample size n = 190; dorsolateral
prefrontal cortex (DLPFC), n = 192]. The resulting network modules were evaluated using a scale-free network index, followed by a
cross-region consistency evaluation. Our EW_dmGWAS analyses prioritized 52 top module genes (TMGs) specific in PHG and 58 TMGs
in DLPFC, of which four genes (CLU, PICALM, PRRC2A and NDUFS3) overlapped. Those four genes were significantly associated with
ad (GWAS gene-level false discovery rate < 0.05). To explore the impact of these genetic components on TMGs, we further examined
their differentially co-expressed genes at the proteomic level and compared them with investigational drug targets. We pinpointed
three potential drug target genes, APP, SNCA and VCAM1, specifically in PHG. Gene set enrichment analyses of TMGs in PHG and
DLPFC revealed region-specific biological processes, tissue-cell type signatures and enriched drug signatures, suggesting potential
region-specific drug repurposing targets for ad.

Introduction
Alzheimer’s disease (ad) has surfaced as one of the most
significant health perils of old age, with nearly half of
the adults over 85 years old in the US affected with
ad. Accordingly, ad is becoming one of the major health
and economic hazards (1,2). It has been well established
that many mechanisms are involved in ad etiology (3).
However, beyond the accumulation of amyloid-β plaques
and tangles, ad pathophysiology is still largely unknown.
Furthermore, only one drug, aducanumab, focusing on
amyloid-β plaque clearance, has been approved for ad
treatment (4,5), although its beneficial effect on cognitive
function remains controversial. More studies are needed
to understand the complex mechanism underlying ad
pathophysiology, as it involves genetic factors and multi-
ple brain regions (6–8).

On the other hand, several large-scale ad genome-
wide association studies (GWAS) with millions of case
and control samples have identified more than 75 genetic
susceptibility variants across different ancestries (9–12).
However, it remains unclear where and how the identi-

fied GWAS variants manifest their conjunctive effects on
ad pathophysiology at the transcriptomic and proteomic
levels. Previous transcriptome analyses have highlighted
upregulated neuroinflammation, downregulated neu-
ronal functions and other alterations associated with
ad (13–15). Critically, the transcriptome data might
not fully represent the proteome-level expression in
brain tissue because of the complex post-transcriptional
regulations, such as translational, post-transcriptional
regulation and protein degradation (16,17). An increasing
amount of high-throughput proteomics datasets has
been generated from brain samples of ad individuals
and healthy controls using the latest tandem mass tag
(TMT) method (18). Analyses using those proteomics
datasets generated from different brain regions allow
us to gain insight into ad mechanisms with a higher
resolution. This is crucial because proteins serve as
better drug targets than genes, and, at the same time,
drugs that target proteins with genetic support have
an increased odds of success in clinical trials (19,20).
In this way, studies that search for altered proteins
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with a solid genetic basis are particularly important
for understanding ad pathophysiologies and discovering
novel and repurposing drug targets.

Previously, we successfully applied our network-based
analysis algorithm, Edge-Weighted dense module search
for Genome-Wide Association Studies (EW_dmGWAS), to
integrate multi-omics data to reveal dense modules of
genes associated with complex traits (21,22). For exam-
ple, we applied EW_dmGWAS on multiple sclerosis GWAS
and brain tissue transcriptome data and pinpointed
validated target genes with potential druggability (23).
Our EW_dmGWAS algorithm outperforms traditional
analysis in identifying disease-associated subnetworks
(21,23,24). The networks depicted by EW_dmGWAS are
harmonized with both genetic variants data (GWAS)
and transcriptomic profiles on the human protein–
protein interactome (21,23,24). Most importantly, these
subnetworks contain the genes with well-known signals
from one layer of omics data and synergistic effects
from the multi-omics data. However, transcriptomes
cannot capture the post-transcriptional activity, and
different brain regions might be involved in different
pathophysiological mechanisms (25). Hence, there is
a pressing need to uncover the novel mechanisms
associated with ad through the integrative analysis of the
proteomic profiles and genetic data at the brain region
level.

To address this gap, we aimed to extend the EW_
dmGWAS to integrate ad GWAS summary statistics and
brain protein expression profiles from the two large ad
cohorts to unveil the common and brain region-specific
dense gene modules associated with ad (26,27). Specifi-
cally, two protein expression datasets were obtained from
the parahippocampal gyrus (PHG) and the dorsolateral
prefrontal cortex (DLPFC), and were analyzed as individ-
ual discovery datasets. Then, we reconstructed the gene
networks from the top-ranked ad modules in each brain
region, followed by network evaluations. Additionally, we
highlighted the potential drug-targetable genes based on
brain region-specific co-expression profiles and current
investigational drugs. Moreover, we conducted functional
enrichment analyses to prioritize key ad-associated bio-
logical functions, drug signatures and cell-type signa-
tures in the brain.

Results
Gene network modules identified by
EW_dmGWAS calculations
We identified brain region-specific gene modules by
extending our EW_dmGWAS (version 3.1) algorithm to
integrate ad GWAS by proxy summary statistics, brain
protein expression data collected from two independent
cohorts and human protein–protein interactions (PPIs).
An overview of the study design is presented in Figure 1.
The input for EW_dmGWAS contains two parts: node
weights and edge weights. First, we calculated the
node weights based solely on the ad GWAS summary

statistics of 472 868 individuals of European descent
(9). Specifically, we applied the Multi-marker Analysis
of GenoMic Annotation (MAGMA) tool (28) to condense
the ad GWAS summary statistics to 18 447 nearby genes
(Supplementary Material, Table S1). Then, the gene
node weight value was converted from the gene-level
significance (see Materials and Methods). Second, the
edge weights were calculated based on brain region-
specific protein expression data in each cohort, including
9210 gene-level protein expression data of PHG from the
Mount Sinai Brain Bank study (18,29) and 8251 gene-level
protein expression data of DLPFC from the Religious
Order Study and Memory and Aging Project (ROSMAP)
(27,30). Data normalization, batch correction and missing
data imputation were conducted within each dataset.
Then, the edge weights were calculated based on the
differentially co-expression profiles between ad cases
and control samples in each dataset and were matched
with PPIs from the BioGRID database (see Materials and
Methods).

After data harmonization procedures within each
dataset, a total of 8141 gene note-weights and 243 276
edge-weights were used for EW_dmGWAS analysis in the
MSBB dataset (Supplementary Material, Tables S2 and
S3), and 7715 node-weights and 236 618 edge-weights
were utilized in the ROSMAP dataset (Supplementary
Material, Tables S4 and S5). Furthermore, to balance the
importance of genetic variants and human protein inter-
actomes, we introduced a scaling factor (λMSBB = 2.05;
λROSMAP = 2.23) calculated by the ratio of the variance
of node weights and edge weights. Finally, we identified
1056 and 1002 dense gene modules from the gene-level
protein expression dataset of PHG tissue and DLPFC
tissues, respectively (Supplementary Material, Tables S6
and S7).

Modules network evaluation and module
selection
We ranked all ad-associated dense modules based on
1000-permutation z scores and evaluated the network
properties of genes within an increasing chosen number
of top modules (see Materials and Methods). To assess
the network feature, we calculated the coefficient of
determination of the log–log relationship of frequency
of edges over nodes, R2, to measure the degree of scale-
free networks. As shown in Figure 2A and B, the scale-
free network indexes are positively correlated with the
number of modules selected at the beginning, and the
index stabilized after more modules were merged. The
median scale-free network index R2 was 0.84 for PHG
top modules and 0.82 for DLPFC top modules, indicating
approximately scale-free networks for both results.

We further assessed the conservativeness of genes
in the top modules between the two datasets. We first
calculated the Jaccard indexes to evaluate the member-
ship of the top 100 modules (Supplementary Material,
Fig. S1A). The mean Jaccard index was 0.006, indicating
overall low consistency between gene modules of the two
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Figure 1. Workflow of the study. Abbreviations: Alzheimer’s disease (AD), parahippocampal gyrus (PHG), dorsolateral prefrontal cortex (DLPFC), Mount
Sinai Brain Bank (MSBB), Religious Order Study and Memory and Aging Project (ROSMAP), protein–protein interactions (PPIs), genome-wide association
studies (GWAS), Edge-Weighted dense module Search of GWAS (EW_dmGWAS), Web-based Cell-type-Specific Enrichment Analysis of Genes (WebCSEA).

datasets. However, some gene modules between the two
datasets had relatively high consistency. For example,
the Jaccard index between the top-ranked module in the
DLPFC dataset and the 22nd ranked module in the PHG
dataset was 0.40. Considering the order of modules might
not be the most important factor in our analysis, the
membership between the accumulated small networks is
the most crucial point. Therefore, we assessed the mem-
bership of the accumulating top gene modules. The range
of Jaccard indexes was 0.034–0.063 when comparing the
genes within the combined 25 dense modules in the two
datasets (Supplementary Material, Fig. S1B).

For better visualization and interpretation, we empir-
ically selected the genes in the top 25 modules from
EW_dmGWAS results of each dataset as the top module
genes (TMGs) for further evaluation. We identified 52
unique TMGs from the protein expression dataset in
PHG tissue (MSBB) (Supplementary Material, Table S8).
Figure 2C shows that more nodes within the network
possess a lower number of edges. After log transforma-
tion, the edge density distribution shows an approxi-
mately negative linear relationship with R2 = 0.77. On the
other hand, we identified 58 unique TMGs within the
top 25 modules from the ROSMAP protein expression
dataset of DLPFC tissue (Supplementary Material, Table
S9). Figure 2D shows that a merged network of TMGs
of DLPFC possessed an edge distribution similar to PHG.
However, the density of nodes with fewer edges is lower,
resulting in a lower R2 = 0.53 in the merged network of
DLPFC.

Key overlapped genes identified between TMGs
in PHG and DLPFC
We further compared the TMGs in PHG and DLPFC for
identification of key overlapped risk genes. We identified
five overlapped genes between two gene sets, including

CLU [MAGMA Z score = 7.66, P-value = 9.44 × 10−15, false
discovery rate (FDR) = 2.00 × 10−11], PICALM (MAGMA Z
score = 6.78, P-value = 6.19 × 10−12, FDR = 3.42 × 10−9),
PRRC2A (MAGMA Z score = 4.22, P-value = 1.21 × 10−5,
FDR = 1.34 × 10−3), NDUFS3 (MAGMA Z score = 3.14, P-
value = 8.38 × 10−4, FDR = 3.84 × 10−2) and DNM2
(MAGMA Z score = 2.18, P-value =1.45 × 10−2, FDR = 0.22).
Four of the five overlapped genes had GWAS gene-level
FDR less than 0.05. All four genes have been reported
to be associated with ad (29–32), suggesting they might
be ubiquitously associated with ad in different brain
regions.

Differential co-expression network analysis
revealed potential therapeutic targets of ad
Considering protein expression might better reflect the
pathological progression of the disease, we analyzed the
regulatory networks of the four key overlapped genes
in each brain region at the protein expression level
to gain novel insights into therapeutic targets for ad
(33). Specifically, among the four overlapped genetic
risk genes between TMGs of PHG and DLPFC datasets
(CLU, PICALM, PRRC2A and NDUFS3), we identified
the brain region-specific differentially co-expressed
proteins (defined by edge weight > 1.96). We compared
the proteins and their coding genes in each regulatory
network with the known investigational ad drug targets
(Fig. 3, Supplementary Material, TableS10).

In the PHG region, we identified 83 differentially
co-expressed genes with at least one of four key
overlapped genes (Fig. 3B). Interestingly, four differently
co-expressed genes, APP, SNCA, VCAM1 and GJA1, are
therapeutic targets of existing investigational drugs
(34–37). In the DLPFC region, we identified 38 differen-
tially co-expressed genes with at least one of the four
key overlapped genes (Fig. 3C). However, none of those
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Figure 2. Characteristics of scale-free networks of resulting modules from brain region-specific EW_dmGWAS analysis. (A) Scatter plot of the scale-
free index (R2) for networks constructed by top modules identified from EW_dmGWAS analysis of PHG. (B) Scatter plot of the scale-free index (R2) for
networks constructed by top modules identified from EW_dmGWAS analysis of DLPFC. The red line in (A and B) represents the median R2 of all networks.
(C) Density histogram shows the distribution of the number of edges of each gene within the gene network constructed by the TMGs in the PHG. (D)
Density histogram shows the distribution of the number of edges of each gene within the gene network constructed by TMGs in the DLPFC.

genes were the therapeutic target of known drugs for
ad, suggesting that the DLPFC region-specific genes and
their co-expression patterns are not targeted by current
treatment strategies.

Networks reconstructed with ReactomeFIVIz
show enrichment of relevant biological pathways
The EW_dmGWAS algorithm was able to identify discrete
gene modules, while some key biological pathways
may be shared between modules. To further explore
the comprehensive biological functions of identified
brain region-specific gene modules associated with

ad, we reconstructed the TMGs into a fully connected
interaction network using ReactomeFIViz (38). Figure 4A
shows the reconstructed network from the 52 TMGs
identified in the PHG dataset and 20 linker genes
inferred by ReactomeFIViz (Supplementary Material,
Table S11). Seven linker genes overlapped with the
genes in all 1056 modules identified by EW_dmGWAS in
the PHG dataset. We performed an over-representation
analysis of all genes within the Reactome network for
biological explanations. As shown in Figure 4B, the most
significantly enriched gene ontology (GO) biological pro-
cesses (BP) term was ‘reactive oxygen species metabolic
process’ (FDR = 1.99 × 10−10) with 15 overlapping genes.
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Figure 3. The brain region-specific differentially co-expressed genes of the key overlapped genes. (A) The workflow of the differentially co-expression
analysis. The genes were ordered by GWAS gene-level significance. (B) The differentially co-expressed genes of the key overlapped genes in the PHG
contain genetic targets of investigational drugs. (C) The differentially co-expressed genes of the key overlapped genes in the DLPFC. †: SLC6A4 was only
identified in EW_dmGWAS in PHG. ‡: GJA1 was only identified by differentially co-expression analysis in PHG.

Interestingly, among the top 20 enriched terms, several
immune-related terms were identified, including ‘neu-
roinflammatory response’ (FDR = 3.06 × 10−7), ‘leuko-
cyte activation involved in inflammatory response’
(FDR = 6.49 × 10−7) and ‘immune response-regulating
signaling pathway’ (FDR = 6.27 × 10−5).

With 58 TMGs identified in DLPFC dataset, we recon-
structed the fully connected network with additional 20
linker genes inferred by ReactomeFIViz (Fig. 4C, Supple-
mentary Material, Table S12). Only four linker genes over-
lapped with the genes in the 1002 gene modules iden-
tified by EW_dmGWAS in the DLPFC dataset. Figure 4D

lists the top 20 enriched GO BP terms for the network
genes. The most significantly enriched term was ‘regu-
lation of vesicle-mediated transport’ (FDR = 7.14 × 10−11).
Notably, we found several GO BP terms related to pro-
tein folding and metabolism, such as ‘regulation of pro-
tein complex assembly’ (FDR = 1.45 × 10−8), ‘amyloid-β
metabolic process’ (FDR = 2.78 × 10−8), ‘amyloid precur-
sor protein metabolic process’ (FDR = 1.18 × 10−5), among
others. The finding is consistent with previous studies
that metabolism makers of amyloid precursor protein
are related to neurodegeneration in the preclinical stage
of ad (39).
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Figure 4. Brain region-specific interaction networks and functional enrichment analyses. The genetic interaction networks were constructed of the TMGs
and linking genes (highlighted in red) from the PHG (A) or DLPFC (C) using the ReactomeFIVIz tool. The size of each node was positively associated with
the number of connections within the network. The genes in diamond shapes represent the key overlapped genes between two interaction networks. (B
and D) Top 20 enriched GO BP terms in all genes within genetic interaction networks of PHG (B) and DLPFC (D).

Drug repurposing analysis with CMap signatures
Besides biological pathways, to examine the enriched
drug signatures for TMGs in each brain region, we applied
the co-expressed gene-set enrichment analysis method
(Cogena) implemented in the Bioconductor R package
(see Materials and Methods). As shown in Table 1, for the
52 TMGs identified in PHG tissue, the top enriched drugs
from the downregulated 100 connectivity map (CMap)
gene set included midecamycin (−log2 FDR = 10.5) and
Trolox C (−log2 FDR = 10.5). The top enriched drugs
from the upregulated 100 CMap gene set of PHG tissue
included abamectin (−log2 FDR = 9.7), tanespimycin
(−log2 FDR = 9.7) and chlorphenamine (−log2 FDR = 9.7).
On the other hand, for the 58 TMGs identified in
DLPFC tissue (Table 2), the top enriched drugs from the
downregulated 100 CMap gene set included proglumide
(−log2 FDR = 15.2), methazolamide (−log2 FDR = 12.3)
and molecular phenazopyridine (−log2 FDR = 12.3).
Furthermore, the drug signature enrichment analysis of
upregulated 100 CMap gene set in DLPFC tissue identified
‘0198306-0000’ small molecules (−log2 FDR = 10.9),

dinoprostone (−log2 FDR = 9.5) and disulfiram (−log2

FDR = 9.5), among others.

Tissue-cell type specificity of TMGs in brain
Our TMGs were derived from the bulk proteomic data
from two brain regions. To characterize the cellular
context of these top module genes, we applied our
newly developed tool, Web-based Cell-type-Specific
Enrichment Analysis of Genes (40, 41), with TMGs of
each brain region, respectively. We found that TMGs
of both PHG and DLPFC were enriched in excitatory
neuron 3e sub-cell types in the brain [PHG TMGs raw
P-value < 0.01 (combined P-value = 0.01), DLPFC TMGs
raw P-value = 0.01(combined P-value = 0.21)] on the
single-cell panel from disease-relevant tissue (frontal
cortex) (42), suggesting that our top modules from both
brain regions captured the underlying genetic risks and
were enriched in the excitatory neuron 3e sub-cell type
(Supplementary Material, Fig. S2). Previous studies have
observed the imbalance of excitatory and inhibitory
neurons in experimental models and ad patients (43,44).
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Table 1. Drug repositioning for the top module genes from the parahippocampal gyrus dataset

Drug name Cell line Regulatory direction −log2 FDR Genes enriched

Midecamycin MCF7 Upregulated 10.5 DNM2, NF1, PICALM
Prasterone HL60 Upregulated 10.5 DNM2, PICALM, PTK2B
Trolox C MCF7 Upregulated 10.5 DNM2, NF1, PICALM
Mafenide MCF7 Upregulated 10.5 CHP1, NF1, PICALM
Triflupromazine MCF7 Upregulated 10.5 CHP1, PICALM, PRRC2A
Conessine HL60 Upregulated 10.5 ATP1B1, DNM2, NF1
Meteneprost MCF7 Upregulated 10.5 CHP1, NF1, PICALM
Abamectin PC3 Downregulated 9.7 AIF1, EGFR, PCOLCE, UBXN1
Tanespimycin PC3 Downregulated 9.4 CLU, EGFR, HSPA5
Chlorphenamine PC3 Downregulated 9.4 AIF1, EGFR, ITGB1
Thalidomide MCF7 Downregulated 9.4 CD74, CPS1, EGFR
Pridinol HL60 Downregulated 9.4 AIF1, DDAH2, PDPR
Metyrapone HL60 Downregulated 9.4 EGFR, HLA-DRB1, UBXN1
Lysergol MCF7 Downregulated 9.4 AIF1, EGFR, GSTP1
Primidone MCF7 Downregulated 9.4 EGFR, PXN, UBXN1
Androsterone MCF7 Downregulated 9.4 EGFR, PXN, UBXN1
(−)-Isoprenaline HL60 Downregulated 9.4 HLA-DRA, HLA-DRB1, SLC6A12
Sitosterol MCF7 Downregulated 9.4 CD74, PDPR, PXN
Dexpanthenol MCF7 Downregulated 9.4 AIF1, EGFR, GSTP1
Suramin sodium PC3 Downregulated 9.4 EGFR, ITGB1, NUP160
Levcycloserine PC3 Downregulated 9.4 ITGB1, PXN, REL
Etamivan PC3 Downregulated 9.4 EGFR, HLA-DRB1, PCOLCE
Gibberellic acid MCF7 Downregulated 9.4 ITGB1, PXN, REL

FDR: false discovery rate.

Table 2. Drug repositioning for the top module genes from the dorsolateral prefrontal cortex dataset

Drug name Cell line Regulatory direction −log2 FDR Genes enriched

Proglumide PC3 Upregulated 15.2 BCAM, FNDC3A, FUS, PICALM, RABEP1
Methazolamide MCF7 Upregulated 12.3 DNM2, PICALM, TLN2, ZYX
Phenazopyridine PC3 Upregulated 12.3 BCAM, BIN1, RABEP1, RPS9
Sulindac MCF7 Upregulated 9.9 BCAM, FKBPL, RPS9
Nordihydroguaiaretic acid MCF7 Upregulated 9.9 BCAM, RPS9, ZYX
Troglitazone MCF7 Upregulated 9.9 PICALM, RABEP1, ZYX
Trimethoprim MCF7 Upregulated 9.9 CNN2, PICALM, TLN2
Benperidol MCF7 Upregulated 9.9 PICALM, RPS9, TLN2
Terconazole MCF7 Upregulated 9.9 DNM2, PICALM, TLN2
Ciprofibrate MCF7 Upregulated 9.9 BRAF, RABEP1, ZYX
0198306-0000 PC3 Downregulated 10.9 APP, DMWD, SQSTM1, VASP
Dinoprostone MCF7 Downregulated 9.5 BMPR2, CSNK1A1, VASP
Disulfiram PC3 Downregulated 9.5 APP, CLU, SQSTM1
Aceclofenac PC3 Downregulated 9.5 APP, PRRC2A, VASP
Zomepirac HL60 Downregulated 9.5 APOE, DMWD, MAPT
Monastrol MCF7 Downregulated 9.5 DMWD, SQSTM1, VASP
Carteolol HL60 Downregulated 9.5 BMPR2, DMWD, SQSTM1

FDR: false discovery rate.

It has been hypothesized that alternation of excitatory
and inhibitory neuron activities may disrupt the cortical
regions’ cognitive-related functions, contributing to the
cognitive function decline in ad (43,44). Interestingly,
enriched excitatory neuron genes were also a potential
target for drugs identified in the Cogena drug repur-
posing analysis. In PHG, tanespimycin (−log2 FDR = 9.4),
a potent heat shock protein 90 (HSP90) inhibitor, was
identified in the Cogena analysis of TMGs (Table 1). The
enriched genes contained CLU and HSPA5, which were
also the enriched gene signature of excitatory neurons.

A recent model study demonstrated the protective effect
of tanespimycin against seizures and cognition decline
in both mice and cynomolgus monkey models (45). In
DLPFC, disulfiram (−log2 FDR = 9.5) was identified as
a potential repurposing drug through Cogena analysis
(Table 2). The three enriched genes of disulfiram, APP,
CLU and SQSTM1, were also enriched signature genes of
excitatory neurons. It has been suggested that disulfi-
ram may contribute to increased ADAM10 expression,
which may ameliorate the amyloid-β accumulation and
cognition deficits in the ad mouse model (46).
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Discussion
In this work, we utilized our network-based method to
capture the convergent signal from ad genetic data and
multi-brain region proteomics. As a result, we priori-
tized TMGs in the PHG and DLPFC. We pinpointed four
overlapped genes (CLU, PICALM, PRRC2A and NDUFS3)
with GWAS gene-level significance (FDR < 0.05) between
TMGs. Moreover, the regulatory network of the four over-
lapped genes was analyzed, highlighting therapeutic tar-
get genes of existing investigational drugs in PHG. Fur-
thermore, we found heterogeneous enriched biological
pathways and drug signatures and similar neuron signa-
tures in TMGs of two brain regions.

The current study applied the EW_dmGWAS algorithm
to harness the evidence from one of the largest ad
genome-wide meta-analyses to date to search dense
gene modules associated with ad (9). However, the
strength of genome-wide associations varied between
different ad GWAS as the characteristics of samples
included were diverse. We, therefore, estimated the
variation of using a separated large-scale ad GWAS on the
resulting gene modules (11). The newly calculated node
weights using ad GWAS by Wightman et al. (11) were mod-
erately correlated with those calculated from ad GWAS
by Schwartzentruber et al. (r = 0.646, Supplementary
Material, Fig. S3). As a result, the identified dense gene
modules varied between independent EW_dmGWAS
analyses using two ad GWAS. We subsequently examined
the consistency of the gene in the accumulating top
modules in two settings. We found higher gene consisten-
cies within the same protein expression dataset (Jaccard
scores, 0.147–0.213) compared to the gene consistencies
across the protein expression datasets (Jaccard scores,
0.048–0.099) (Supplementary Material, Table S13). Thus,
we believe the variation between protein expression
profiles from two brain regions was greater than the
variation between the two ad GAWS. Moreover, we believe
the EW_dmGWAS algorithm was able to detect the
variations caused by inputted GWAS signals.

Our brain region-specific network analyses pinpointed
four overlapped promising candidate ad genetic risk
genes (CLU, PICALM, PRRC2A and NDUFS3) between TMGs
identified from PHG and DLPFC datasets independently.
Among these overlapped genes, CLU (encoding clusterin)
gene had the highest GWAS gene-level significance (P-
value =9.44 × 10−15, FDR = 2.00 × 10−11). CLU has been
identified as the third most significant risk gene associ-
ated with late-onset ad (47) and might explain approx-
imately 9% of ad attributable risk (48). Although it is
still largely unclear how CLU contributes to ad risk, some
have suggested that its respective glycoprotein, clusterin,
is associated with amyloid-β aggregation (29), toxicity
(49) and clearance (50). Our analyses revealed enrich-
ment of biological pathways related to the amyloid-β
process and clearance. Clusterin is involved in regulating
cell survival and cell death pathways (51). Accordingly,
we found in our analyses several pathways related to
cell death and mitochondria enriched, such as ‘neuron

death,’ ‘protein localization to mitochondria,’ ‘regulation
of mitochondria organization’ and ‘cell–cell signaling
by WNT.’ Specifically, ‘signaling by WNT’ is a well-
known biological pathway implicated in ad, being found
downregulated in ad, leading to an increase in GSK-
3β and increased tau phosphorylation and synapse
loss. In addition, one study reported colocalization of
clusterin and amyloid-β plaques surrounded by p-tau
deposits in the temporal cortex of ad individuals (52).
Furthermore, clusterin has been reported to be involved
in oxidative stress and is increased by proteolytic stress.
Interestingly, the top enriched biological pathways in our
analysis of PHG proteomic data were ‘reactive oxygen
species metabolic process’ and ‘response to oxidative
stress,’ further supporting the importance of clusterin
for oxidative stress in ad.

Another key overlapped gene between TMGs in two
brain regions, PICALM, which encodes Phosphatidylinos-
itol Binding Clathrin Assembly Protein, was identified
(gene-level P-value =6.19 × 10−12, FDR = 3.42 × 10−9)
by EW_dmGWAS in both proteomic datasets. It has
been reported that PICALM methylation in blood might
contribute to the cognitive function decline in ad (53).
PICALM modulates the production, transportation and
clearance of β-amyloid peptides (30). One study has
indicated that increasing Phosphatidylinositol Binding
Clathrin Assembly Protein levels may rescue the APOE4-
induced endocytic defect (54). A recent publication
reported that the PRRC2A (encoding proline-rich coiled-
coil 2A) gene plays an important role in regulating oligo-
dendrocyte specification and myelination by functioning
as a newly identified N6-methyladenosine (m6A) reader
(55). Further, PRRCA2 was found to be downregulated
in microglia and astrocytes of aging mice brains (31).
Finally, ubiquinone oxidoreductase core subunit S3,
encoded by the NDUFS3 gene, and other members
of ubiquinone oxidoreductase, such as NDUFA2 and
NDUFA3, were downregulated in individuals with late-
onset
ad (32).

Differential co-expression network analysis high-
lighted four therapeutic target genes of existing inves-
tigational drugs in PHG, including APP, VCAM1, GJA1
and SNCA. Most AD drugs under development or
testing devote significant efforts to interfering with the
production and accumulation of amyloid-β peptide, the
product of APP (34). VCAM1, a member of the No. 14 of
the top 25 gene module from EW_dmGWAS, is one of the
drug targets of Carvedilol (35), which can attenuate brain
Aβ content and cognitive deterioration in animal models
(56). GJA1 is also the target gene of Carvedilol (36), but
our EW_dmGWAS analysis did not capture it. Carvedilol
has been assessed for its effectiveness and saf-ety in one
phase IV clinical trial. Although the clinical trial failed
to show a significant difference between the Hopkins
Verbal Learning Test (HVLT) score changes between the
treatment group and placebo group, the results showed
a slight reduction of amyloid-β42 level in cerebrospinal
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fluid in the treatment group versus an increase of
amyloid-β42 in the placebo group (https://clinicaltrials.
gov/, NCT01354444). Besides, SNCA is the therapeutic
target of resveratrol and was identified within the top
100 (No. 71) modules of EW_dmGWAS analysis (37).
Multiple studies have shown that resveratrol presents
neuroprotective effects in animal models. However, such
protective effects were not observed in clinical trials
(57). In addition, a recent review study has indicated
that resveratrol derivatives might serve as a potential
ad treatment (57). Apart from co-expression candidates
of overlapped risk genes, we identified the SLC6A4 gene,
which is included within the top 150 modules in our
EW_dmGWAS analysis of the PHG dataset. SLC6A4
is the potential therapeutic target of multiple drugs
developed or repurposed for psychiatric disorders among
ad patients, including Aripiprazole (58,59), AVP-786 (60),
AXS-05 (61) and Escitalopram (62,63).

The results of the current study should be inter-
preted with caution. First, our study might suffer from
the heterogeneous data of cohort-specific proteomics
expression datasets. To remove the potential variation
caused by confounding factors, we adopted strict criteria
for sample labeling based on each study’s clinical
diagnosis and pathological diagnostic information, fol-
lowing the National Institute on Aging and Alzheimer’s
Association (NIA-AA) diagnostic recommendations (3).
Batch effect correction and normalization procedures
were conducted within proteomics data in each cohort.
Moreover, the same data imputation method was
applied to proteomics expression datasets. Therefore, the
remaining variation across different cohorts may mainly
represent brain region-specific proteomics expression
variation. Second, we cannot assess the regulatory rela-
tionship between the PHG region and the DLPFC region
with the current proteomic data. The disconnection
between these two brain regions might be a pathological
pathway for cognitive dysfunction in ad (64). Then, we
applied a scale-free network index to the top modules
identified from the EW_dmGWAS analysis. However, the
current network constructed by TMGs could not meet
the empirical scale-free network index of 0.8. We believe
a more robust network could be built with a more holistic
human PPI database. Lastly, the current study results are
derived from European population GWAS and proteome
data. Thus, our findings might not be extrapolated to
non-European populations.

In summary, we conducted integrative analysis on
genetic variants and protein expression profiles of PHG
and DLPFC from ad and control samples to identify
brain region-specific dense gene modules associated
with ad. We identified brain region-specific TMGs in
PHG and DPLFC datasets and highlighted four key
overlapped genes. We found that their differentially co-
expressed proteins in PHG contained potential genetic
targets of known investigational drugs of ad. Lastly, we
identified that specific excitatory neuron was highly
enriched by TMGs of both brain regions. These findings

provided new insights into ad’s complex pathology and
the development of drugs targeting those molecular
alterations.

Materials and Methods
Analysis datasets and data preprocessing
We obtained two independent brain region-specific pro-
tein expression datasets from the Synapse portal (65). We
obtained protein expression data of the PHG region of 127
ad and 63 control subjects from the MSBB study (18,66);
the protein expression dataset of the DLPFC region was
obtained from the ROSMAP study (27,67), which included
108 ad and 84 control subjects (3). The diagnostic labels
of both datasets were determined following the National
Institute on Aging and Alzheimer’s Association (NIA-AA)
diagnostic recommendations (3).

Protein expression profiles were measured by the
TMT mass spectrometry-based quantification approach
(26,27). Batch effect correction, normalization and
imputation procedures for the MSBB protein expression
dataset were preprocessed and reported in the original
publication (66). For the ROSMAP protein expression
dataset, we adapted the batch effect corrected and
normalized data from the original publication (27).
In addition, we applied a linear mixed-effects model,
the same data imputation strategy used in the MSBB
dataset, to impute the missing data in the ROSMAP
protein expression dataset (68,69). One outlier was
excluded from the ROSMAP dataset based on principal
component analysis (Supplementary Material, Fig. S4).
Finally, the protein expression profiles were mapped to
corresponding gene symbols based on their respective
UniProt IDs. Overall, the module search analysis used
9210 protein expression data from the MSBB dataset and
8251 protein expression data from the ROSMAP dataset.

GWAS summary statistics and node-weight
calculation
We obtained the GWAS summary statistics from a
comprehensive genome-wide meta-analysis study by
Schwartzentruber et al. (9). This study applied a GWAS by
proxy approach by including 472 868 (75 024 individuals
diagnosed with ad or individuals with one or both parents
diagnosed with ad and 397 844 controls) individuals of
European descent. The GWAS has been approved as
a powerful method for discovering genetic variants of
complex traits, especially for late-onset diseases, in large
cohort biobanks (70). Moreover, another large-scale ad
GWAS using proxy cases suggested that the magnitude
of the associations did not change substantially when
only clinically diagnosed ad cases were included (12).
Considering that the strengths of genome-wide associ-
ation varied across studies, we obtained another large-
scale genome-wide meta-analysis by Wightman et al.
(11) for sensitivity analysis. We applied a state-of-the-
art tool, MAGMA, using an SNP window of up 50 kb
and down 35 kb for each gene to calculate the sum
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of squared SNP Z-statistics as χ2 statistic. A gene P-
value was estimated using a known approximation of the
sampling distribution for χ2 statistic, SNP covariance and
degree of freedom (Supplementary Material, Table S1)
(28). Node weight (v) for each gene was then calculated
by nodeweight (v) = ϕ−1(1 − p), where ϕ is the two-sided
standard normal distribution function and p represents
the gene-level P-value (21).

ad edge-weight calculation
The preprocessed protein expression profiles of PHG and
DLPFC regions were used for edge-weight calculation.
Edge weights for each gene pair were calculated based on
the change of gene-level protein co-expression between
ad cases and control samples. Briefly, we calculated
the Pearson’s correlation coefficient values for each
gene pair by using the gene-level protein expression
dataset among cases and controls. Next, we performed
Fisher transformation and Fisher’s test of the difference
between cases and controls for edge-weight calculation
in each dataset (21). Finally, all protein pairs were
mapped to an experimentally validated PPI database
and the BioGRID database (version 4.4.203) (71). We
preprocessed the PPIs by removing non-human and
redundant data, resulting in 19 094 genes and 539 890
unique human PPIs. After harmonizing each protein
expression dataset with the non-redundant PPIs, the
calculated edge weights could reflect the differential
co-expression profiles between ad cases and control
samples in brain regions. Following our previous work
(23), we defined differential co-expression by edge
weight transferring below the nominal P-value (edge
weight > 1.96). The detailed methods are described in
the original publication (21).

Network-based dense gene module identification
We applied an updated network-assisted analysis
algorithm, the EW_dmGWAS tool, to integrate GWAS
and proteomic signals of two brain regions sepa-
rately (21). A greedy algorithm was implemented to
search dense gene modules based on module score S
calculated as:

S = λ

∑
e∈E edge weight(e)

√
No.of E

+
∑

v∈V node weight(v)
√

No.of V

where node weights (e) and edge weights (v) were
calculated in the previous step; E in the formula
represents the set of edges; and V represents the set
of nodes. λ in the formula is a scaling factor for GWAS
and protein expression values. In this study, we used the
variance ratio between edge weights and node weights
as the scaling factor for each brain region. Finally, the
resulting modules were ranked by EW_dmGWAS based
on 1000 permutations of signal-enrichment from both
genomic and gene expression profiling of ad samples and
controls.

Top modules evaluation and selection
To explore the critical functions of modules identified
from EW_dmGWAS, we selected top modules based on
their significance ranking and evaluated them using a
scale-free network index. First, all modules were ranked
based on the 1000-permutation z-scores calculated in
EW_dmGWAS. Second, we selected the top modules and
assessed their scale-free network properties. Specifically,
we curated all genes within the selected modules and
reconstructed the merged network based on the BioGRID
PPI. Scale-free network indexes were calculated and plot-
ted to assess the network properties with the increasing
size of the network. We assume the distribution of nodes
and frequency of edges within a reconstructed biological
network follow the power law, P(k) ∼ k−γ , where k stands
for the number of node edges (72). After applying the log–
log transformation, a linear fit, log(pk) = −γ log(k) + c,
can be found, and the coefficient of determination of
the regression (R2) can be used to estimate the scale-free
network property. Considering the network size and inter-
pretability, we prioritized the top 25 modules for each
brain region-specific protein expression dataset for visu-
alization, key biological function exploration and down-
stream analyses.

Reconstruction of the regulatory network
We performed downstream Reactome pathway analysis
to explore the functional interactions within the identi-
fied genes of the top dense modules and linker genes.
The EW_dmGWAS algorithm tends to prioritize discrete
gene modules associated with ad, while the comprehen-
sive regulatory networks might not be fully captured.
Thus, we implemented a Cytoscape application, Reac-
tomeFIViz, to reconstruct the regulatory network with
genes of interest (38). The input of ReactomeFIViz was
the gene sets from top-ranked modules that we obtained
from the previous network dense module search. We
used the latest Reactome FI Network version 2020 for net-
work construction. In addition, the build-in linker genes
deduction function was implemented to complement the
network.

Functional enrichment analysis
To explore the brain region-specific functional enrich-
ment of genes within selected top modules from
EW_dmGWAS, we performed over-representation anal-
yses using the R package WebGestaltR. We used GO,
no redundant BP annotation and all human protein-
coding genes as the reference (73). The final results were
filtered based on Benjamini–Hochberg (BH) adjusted P-
value < 0.05 (74).

Drug signature enrichment analysis
We performed drug signature enrichment analyses using
the Cogena R package (75). Cogena is a framework that
calculates the co-expression of inputted genes to deter-
mine gene expression signatures and creates clusters
associated with the disease mechanism. Cogena uses

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac124#supplementary-data


Human Molecular Genetics, 2022, Vol. 31, No. 19 | 3351

hypergeometric tests to perform gene set enrichment
analysis of biological pathways or curated drug signature
gene sets. We separately constructed gene-level protein
expression matrices of all genes in the top 25 modules for
the MSBB and ROSMAP datasets. The protein expression
matrices were inputted into Cogena for brain region-
specific analysis. The default parameters were used to
perform drug signature enrichment analyses: 10 clusters,
2 cores, hierarchical and pam methods for clustering
methods and correlation for distance metric. We used
two curated gene sets from the Cogena R package to
perform these analyses: the CMap gene set for the top 100
downregulated genes per drug and the CMap gene sets
for the top 100 upregulated genes per drug. Lastly, the
−log2 FDR was reported for the enriched drug signature
from the Cogena hypergeometric tests.

Web-based Cell-type-Specific Enrichment
Analysis of Genes (WebCSEA)
We further assessed the cell-type specificity of top
module genes of PHG and DLPFC proteomic expression
through our newly developed application, (40,41). In
WebCSEA, we adapted our previous decoding of the
tissue specificity (deTS) algorithm on single-cell RNA-seq
data of human tissues (76). In this work, we evaluated
the top 25 module genes of PHG and DLPFC on the
single-cell reference panel from disease-relevant tissue
(frontal cortex) (42). We adapted both results from raw P-
value mode and combined P-value mode, which were
calculated to avoid potential bias from the gene set
length and tissue-cell type difference by leveraging
the permutation result from ∼ 20 000 gene sets with
moderate TC specificity derived from genetic studies.
The detailed method can be found in the tutorial of the
original web service.

Supplementary Material
Supplementary Material is available at HMGJ online.
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