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ABSTRACT: The widespread adoption of microfluidic devices among the neuroscience
and neurobiology communities has enabled addressing a broad range of questions at the
molecular, cellular, circuit, and system levels. Here, we review biomedical engineering
approaches that harness the power of microfluidics for bottom-up generation of neuronal
cell types and for the assembly and analysis of neural circuits. Microfluidics-based
approaches are instrumental to generate the knowledge necessary for the derivation of
diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation
and subsequent examination of individual neurons of interest. Moreover, microfluidic
devices allow to engineer neural circuits with specific orientations and directionality by
providing control over neuronal cell polarity and permitting the isolation of axons in
individual microchannels. Similarly, the use of microfluidic chips enables the construction
not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits.
Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for
studying these organs as they closely recapitulate some aspects of in vivo biological
processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from
drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics
provide researchers with powerful systems that complement and partially replace animal models.
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1. HIGHLIGHTS

(1) Microfluidics support a wide range of bottom-up neural
engineering approaches, from the generation of neural cell
types to the in vitro assembly of 2D and 3D neural circuits.

(2) Microfluidics enable the isolation of specific neuronal cell
types, either from primary tissues, in vitro cultures, or
brain organoids.

(3) Microfluidics-assisted sorting and molecular profiling of
neurons facilitates creating comprehensive identity data-
bases.

(4) Controlled delivery of diverse transcription factors and/
or small molecule cocktails in microfluidic platforms
enables high-efficiency forward programming of hiPSCs
to specific neuronal cell types.

(5) Layered neural circuits with oriented connectivity are
constructed by incorporating physicochemical cues in
microfluidic platforms and controlling neuronal cell
polarity.

(6) Microfluidic devices support brain-on-a-chip and organo-
id-on-chip technologies by enhancing control over 3D
network structure, improving perfusion, and providing
more longevous cultures.

2. INTRODUCTION
Human neural circuits within the central nervous system (CNS)
are formed by various excitatory and inhibitory neuronal cell
types with distinct biophysical and functional features.1,2

Although additional cell types such as astrocytes and
oligodendrocytes are also found in the brain, where they fulfill
crucial support functions, neurons are the primary units of
information processing and the building blocks of neural
circuits. Given the complexity of neural circuits, mapping the
anatomical and functional features of the brain remains a
challenging task for neurobiologists.3−6 From a clinical point of
view, neuronal loss and dysfunction are both associated with a
variety of neurological disorders.2,7 Understanding the patho-
physiology underlying such disorders at the cellular and circuit
levels is key to developing novel and more effective therapeutic
alternatives. Presently, the major approaches to understand
brain function involve the use of native neural circuits within
their environment in vivo, of brain slices ex vivo, and of in vivo−
mimetic circuits assembled in vitro.8−10 The latter enable to
scale down the complexity of the in vivo system and to study
circuit functionality under controlled experimental condi-
tions.5,11−14 However, conventional in vitro neuronal cultures
on a flat substrate do not recapitulate the structure and
organization of in vivo circuits and usually fail to mimic relevant
microenvironmental cues. In this context, microfluidic devices
constitute a powerful toolkit to engineer superior neuronal
circuits that more closely resemble their in vivo counter-
parts.15−17

Microfluidics and microfabrication technologies have been
extensively used to develop intricate devices with integrated
neural cell-sized microchannels.18−21 These devices operate
with volumes in the micro- and nanoliter scales and incorporate
pumps, valves, and electrokinetic elements.22−24 Thereby, not
only are they compatible with rapid and directed transport of
fluids but also support the straightforward automation and

parallel execution of multiple operational steps.25−27 Further, by
depositing chemical cues in the physically confined spaces of
these devices, it is also possible to control neural circuit
architecture and function in vitro.13,26,28 In addition, many
microfluidic devices are also compatible with optical and
electrophysiological tools that enable individual neurons to be
monitored, manipulated, and examined.29−32 In the past decade,
the use of microfluidics has deepened our understanding of
neurons and the circuits they form by enabling the isolation and
molecular profiling of single cells from primary tissues33−35 by
supporting the in vitro engineering of neural cells36−38 and the
construction of 2- and 3-dimensional neural circuits with defined
spatial orientations.16,39−41

Advances in microfluidic technologies have been paralleled by
progress in the stem cell field. Induced pluripotent stem cells
(iPSCs)42,43 offer, as embryonic stem cells (ESCs),44,45 the
possibility to produce any neuronal cell subtype in vitro. In
contrast to ESCs, however, iPSCs can be created from somatic
cells of any individual, thereby overcoming ethical limitations of
ESCs such as depending on human embryos to obtain them.46

iPSC-derived neurons serve as building blocks to form complex
neural circuits.47 Although there are still no protocols for the
derivation of many neuronal subtypes, research on using neural
stem cells (NSCs) for neural tissue engineering and repair has
progressed at a steady pace,48 with microfluidics supporting this
progress by allowing to develop simplified on-a-chip models of
brain circuitries.13,49−51 Further, microfluidics have also been a
major driver for omics (i.e., genomics, proteomics, tran-
scriptomics), facilitating to extract in-depth molecular data
from native brain tissues and organoids.52 In this context, the
increasing number of transcriptomic atlases characterizing the
gene expression profiles of cells and/or nuclei from different
brain regions represent extremely valuable databases for the field
of neuronal cell engineering.53 These databases serve as
references to analyze and quality control the full spectrum of
stem cell-derived neuronal subtypes.
In this review, we aim to link diverse microfluidic concepts

related to the engineering of neuronal cell types with approaches
for assembling simple or complex models of brain networks in
vitro: the focus is set on neuroscientific applications. We cover
major studies published over the last 20 years but focus primarily
on the past decade due to the recent rapid progress of single-cell
sequencing and organoid technologies. We feature advanced
microfluidic platforms for sorting, classifying, profiling, and
engineering neural cells, as well as for constructing neural
circuits (Figure 1A). We also cover studies describing
reprogramming, differentiation, and controlled polarization of
neuronal cells through the engineering of niche-like compart-
ments in microfluidic devices (Figure 1B,C). Finally, we review
recent approaches for patterning, structuring, and engineering
ordered/oriented 2D and 3D neural circuits by mimicking those
found in the brain in vivo (Figure 1C,D).

3. MICROFLUIDIC PLATFORMS FOR SORTING AND
CLASSIFYING NEURONAL CELL TYPES

Neurons exhibit highly variable morphological features,
biophysical properties, and activity patterns in vivo.54 However,
once isolated from adult tissues, neurons are postmitotic and do
not proliferate in culture. For this reason, the neurons most
commonly used to engineer neural circuits in microfluidic
platforms have historically been those obtained from embryonic
or early postnatal animal brain tissues, which remain
proliferative for a limited time before terminal differentiation
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in culture (Table 3). Notwithstanding, the usefulness of these
cells for the study of neural circuits is limited due to multiple
factors, including: the challenging preparation and culturing
procedures required, the heterogeneity of the cellular
populations obtained upon isolation, and the limited number
of available source tissues.55

NSCs represent a valuable alternative as they are capable of
proliferating and differentiating into neurons, astrocytes, and
oligodendrocytes.56 NSCs can be derived either from ESCs or
iPSCs.57 These stem cells proliferate almost indefinitely and, in
combination with appropriate differentiation protocols, can
theoretically be differentiated into almost any human cell type.58

Patient-specific hiPSCs are used for disease modeling and, in
certain cases, in the clinical setting for autologous trans-
plantation after gene repair.59,60 HiPSCs can be differentiated
into distinct cell types either by using specific media
formulations and culturing protocols or by the introduction of
genomic modifications.61−63 Strategies for producing dopami-
nergic,64−66 glutamatergic,67,68 GABAergic,69,70 serotonergic,71

and cholinergic72 neurons, as well as Schwann cells,73

oligodendrocytes,74 and astrocytes75,76 from hiPSCs have been
developed.
Microfluidics have been extensively used for separating and

sorting both primary and cultured neurons, which have been
subsequently used in single cell transcriptomic studies.77−80 The
findings of these studies are often the starting point for
identifying molecular drivers of differentiation and can be used
to produce neurons in vitro from ESCs or iPSCs.81 In this sense,

identifying the genetic mechanisms that drive neural stem cells
toward particular neural fates (e.g., giving rise to excitatory or
inhibitory phenotypes or to glutamatergic or cholinergic
neurons) is essential to engineer specific neurons from stem
cells with high precision.3,72,82 Additionally, heterogeneous and
polyclonal NSC- or iPSC-derived neural cultures often need to
be dissociated and separated into a single-cell suspension to
proceed with studies on clonal populations.83 Here, sorting and
separation steps enable the generation of high-purity neuronal
cultures.84

3.1. Sorting Neuronal Cells by Microfluidic Platforms

Complex and heterogeneous cell mixtures derived either from a
tissue or from an in vitro culture often need to be sorted to
obtain pure populations of the cells of interest. Such purified cell
populations can then be transcriptionally profiled to determine
cellular identity or cultured for subsequent functional and
morphological analyses.85 Cell-sorting technologies separate
cells based either on their biophysical properties or on the
expression of cell-surface markers.86 Conventional methods to
separate and sort cells tend to be laborious and often require
large sample sizes and reagent volumes.84 In contrast, micro-
fluidic platforms allow significant reduction of these parameters
while offering tight control of flows. Numerous processing steps
that further facilitate and accelerate cellular studies can be
additionally incorporated into microfluidic devices. For
example, sorting processes can be sped up in microfluidic
devices by parallelization,87 or reagents can be mixed and cells

Figure 1.Diverse applications of microfluidic platforms: frommolecular characterization of cells in the central nervous system to engineering neuronal
cell types and neural circuits in vitro. (A) Neuronal cells extracted from native brain tissue are sorted based on their physical properties or surface
markers and are classified based on their genomic or transcriptomic profile (qRT-PCR and single-cell RNA-Seq). (B) The information gathered on the
molecular identity of the diverse neurons in the brain, retina, and spinal cord is useful for devising strategies to reprogram and differentiate hiPSCs into
specific neuronal cell types. (C) HiPSC-derived neurons can be used to engineer 2D neural circuits or (D) be incorporated in physiologically relevant
systems as 3D layered networks and organoids.
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Figure 2. Different microfluidic cell-sorting strategies. (A) Cell separation using viscoelastically tuned hydrodynamic spreading. Depending on the
viscosity of the elution flow and on cell size, specific cells can be separated.94 (B) Inertial separation of neurons and glia in a serpentine microchannel.
Large cells (neurons) tend to migrate to the center of the microchannel, while small glial cells that experience stronger inertial forces stay close to the
sidewalls.95 (C) Isolating single cells in neurospheres using inertial microfluidics. The curvature of the spiral microfluidic channel induces Dean’s forces
that push small particles and single cells toward the inner wall. Larger particles, as cell clusters, move toward the center.83 (D) As whole cell membrane
capacitance is a biomarker of stem cell fate potential and, conversely, of ongoing differentiation processes, label-free dielectrophoresis-assisted
continuous sorters exploit this electrophysiological property of the plasmamembrane for sorting more (e.g., neuron- or astrocyte-forming cells) or less
differentiated cells (e.g., stem cells).96,100 (E) Acoustophoresis-based separation of live neuroblastoma and human ESCs from apoptotic cells. A first
piezoceramic transducer aligns the cells close to the wall, while a second one deflects their trajectory based on their acoustic properties and
morphology.97 (F) Real-time deformability cytometry enables on-the-fly analysis of cells deforming as they pass through narrow microchannels
without exposing them to shear stresses or pressure gradients.102 (G) Low-cost and simple microfluidic FACS (μFACS).126 Label-based neuronal cell
sorting can be performed in μFACS at a reduced cost. (H) Characterizing the differentiation state of neuronal stem cells based on specific membrane
capacitance and cytoplasm conductivity. Cells are continuously aspirated into a constriction channel to measure these properties.127 (I) Sorting cells
based on their dynamic response to a chemical stimulus.109 Cells are introduced to the sorting device through a flow line (depicted in green), and their
movement and positions are adjusted by control lines (depicted in yellow). After trapping the cells, a stimulus is delivered through the appropriate flow
line, and the cell response is measured based on calcium influx. As proof of principle, this method has been applied to separate olfactory sensory
neurons that respond to specific odor cues.109
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counted, lysed, and analyzed within one single device. These
systems operate as lab-on-a-chip platforms.
Microfluidics-based cell sorting techniques are broadly

divided into label-free, fluorescent-based, and bead-based
methods.22,88−92 Several label-free cell-sorting microfluidic
platforms have been designed to separate neuronal cell types
based on their intrinsic biophysical properties93 (Figure 2). For
instance, by using viscoelastic tuning and adjusting liquid flow
rate in microchannels, neuronal and glial cells derived from rat
spinal cord have been separated (Figure 2A).81,94 Similarly, an
inertial microfluidic platform designed by Jin et al. separates
dissociated primary neuronal and glial cells in a serpentine
channel (Figure 2B), reaching purity levels above 80% at the
outlet channel.95 In this inertial platform, neuronal cells with
large somas are shifted to the center of the microchannel, while
small glial cells are pushed to the sides (Figure 2B). Inertial
microfluidics with spiral-shaped channels (Figure 2C) have also
been used to isolate neuronal cells from large cell clusters.83

Besides hydrodynamic-based cell-sorting methods that
exploit fluid flow to separate cells, electrophoresis- and
acoustophoresis-based approaches have also been tested in
microfluidic platforms (Figure 2D,E).96,97 Dielectrophoresis
(DEP; Figure 2D) uses nonuniform electric field gradients to
polarize and move or manipulate particles or cells.98,99

Microfluidic-based DEP allows to sort cells according to their
membrane capacitance in a label-free way, irrespective of their
size. Murine neurogenic and astrogenic progenitor cells, for
instance, have been successfully separated based on differences
in their cell membrane capacitance by modulating the frequency
of an alternating current (AC) applied through electrodes
embedded in a microfluidic device.100 The detailed character-
ization of these cells revealed that astrogenic progenitors
experience a positive DEP at lower frequencies than neurogenic
progenitors.96,100 Acoustophoresis, on the other hand, separates
cells within microfluidic channels using an ultrasound radiation
force (Figure 2E). The acoustic radiation that cells absorb
increases with their size, mass, and compressibility. The cells that
absorb high levels of acoustic radiation move faster than the rest
toward a central node.97,101 With this method, Zalis et al.
separated live neuroblastoma N2a cells from apoptotic cells in a
mixed population of live and dead cells.97 Further, cytometry
strategies for characterizing the deformability of red blood cells
can be extended for conducting measurements on stiff cells like
neurons or retinal photoreceptors (Figure 2F).93 Otto et al., for
example, developed a real-time deformability cytometry method
that allows tracking of neuronal cells differentiating from stem
cells based on their mechanical fingerprints.102 Besides conven-
tional deformability cytometry, cells passing through constricted
microfluidic channels also deform without being exposed to
shear stresses and pressure gradients. This method demon-
strated unique morphorheological properties of primary and
mouse embryonic stem cell (mESC)-derived rod photo-
receptors during development; the determination of such
properties could be valuable for the prospective identification
and label-free isolation of rod photoreceptors.93

Fluorescence-activated cell sorting (FACS), meanwhile,
enables the sorting and isolation of diverse cell types based on
their expression of specific markers and is now routinely used for
a variety of applications. In this method, cells are labeled either
by genomically engineering them to ectopically express
fluorescent proteins under the control of specific promoters or
in response to particular stimuli or by the use of fluorophore-
conjugated antibodies that recognize specific epitopes character-

istic of the cell type of interest. Once labeled, cells are guided one
by one through a micrometric flow cell nozzle and a laser excites
the fluorophores of interest. The detected signal is then used to
identify the cells expressing the marker of interest and sort them
into a collection vessel. Modern FACS systems are often built
with several lasers and a large number of detectors that make
them suitable for the identification and isolation of multiple cell
types in parallel or of cells with complex phenotypes.103

Although the sorting output of FACS is very precise, flow
cytometry is expensive and often needs a trained operator.104

Fortunately, such costs can be sharply reduced by the use of
sample pumping, focusing, and sorting, as employed in
microfluidic FACS platforms (μFACS; Figure 2G).103 These
elements can be additionally integrated with downstream
analysis and processing steps in lab-on-a-chip devices.105 Similar
to FACS, μFACS sorts cells online according to the intensity of
their fluorescence,106,107 although it still needs to be tested for
separating neuronal cells.105

A device recently developed can separate cells according to
their membrane capacitance (Cspecific membrane) and cytoplasm
conductivity (σcytoplasm) (Figure 2H) and has been used to
monitor the changes of such electrophysiological properties
during neuronal stem cell differentiation.108 Microfluidic
platforms can also be exploited to sort cells based on their
functional response to a stimulus (Figure 2I). Combining this
approach with postsorting analysis can provide multidimen-
sional data of particular cell types. Tan et al., for instance,
designed amicrofluidic device to monitor the responses of single
olfactory neuronal cells to a ligand, L-lysine, and then collected
the population of responsive sensory neurons for subsequent
transcriptional profiling.109

3.1.1. Perspectives on Microfluidic-Based Neuronal
Cell Sorting. Given the abundance of techniques and tools
available for sorting cells, selecting an appropriate method to
separate specific neuronal cell types of interest might be
challenging. Advantages and disadvantages of microfluidic-
based cell sorting methods have been summarized in a review by
Plouffe andMurthy.110 Sortingmethods that exploit cell size and
shape like inertial microfluidics, hydrodynamic-based, and
deformability-based approaches offer high throughput (>109
cells per hour). However, their efficiency is affected if physical
differences between neuronal cell types are small.88,91,111,112 To
separate neuronal cell types with similar size and shape,
dielectrophoresis and acoustophoresis may offer a better
performance.113,114 Nevertheless, different neuronal cell types
can also have similar dielectric properties or compressibility that
can affect the accuracy of these methods in separating different
cell types. To sort neuronal cells with similar physical properties,
size, and shape, label-based methods like FACS and MACS are
suitable alternatives.
Cell viability after the sorting process is another crucial factor

that needs to be considered. This is especially important if
neurons will be used for further experiments or for engineering
neuronal circuits and tissue.115 Hydrostatic pressure and shear
stress during the cell sorting process, as well as temperature and
buffers, are all major factors that lead to sorter-induced cellular
stress (SICS).116,117 Cellular stress manifests in different ways
including arrested growth, decreased viability, changes in cell
morphology, and altered gene expression profiles.116 Compared
to other cell types, neurons and iPSC-derived cells are more
fragile and prone to experience SICS.116,117 For instance,
dissociation of mature neurons with extended axons and
dendrites and loss of these branches can induce stress signals.
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In a study by Bowles et al., MACS sorting of neuronal progenitor
cells is shown to reduce SICS and increase viability compared to
FACS.115 On the other hand, MACS requires the use of metal
nanoparticles, which can induce the generation of reactive
oxygen species (ROS) that damage the cell membrane, DNA,
and proteins.110,118,119 A comprehensive and comparative
investigation of different sorting methods, together with their
potential advantages and disadvantages when used for sorting
neuronal cells, could constitute a valuable reference resource
and help improve sorting outcomes.
In contrast to other tissues, neuronal cells show a large

functional diversity regardless of their structural similar-
ity.120−124 Thus, label-based methods and foremost FACS
sorting perform better. In this sense, an optimal sorting device
for neuronal cells would incorporate the possibility to perform
functional evaluations in the sorting platform. Microfluidic tools
that sort cells based on their membrane capacitance or response
to stimuli are the preliminary models of such devices.109,125 Yet,
while these concepts may one day provide robust sorting

platforms for neuronal cells, the feasibility of their integration
with conventional cell sorting methods remains to be further
investigated.
3.2. Classifying Brain Cells Based on Their Genomic and
Transcriptomic Profile

Prior to the development of single-cell transcriptomics, neurons
were classified based on their morphology, electrophysiological
properties, and/or marker expression.124 Advances in single-cell
technologies offer the possibility to molecularly profile tens of
thousands of single neurons in a single experiment. Single-cell
RNA-Sequencing (scRNA-Seq), for example, allows dissection
of the transcriptional profiles of individual brain
cells.33,120,128,129 Subsequent processing of such transcriptomic
data using machine learning algorithms, i.e., Seurat,130 permit
clustering of neurons with similar gene expression profiles.2

ScRNA-Seq is also useful to validate the identity of stem cell-
derived neuronal cells by comparing their gene expression
profiles with those of primary neurons.34,131−133 Over the past
decade, high-throughput scRNA-Seq data from different brain

Figure 3. Contribution of microfluidics-based concepts to scRNA sequencing. Cells obtained either from primary neuronal tissues or from models
engineered in vitro are dissociated and sorted by FACS. Purified cells are processed using either low-throughput RNA-Sequencing tools like Smart-Seq
and CEL-Seq, or high-throughput microfluidic systems. In general, three main microfluidic approaches are used for single-cell analysis: valve-based
(e.g., Fluidigm 1), droplet-based (Drop-Seq, inDrop, 10× Chromium, and Quartz-Seq), and microwell-based (Seq-well) systems. In all cases, trapped
single cells are lysed, their RNA is hybridized and reverse transcribed (RT), and cDNA is then amplified either by PCR or linear isothermal
amplification by T7-based in vitro transcription (IVT). Thereafter, the cDNA libraries generated in these steps are sequenced, and the data are
demultiplexed, aligned to a reference transcriptome, and interpreted for classification of neuronal cell subpopulations. STAMP: single-cell
transcriptomes attached to microparticles.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00212
Chem. Rev. 2022, 122, 14842−14880

14847

https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00212?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00212?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00212?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00212?fig=fig3&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 1. Microfluidic-Based Approaches Applied to Single-Cell and Single-Nucleus Sequencing and Preparation of Cell Atlases
from Different Brain Regions

cell source (brain
region or organoid)

species
(sample)

microfluidic
platform

cells or
nuclei

(number)
sequencing depth

(reads/cell) results (types and number of detected cell clusters and subclusters)

whole brain human healthy
brain during
surgery

Fluidigm 466 cells 2.83 million Oligodendrocyte precursor cells (OPCs), oligodendrocytes, astrocytes,
microglia, neurons (excitatory and inhibitory subclusters), endothelial
cells, neuronal progenitors, and quiescent newly born neurons were
identified.165

whole brain post-mortem
human

Fluidigm 3227 nuclei 8.34 million Single-nucleus RNA sequencing showed 16 neuronal clusters with 16
neuronal subtypes annotated on the basis of cortical cytoarchitecture.128

telencephalon (cor-
tex and MGEa):
germinal zone,
cortical plate, pre-
frontal cortex, and
primary visual cor-
tex

human develop-
ing brain

Fluidigm 4261 cells 11 classes including astrocytes, OPCs,b microglia, radial glia, intermediate
progenitor cells, excitatory cortical neurons, ventral MGE progenitors,
inhibitory cortical interneurons, choroid plexus cells, mural cells, and
endothelial cells (plus temporal and spatial trajectories of radial glia
maturation and neurogenesis).138

whole brain 23−25 dpfc ze-
brafish

Drop-Seq 58 492 cells 22 500 Simultaneous extraction of cell type and lineage information. More than 100
cell types and marker genes were identified, including 45 neuronal
subtypes, 9 neuronal progenitor subtypes, and 3 oligodendrocyte
subtypes.80

telencephalon, dien-
cephalon, mid-
brain, hindbrain,
and cerebellum

first trimester
human

10× Chromium 289 000
cells

Nine progenitor populations were detected proximal to the
telencephalon.140

cortex P10 to P89d

mouse
Fluidigm 50 cells qPCR Three subgroups of astrocytes were detected from P10 to P50.178

cortex mouse sNucDrop-Seqe 18 194 nu-
clei

15 471 40 clusters were identified, including 27 excitatory, 7 inhibitory, and 6 non-
neuronal cells.121

cortex: germinal
zone

16 wpcf human Fluidigm 65 cells 5000 Four major groups of cells were identified including multiple progenitor and
neuronal subtypes.179

cortex: VZg and
OSVZh

16−18 wpc
human

Fluidigm 393 cells 2.9 million Transcriptional state associated with neuronal differentiation: radial glia,
intermediate neuronal progenitor cells (INPCs), neuronal progenitor cells
(NPCs), and excitatory and inhibitory neurons.167

cortex: primary
motor cortex

mouse 10× Chromium
and Smart-
Seq4

175 000
and 6300
cells

1−2.1 million 59 GABAergic inhibitory neurons, 31 glutamatergic excitatory neurons, and
26 non-neurons were detected.142

cortex: primary
motor cortex

mouse SMART-Seq and
10× Chromi-
um

280 327
and
94 162
cells

2.5 million
120 000

Linked the SMART-Seq resolved isoforms to the cell types defined by 10×
Chromium. Spatially resolved isoform atlas of the mouse primary motor
cortex was generated.155

cortex: primary
motor cortex

post-mortem
human mon-
key

SMART-Seq and
10× Chromi-
um

>450 000
nuclei

17 576 and
77 816

Around 100 cell types were detected in each species, with distinct marker-
gene expression and accessible chromatin sites.180

cortex: somatosen-
sory S1 and hip-
pocampus CA1

mouse Fluidigm 3005 cells 500 000 47 molecularly distinct subclasses of cells: 7 S1 pyramidal neurons, 2 CA1
glutamatergic cells, 16 interneurons, 2 astrocytes, 2 immune cells, and 6
oligodendrocytes.120

cortex: primary visu-
al cortex

mouse Fluidigm 1679 cells >5 million 49 transcriptomic cell types: 23 GABAergic, 19 glutamatergic, and 7 non-
neuronal types.181

visual system drosophila:
multiple
stages of neu-
ronal develop-
ment: over
100 h

10× Chromium 208 976
cells

176 636 Transcriptional atlas generated across multiple stages of visual system
development (162 distinct neuronal populations were detected at 7 time
points: prior to, during, and after synaptogenesis).182

olfactory epithelium P4−P10 and
P30−P90
mouse

Fluidigm 178 cells 1.06−4.52 mil-
lion

Classified based on specific olfactory receptor expression in newborn and
adult mouse.183

lateral ganglionic
eminence (LGE)i

7−20 wpc
human em-
bryo

10× Chromium 96 789 cells 80 million Fifteen different cell states were detected. A common progenitor generates
medium spiny neurons with D1 or D2j receptors.141

striatum neurons mouse Fluidigm 1208 cells 1−5 million Ten clusters of cells were detected, including neurons, astrocytes,
oligodendrocytes, vascular, and 2 ependymal, 2 immune, and 2 stem cell
types.184

striatum P22−P28,
P21−P26, and
P55−P76
mouse

Fluidigm 1135 cells
and 3417
cells

800−1500 529 cells identified as neurons. Seven interneuron classes (6 subclasses of
GABAergic interneurons) were identified.185

substantia nigra
(SN) and cortex

human 10× Chromium 2455 nuclei
and 690
nuclei

46 598−59 513
and
18 377−44 710

SNk cell-type atlas together with a matching cortical atlas were extracted.
Genetic risk in Parkinson’s disease is associated with dopaminergic
neurons and oligodendrocytes.186

thalamic reticular
nucleus (TRN)l

mouse Smart-Seq2 and
10× Chromi-
um

1687 nuclei 1.3 million Two neuronal populations expressing different genes were detected. Each
population was connected to distinct thalamus nuclei and formed
molecularly specific subnetworks.187

hypothalamus mouse Drop-Seq 3131 cells >1500 Seven cell types were distinguished, including neurons. Neurons were
further classified into 62 clusters of glutamatergic, dopaminergic, and
GABAergic subclasses.188
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Table 1. continued

cell source (brain
region or organoid)

species
(sample)

microfluidic
platform

cells or
nuclei

(number)
sequencing depth

(reads/cell) results (types and number of detected cell clusters and subclusters)

hypothalamus mouse Drop-Seq 14 437 cells >800 45 cell clusters were identified, including 34 neuronal and 11 non-neuronal.
Neuronal clusters further divided into 15 glutamatergic, 18 GABAergic,
and 1 histamatergic subclasses.35

hypothalamus: pre-
optic region

mouse 10× Chromium 31 299 cells 101 771 23 excitatory neuron subclasses and 43 inhibitory neuron subclasses were
identified.189

hypothalamus: ven-
tral posterior hy-
pothalamus
(VPH)m

mouse 10× Chromium 16 000 cells 50 000 Twenty neuronal (excitatory and inhibitory) and 18 non-neuronal cell
clusters were identified in VPH.190

hypothalamus: later-
al hypothalamic
neurons

P21−P23
mouse

Fluidigm 89 and 69
cells

qPCR Both excitatory (glutamate) and inhibitory (GABA) neurons were
identified.191

midbrain: dopami-
nergic neuron

mouse Fluidigm 159 cells qPCR Simultaneous expression of 96 genes in single neuron. Six different subtypes
of dopaminergic neurons were distinguished.192

midbrain: ventral
midbrain

human embryos
(6−11 week)
E11.5−E18.5n

mouse post-
natal mouse

Fluidigm 1977 cells,
1907
cells, 245
cells

1200−24 000
2000−26 000
2000−30 000

25 human and 26 mouse clusters were identified. Human: 5 subtypes of
radial glia-like cells and 4 of progenitors. Mouse embryo: 2 dopaminergic
neuron subtypes. Mouse postnatal: 5 dopaminergic neuron subtypes.
Clear differences in cell proliferation, developmental timing, and
dopaminergic neuron development between species.166

midbrain: dopami-
nergic neurons

mouse Fluidigm 111 cells Single-cell qRT-
PCR

Co-varying gene modules that link neurotransmitter identity and electrical
phenotype.193

midbrain Drosophila Drop-Seq 10 286 cells >800 Cell atlas of the fly brain provides a unique resource of gene expression
across many cell types and regions of the visual neuropil. Twenty-nine cell
clusters were identified.194

suprachiasmatic nu-
cleus (SCN)

mouse Fluidigm 352 cells qRT-PCR Five subtypes of mammalian SCNo neurons were distinguished.195

suprachiasmatic nu-
cleus

mouse 10× Chromium
and Drop-Seq

62 083 cells
and
16 004
cells

1 million Based on combinations of markers and their spatial distribution, circadian
rhythmicity and light responsiveness, 5 SCN neuronal subtypes were
identified.196

geniculate ganglion mouse Fluidigm 96 cells 1 million Two main groups of gustatory and somatosensory neurons were detected.
Gustatory neurons included 3 subclasses.197

trigeminal ganglion
neurons

mouse Drop-Seq 6998 cells 13 genetically defined classes of sensory neurons were identified.198

DRG sensory neu-
rons

mouse Fluidigm 334 cells qRT-PCR Six distinct subgroups of DRGp populations were identified.199

spinal cord postnatal mouse 10× Chromium 19 353 nu-
clei

50 000 Unifying the previously published data sets137,145,200−202 into a common
reference framework.203 Validated combinatory marker codes for 84 types
of spinal-cord cells and mapped their spatial distributions.

retina mouse Drop-Seq 44 808 cells >100 000 39 transcriptionally distinct clusters in 6 classes: photoreceptor, bipolar,
horizontal, amacrine, and ganglion cells, and other cell types.33

retina E18 chicken droplet-based
scRNA-Seq
platform160

30 022 cells Five neuronal classes (PRs,q HCs,r BCs,s ACs,t and RGCsu) as well as 2
glial types, Müller glia and oligodendrocytes were identified.204

retina: bipolar cells mouse Drop-Seq 27 499 cells 8200 26 cell classes identified: 14 bipolar, Müller glia, 11 rods and cones, and
amacrine cells. These data were validated by in vivo matching of gene
expression to bipolar cell morphology.136

retina: fovea and pe-
ripheral retina

human 10× Chromium 85 000 cells 4062−550 895 58 cell types were identified in following cell classes: photoreceptor,
horizontal, bipolar, amacrine, retinal ganglion and non-neuronal cells.205

retina: amacrine cells
(ACs)

P19 mouse 10× Chromium 32 000 cells 63 types of ACs were identified in mice retina.206

cerebral organoids vs
fetal neocortex

hiPSC-derived
organoids,
12−13 wpc
human

Fluidigm 333 + 175
cells, 226
cells

2−5 million Similar genetic features responsible for human cortical development
between in vivo fetal brain and in vitro organoid culture were identified.34

cerebral organoids hiPSC lines,
chimpanzee
iPSC lines,
fetal human
cortex

Fluidigm 52 cells,
344 cells,
220 cells

Transcriptomic similarities between human and chimpanzee neuronal stem
and progenitor cells were highlighted.132

brain organoid hiPSC lines,
3−6 month
old organoids

Drop-Seq 82 291 cells Beyond similarities between 3- and 6-month-old organoids, mature
photoreceptors and mature astrocytes only presented in 6-month-old
organoids.168 Despite the differences in the profiling methods used
(Drop-Seq and Fluidigm C1v), preferential correlation between
corresponding cell types for radial glia, interneurons, projection neurons,
and induced pluripotent stem cells were detected.

aMedial ganglionic eminence. bOligodendrocyte precursor cells. cDays postfertilization. dPostnatal day. eSingle-nucleus RNA-Seq approach.
fWeeks post conception. gVentricular zone. hOuter subventricular zone. iLateral ganglionic eminence. jDopamine receptor 1 and 2. kSubstantia
nigra. lThalamic reticular nucleus. mVentral posterior hypothalamus. nEmbryonic day. oSuprachiasmatic nucleus. pDorsal root ganglion.
qPhotoreceptors. rHorizontal cells. sBipolar cells. tAmacrine cells. uRetinal ganglion cells. vC1TM single-cell auto prep integrated fluidic circuit
(IFC).
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regions have been used to generate mouse and human neuronal
cell atlases.53,134−143 Similarly, genome, transcriptome, and
epigenome sequencing assays at consecutive neuronal differ-
entiation time points during embryonic or postnatal develop-
ment have allowed to elucidate with unprecedented resolution
the dynamic molecular changes that neuronal progenitor cells
must undergo to differentiate.52 Together, these data are central
to deciphering the molecular mechanisms underlying neuronal
diversity across species.27,144,145

For single-cell transcriptomic profiling (Figure 3), the first
step is to isolate individual cells in micro- or nanoliter reaction
volumes. The latter is mainly achieved by using FACS, valve- or
droplet-based microfluidic systems, or microfluidic-controlled
high-density microwell plates.146,147While cells are diverted into
a well of a multiwell plate in low-throughput systems like Smart-
Seq2 and CEL-Seq2,148−152 in high-throughput bead-based
systems, cells in suspension are distributed into droplets or
nanowells.153 Smart-Seq can generate full-length reads and
enables individual gene isoforms to be identified.154 However,
the throughput for this system is limited, as it requires depositing
cells in wells.155 Two recently developed sequencing tech-
nologies, i.e., high-throughput high sensitivity Smart-Seq3156

and low-cost portable Seq-Well,157,158 have not yet been used to
sequence neuronal cells.
In general, the major advantage of high-throughput bead-

based systems is that they make it possible to run thousands of
reactions simultaneously while reducing working volumes.146

Common droplet-based microfluidic platforms, including Drop-
Seq,33 indexing droplets (inDrop),159 10× Genomics Chro-
mium,160 Quartz-Seq,147,161 and Quartz-Seq2,162 use oil to
encapsulate cells together with barcoding beads in water
droplets containing a cell lysis buffer (Figure 3). The design of
barcoded beads includes a segment to attach the capturing
oligonucleotide to the bead, a primer segment to amplify the
captured transcript, a cell barcode that is the same for all
oligonucleotides on one bead (to identify all transcripts
originating from one particular cell), unique molecular
identifiers (UMIs) for digitally counting RNA molecules and
correcting amplification artifacts, and a polyd(T) segment to
capture polyadenylated RNA.147 InDrop performs reverse
transcription in droplets, and then cDNA is collected for
amplification, while Drop-Seq releases beads from droplets for
reverse transcription and then cDNA is amplified by PCR.52

Meanwhile, in the 10× Genomics platform, cell lysis, and cDNA
library preparation occurs immediately after cells are encapsu-
lated in gel bead-in-emulsions (GEMs).52 cDNA libraries,163

which are amplified after GEMs are broken, are then used for
sequencing on a next-generation sequencing instrument (e.g.,
Illumina HiSeq).129

Single-cell transcriptomic data from these platforms have
been used to identify the neuronal subtypes forming the CNS of
humans and mice (Table 1). Studies using the Fluidigm C1-
based scRNA-Seq platform have been reviewed by Tasic et al.129

Table 1 summarizes the ways in which different microfluidic-
based platforms have been used for trapping cells and generating
cDNA in scRNA-Seq studies of primary neurons. Results
suggest that the robustness of cell-type identification is higher
when more cells are sequenced at a shallow depth (e.g., in
droplet-based approaches like Drop-Seq) than when few cells
are sequenced at high depth (microwell-based approaches like
the Fluidigm C1 platform).136,164 In addition to classifying in
vivo-derived neurons from healthy or post-mortem adult human
brains128,165 and animals,120 data obtained from developing

human or mouse brains166,167 and from cerebral organo-
ids34,166,168−170 has provided valuable information regarding
the diversity of neuronal progenitor cells and mature neurons at
different developmental stages140,166,169,171 (Table 1). Compar-
ing in vitro brain organoids with the developing fetal brain has
also revealed a high degree of resemblance in transcriptional
profiles, strongly supporting the idea that iPSC-derived
organoids faithfully replicate the genetic features of in vivo
systems.53

Currently, several comprehensive transcriptomic databases
are being constructed from high-throughput scRNA-Seq studies
(Table 1).133,143,172 These atlases are optimal references for
reverse-engineering neuronal cell subtypes and circuits. For
instance, combinations of transcription factors (TFs) that
potentially drive the differentiation of iPSCs into specific
neuronal cell types have been extracted from databases and
subsequently validated.53,124,173,174 Transcriptomic data pro-
cessed by machine learning techniques and computationally
reconstructed differentiation trajectories have also predicted the
path that stem cells take during their in vitro differentiation into
a particular neuronal cell type.27,175 In addition, the resemblance
in transcriptional states between engineered neuronal cells and
their corresponding in vivo counterparts has been ascertained by
comparing scRNA-Seq data sets to reference atlases.34,166,176

Thus, data obtained from in vivo and in vitro scRNA-Seq
experiments serves as a powerful tool to determine the strengths
and limitations of engineered neuronal models like brain
organoids and to define the extent to which they resemble
their in vivo counterparts.34,53

Going further, advanced multimodal microfluidic platforms
are attempting to include an option to assess physiological
heterogeneity in scRNA-Seq experiments: cells could be
mapped based not only on their molecular features but also
on their physiological properties.177 Using a microfluidics-based
platform that first measures changes in intracellular Ca2+ in
response to different agonists and then conducts RNA
sequencing, Mayer et al. showed a cell type-specific Ca2+
response that varied with lineage progression in the developing
human neocortex.177 The latter would enable the possibility to
integrate biophysical and physiological cellular identities with
molecular features and to thereby develop more powerful and
accurate cell classification strategies.
Overall, microfluidics have had a major impact on the

generation of genomic and transcriptomic data from native brain
tissues and organoids (Table 1).52 These data are of great value
not only for classifying neuronal cell subtypes based on their
transcriptomic profile but also for devising strategies to direct
the differentiation of hiPSCs toward specific neuronal cell
fates.53 In this regard, integration of in vivo or in vitro
electrophysiological recordings and morphological evaluations
combined with scRNA-Seq data of the same cells provides
information to precisely map neuronal subtypes and predict
their functional contributions in brain networks.121,207−211

Patch-Seq is an example of a low-throughput method capable
of linking the transcriptomic profile of neuronal cells to their
neurophysiological and morphological phenotypes and can also
be used to investigate the cellular response to diverse chemical
stimuli.212−215 Notably, while high-throughput automated
patch-clamp electrophysiology tools are available since the
1990s and early 2000s, they still need to be integrated with
scRNA-Seq platforms.216 However, major challenges remain:
that dissociated neuronal cells commonly used in scRNA-Seq
experiments are not compatible with patch-clamp recordings
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because they often lose their dendrites and axons in the
dissociation process.217,218 Therefore, a key point that needs to
be considered in designing the next generation of microfluidic
screening platforms is the feasibility of integrating molecular
profiling with functional and morphological phenotyping
approaches to achieve high-throughput multimodal single-cell
profiling platforms. Another challenge lies on the difficulty to
capture the dynamic transcriptional states of neurons as they
differentiate from stem cells with full functional and
morphological features, as current technologies are limited to
capturing snapshots of these characteristics at specific time
points.219,220

4. ENGINEERING CELL NICHES USING
MICROFLUIDICS TO CONTROL STEM CELL
DIFFERENTIATION AND NEURONAL CELL GROWTH

Physical and chemical cues in the developing brain have a deep
modulatory effect on cell behavior, regulating processes such as
proliferation, differentiation, and survival.221,222 Similarly, NSC
differentiation and survival capacities in vitro are highly
dependent on the properties of their microenvironment.61−63

Therefore, fine-tuning the physicochemical conditions of the
culture media, and maintaining precise control over the cellular
microenvironment, are crucial for driving differentiation
processes efficiently and at high yields.36,122,223 Microfluidics
facilitate the design of complex cellular niches in which multiple
parameters can be controlled simultaneously, including fluidic
flows and the delivery of nutrients and biochemical agents.
Moreover, microfluidic systems support diverse strategies for
physical confinement and operate with small quantities of
biological and chemical materials.50,224,225

Another notorious use of microfluidic devices is related to
cellular reprogramming. In conventional cell-culture systems,
somatic cell reprogramming occurs stochastically and with very
low efficiency.226 Reprogramming of human fibroblasts to iPSCs
by ectopic expression of specific TFs, for example, often exhibits
dramatically low yields in terms of iPSC production.36

Reprogramming at the microliter scale in microfluidic chips,
on the other hand, increases cellular autocrine and paracrine
signaling, effectively creating a more suitable environment for
pluripotency acquisition223,227 (Table 2). Controlling the
delivery of TFs in microfluidic devices has been shown to
increase the yield of hiPSCs from human somatic cells up to 50-

fold compared to the results obtained using cell-culture
dishes.36,228

In a different context, the influence of fresh cell-culture media
on the spontaneous differentiation of neuronal stem cells has
been investigated using microfluidic devices with distinct
microchannel dimensions capable of delivering defined volumes
of fresh culture media.229 These studies have revealed that
shrinking the cellular environment by using microchannels with
smaller dimensions increases the differentiation rate of neuronal
stem cells,223,229 suggesting that a continuous supply of fresh
medium is crucial for neuronal stem cell maintenance.
4.1. Engineering Cell Niches to Differentiate and Guide NSC
Fate

Beyond controlled media delivery, microfluidic channels can
also be used to create growth and TF gradients232 (Table 2).
Two different cell types, neurons and Schwann cells, have been
generated from a common population of mESCs in this way.230

Co-differentiation was induced by generating long-term over-
lapping gradients of neurotrophic and Schwann cell-inducing
factors in a microchannel.230 Using one of these gradient-
generator microfluidic platforms, Chung et al. differentiated
human NSCs into astrocytes in a continuous gradient of
epidermal growth factor (EGF), fibroblast growth factor 2
(FGF2), and platelet-derived growth factor (PDGF). In their
study, human NSCs differentiated in a manner proportional to
the gradient of factors sensed by the cells, with the highest
percentage of NSC-derived astrocytes being found within the
region of low growth factor concentration and proliferation
occurring preferentially in the region of high growth factor
concentration.232 Such long-lasting gradients also support the
maturation of long-term neuronal cultures, an essential process
when modeling the chronic features of neurological disorders in
vitro.233 Moreover, the possibility to create chemical gradients in
microchips can also be harnessed in large-scale studies, e.g., for
investigating neural tube development in vitro. During neural
tube development, temporal and spatial changes on the
gradients of extracellular signaling molecules play a critical
role on neuronal cell patterning and neural plate formation and
folding.235,236 To replicate this spatiotemporal distribution, a
microfluidic device with orthogonally opposing chemical
gradients has been devised.237 Further, concentration gradients
in microfluidic devices have also been used to differentiate

Table 2. Microfluidic Platforms for Neuronal Cell Reprogramming and Differentiation

application cell type microfluidic device results

reprogramming human somatic cells to hiPSCs three-layer microfluidic platform:36 (1) cell culture layer, (2)
media distribution layer, (3) pneumatic layer

Fifty-fold increase in reprogramming efficiency.
Direct differentiation into desired cell type.

differentiation immortalized murine neuronal
progenitor cells C17.2

microfluidic platform to deliver controlled amounts of culture
media to cells229

Controlled differentiation to neurons using
controlled delivery of culture media.

differentiation mouse embryonic stem cells (mESCs) gradient-generating microfluidic platform230 Parallel differentiation of neurons and Schwann
cells; axonal myelination.

reprogramming primary mouse embryonic fibroblasts
to induced neuronal (iN) cells

microfluidic platform for 3D hydrogel culture; system based
on decellularized brain extracellular matrix (BECM)231

3D BECM hydrogels replicated in vivo
microenvironments and promoted neuronal
conversion.

differentiation human neuroepithelial stem cells
(hNESCs) to dopaminergic
neurons

phase-guided, 3D microfluidic cell-culture bioreactor with two
perfusion lanes and one culture lane82

Efficient generation of iPSC-derived dopaminergic
neurons.

differentiation human neuronal stem cells (hNSCs)
to astrocytes

gradient-generating microfluidic platform232 Graded differentiation and proliferation of
astrocytes proportional to growth factor
gradients.

differentiation hNSC-derived neuronal progenitor
cells to mature neurons

gradient-generating microfluidic platform233 Long-term neuronal culture from neuronal
progenitor cells.

differentiation fetal brain-derived neuronal stem cells 3D hydrogel234 Improved spontaneous differentiation to neurons
and oligodendrocytes.
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neuronal cells in a specific orientation and to selectively induce
axonal growth in particular directions inside a microchannel.238

Besides soluble chemical cues and gradients, microfluidic
platforms also offer stable patterned cues for guiding or inducing
differentiation. Research by Jin et al., for instance, has shown that
the modification of either a 2D surface or a 3D microfluidic
device with a decellularized brain ECM facilitates the trans-
fection-based conversion of primary mouse embryonic fibro-
blasts into neurons while also promoting neuronal differ-
entiation and maturation.231 Microscale 3D environments in
microfluidic chambers have also been reported to enhance
differentiation of NSCs to neurons and glia.82,234,239 In this
context, Moreno et al. used a phase-guided 3D microfluidic cell-
culture bioreactor system to differentiate hiPSC-derived neuro-
epithelial stem cells (hNESCs) into functional dopaminergic
neurons. In the study, hNESCs were embedded in Matrigel in a
microfluidic channel flanked by one or two channels supplying
cell-culture media.82 Phaseguides, i.e., geometric features that
pattern fluid flow into the microchannel, were then used to
partially separate pairs of 3DMatrigel cultures and to force them
to follow their respective media lanes despite being in close
contact with each other. This concept has been used in the
development of commercially available two- or three-lane

OrganoPlates consisting of 96 or 40 bioreactors, respec-
tively.82,240 Using such phaseguide OrganoPlates, ECM-
embedded 3D cell-culture systems composed of neurons,
microglia, astrocytes, and endothelial cells that mimic a
functional blood−brain barrier (BBB), often known as BBB-
on-a-chip, have been generated.241 Together, these studies show
that the 3D microenvironment can positively affect the
differentiation and survival of hydrogel- or ECM-embedded
neuronal cells in microfluidic chambers. Supporting this idea,
Han et al. found that more neurons and oligodendrocytes are
generated by using 3D ECM hydrogels inside microfluidic
channels than using the same ECM hydrogels on culture
plates.234 Similarly, NSCs have been reported to exhibit
increased self-renewal and differentiation capacities in low
oxygen tension 3D ECM microfluidic culture systems.239

4.2. Engineering Cell Niches to Control Neuronal Cell
Polarity

Asymmetric outgrowth of neurites, axons, and dendrites from
neuronal cell bodies is commonly referred to as neuronal cell
polarization and is a key step for neuronal network formation
and CNS development.242,243 Neuronal cell polarity and axonal
growth direction are tightly connected by intrinsic and extrinsic

Figure 4. Engineering the neuronal cell niche using microfluidic gradient generators. (A) Microfluidic channels and microwells are used to deposit
solid or surface-bound cues. (B,C) Surface-bound binary or gradient patterns have been generated by microchannel devices to probe neuronal cell
polarization and axonal growth in response to attractant or repellent factors (also shown in E).249,250,260,277,278 (D) Similarly, chemical gradients
integrated with topographical gradients or cues have been deployed to guide neurites.28 (E) Schematic axonal growth cone response to attractant
(upper panel) and repellent (lower panel) cue gradients. (F) Two basic diffusive gradient generators are Y-junction and T-junction configurations. (G)
Osmotic pump-derived ultraslow flow rate generates continuous and overlapping chemical gradients to induce a common stem cell population to
differentiate into neurons and Schwann cells.230 The lower panel shows a device with asymmetric peripheral channels whereby gradually changing
gradients of soluble Netrin-1 are created. In such a device, the axon growth response can be subsequently measured.251 (H)Christmas tree microfluidic
channel networks have been used to create 1D or 2D gradients of neuronal growth factors to differentiate NSCs into neurons,232 of Shh andNetrin-1 to
guide axons,257 and of Wnt to model neural tube development.236 (I) 3D gradient of neurotrophic factors and axon guiding factors has also been
generated in scaffold-based neuronal cultures embedded in microfluidic devices.238,279,280
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chemical and mechanical cues.244,245 In the absence of precise
control over cell polarization and neurite growth direction,
neuronal cells form redundant connectivity patterns with
abnormal functionality, as often observed in neurological
disorders.246 Therefore, controlling cellular polarity and axonal
and dendritic growth direction and connectivity patterns is
crucial for the engineering of functional neuronal circuits.
Several microfluidic platforms have been developed to study and
control neuronal polarization and neurite growth (Table 3,
Figure 4). Spatial patterns of chemical cues attracting or
repelling neurites, for example, have been produced in
microfluidic devices with different configurations (Figure 4),
including solid and discontinuous biochemical patterns of
neurite attractant/repellant materials on the surface of a
substrate and continuous soluble gradients in microfluidic
devices247,248 (Table 3, Figure 4).
In a study by Shelly et al., microfluidic-based substrate

patterning for neuronal cell polarization was realized by
generating localized patterns of brain-derived neurotrophic
factor (BDNF) or dibutyryl-cAMP (Figure 4A−C). Such
patterns induced axonal initiation and differentiation through
protein kinase A (PKA)-dependent LKB1 phosphorylation.249

The same authors also showed that patterned strips of
semaphorin 3A (sema3A) in microchannels prompted undiffer-
entiated neurites to become dendrites while also repelling axonal
differentiation and growth.250 Therefore, intervals of axon-
attractant/dendrite-repellent and dendrite-attractant/axon-re-
pellent cues (Figure 4B,C) may be required to effectively
separate axons and dendrites. In this sense, solid and
discontinuous patterns of axon attractant and repellent cues
can be integrated with topological cues to improve axonal
guidance efficiency (Figure 4D,E).28,251,252

Microfluidic gradient generators have been used to test axon
responsiveness to shallow and steep attractant gra-
dients230,257,260 (Figure 4F−H), as well as to generate parallel
gradients of two chemical cues, like Slit1/Netrin-1 or Shh/
Netrin-1, to mimic the overlapping gradients of chemical cues
occurring in vivo.256 Similarly, gradient-generating microfluidic
platforms have been used to establish continuous gradients of
Netrin-1, an axon attractant, to guide axonal cone growth
(Figure 4H,I).238,254

Studies have also shown that combining axon-attracting
chemical cues increases axonal differentiation and controls the
direction of growth.256,257 In contrast, embedding continuous
gradients of axonal attractants in hydrogels before they are
injected into microfluidic chambers allows for the slow and
steady release of materials and thereby establishes a passive
gradient (Figure 4I). Carballo-Molina et al., for instance,
generated steady gradients of an axon-attracting cue, semaphor-
in 3C, by embedding it in a hydrogel. The authors showed that
axonal growth and guidance was enhanced compared to similar
studies using soluble semaphorin 3C.258 Finally, microfluidic
devices can be exploited to simultaneously provide continuous
and discontinuous chemical gradients or to combine them with
physical cues like surface patterns and structures, to provide
more realistic models of the in vivo microenvironment28,251,252

(Table 3).
4.3. Perspectives on Engineering Neuronal Cell Niches

Conventional microfluidic approaches for engineering neuronal
cell niches are based on neurotrophic factors and axonal
attractants and repellents. Microfluidic devices using this
strategy are also compatible, after remodeling and optimization,

with the use of TFs to control neuronal cell fate. Here, the
comprehensive databases created from single-cell molecular
profiling experiments of primary neurons and brain organoids
contain invaluable information on the optimal combination of
TFs to guide stem cells toward specific neuronal subtypes of
interest. Considering the capability of microfluidic devices to
precisely deliver chemical factors and to controllably mix
nanoliter scale solutions, neuronal progenitor cells can be
exposed to diverse combinations and concentrations of factors
to determine the optimal molecular cocktail to dictate any
neuronal fate.63,174,228,261

Besides TFs, small molecules are also able to manipulate cell
fate choices.262−266 Such molecules typically act by modulating
cell signaling cascades, epigenetic mechanisms, and metabolic
pathways.263,264,267 In combination with TFs, certain small
molecules can also improve reprogramming and forward
programming efficiencies.268−271 Overexpression of the Neuro-
genin-2 TF together with small molecules, for instance retinoic
acid, enhances the yield of multiple subtypes of stem cell-derived
motor neurons.272 Additionally, combinations of small mole-
cules can also induce reprogramming independent of TFs and
thereby overcome the clinical and translational concerns
associated with exogenous gene delivery.263,267,273 Moreover,
small molecules can easily cross the cell membrane, are generally
inexpensive to synthetize and preserve, and their dosing can be
tightly controlled in a straightforward manner.263,267,274−276

These properties make small molecules attractive to be used in
patterned and gradient-generating microfluidic platforms. In
general, an optimal multimodal neuronal cell niche engineering
platform should be able to incorporate the use of both TFs and
small molecules for high yield and robust forward programming,
while also supporting the utilization of neurotrophic and axonal
attractant-repellent gradients to control neuronal cell polarity.
Precise engineering of the chemical and physical attributes of the
NSC niche at the nano- and microscales in 2D and 3D in
microfluidic devices is expected to enable more efficient
reprogramming and differentiation processes and to support a
more accurate cell polarity control. Overall, by supporting the
high-throughput generation of diverse neuronal cell types and
the precise control of their connectivity patterns, microfluidic
systems represent a valuable platform for developing a
comprehensive toolbox of building blocks for neuronal circuit
engineering.

5. ENGINEERING NEURONAL CIRCUITS USING
MICROFLUIDICS

In vitro models of 2D and 3D neuronal circuits often aim to
replicate the in vivo features of network formation in the
developing brain.281−283 When this is the aim, the ways and the
extent to which the model recapitulates in vivo brain
morphology, function, and microenvironment should all be
considered prior to designing and assembling the circuits in
vitro.19,283−287 Thus, understanding the molecular and cellular
mechanisms underlying the formation of in vivo brain circuits is
a good starting point when engineering complicated circuits in
vitro using a bottom-up approach,288−291 paying particular
attention to both morphological features and functional
development.13,290−292

Important factors relevant to the establishment of organized
brain networks include neuronal proliferation, migration, and
differentiation rates, as well as the formation and elimination of
functional synapses.293−296 These steps of neuronal network
organization can overlap or progress at a different pace in
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different brain areas and at different developmental
stages.293,294,297 In the human fetus, neuronal circuit formation
starts with the proliferation of neuronal progenitor cells and
radial glial cells, and the generation of immature neurons in the
subgranular and subventicular zones of the dentate gyrus around
gestational week 5.293,298 Next, immature neurons undergo
radial migration along radial glial cells and generate six cortical
layers in an inside-out manner,293,294,297,299 a process beginning
around gestational week 7.294,300,301 The innermost cortical
layer is formed by the earliest-born neurons, while the outermost
layer is formed by the latest born neurons and is completed
around gestational week 18.284,285,293,294,300,302,303 Around
midgestation, neurites start to grow from immature neurons.
This process is then followed by axonal elongation, dendritic
arborization, and finally synaptogenesis. The latter continues to
occur postnatally and all the way into early childhood.294 Radial
glial cells generate astrocytes and oligodendrocyte precursor
cells also around midgestation.304 Oligodendrocyte generation,
migration, and maturation continues for the first two postnatal
years. Axonal myelination by oligodendrocytes, on the other
hand, continues for the first few decades of human life.294,305

Notably, although synapses begin to form between individual
neurons before the 27th week of gestation, most prenatal
synapses are transient.306 Starting from birth, and especially after
the peak of synaptogenesis, a combination of intrinsic and
extrinsic factors modulate the pruning of synaptic connec-
tions.293,294,307,308 The latter means that neurons generally
undergo an overconnectivity phase that is followed by dendrite
pruning and synaptic elimination that then reduces and
stabilizes the level of neuronal connectivity.306,309,310

Functional evaluation of the developing human brain is
limited as methods for measuring electrophysiological activity in

situ are invasive and pose a risk to a developing fetus.311 In the
developing rodent brain, however, studies have shown that
widespread synchronized network activity arises from gluta-
matergic synapses.309,312−316 This synchronized burst activity
can be detected as early as embryonic day 18 and increases in
frequency until birth.309,313 In the human fetus, synchronized
burst activity appears at gestational week 20 and is present until
birth before it progressively disappears.309,317−320 Notably, such
features are recapitulated in hSC-derived in vitro neuronal
networks.31,321−324

Engineering neuronal networks using microfluidic devices is a
bottom-up approach that aims to extrapolate the function of
small-world neuronal circuits to the complex high-level
functions of in vivo neuronal systems. Such neuronal circuits
serve a wide range of applications ranging from basic
neuroscience to translational research, including: the decipher-
ing of information processing in highly controlled and accessible
experimental conditions, the understanding of the functional
role of subcellular compartments like axons, dendrites, and
synapses in processing neuronal signals, learning, and plasticity,
the modeling of neurological diseases, and the undertaking of
pharmacological screenings to identify potential therapeutic
targets.
Different approaches used for engineering neuronal circuits

have been expertly reviewed before.325 Here, we focus on
patterning strategies and microfluidic device configurations. In
general, in vitro patterning of neuronal circuits is mainly
achieved either by physically confining single neurons or neuron
populations or by using neuro-adhesive materials. Both
approaches have been widely tested in combination with
microchannel devices to engineer modest 2D or 3D neuronal
circuits in vitro.326 By using compartmentalized microfluidic

Table 4. Neuronal Cell Types Used for Engineering Neuronal Circuits in Microfluidic Devices

cell type cell source advantages disadvantages

Primary
Neurons335

embryonic or early postnatal brains most closely express themarkers and perform
the functions of their tissue of origin

limited availability

dissection and preparation require
substantial skills

well-established culturing protocols are
available

heterogeneous neuronal cell types

no genetic modifications possible changes in cell types and
numbers over time

Cell Lines336,337 mainly derived from tumors or genetically immortalized
cells (e.g., PC12, NG 108, NIE)

offer an unlimited cell source abnormal genotype of tumor-derived
cells

generate single cell types
might be functionally incomplete or
different from in vivo and primary
neurons

Fetal Neuronal
Stem Cells337

aborted fetus brains no genetic modifications ethical issues associated with abortion
naturally primed for neuronal fate

Adult Neuronal
Stem Cells338

subventricular zone (SVZ) of lateral ventricle and
subgranular zone (SGZ) of hippocampal dentate gyrus

no genetic modifications difficult to obtain

ethical issues are avoided limited source of cells
naturally primed for neuronal fate highly sensitive to chemical and

mechanical manipulations
ESCs337 blastocysts inner cell mass (mainly obtained from

embryos produced for in vitro fertilization)
extensively characterized biological features
and differentiation paradigms

ethical issues due to destruction of
embryos

ESCs in differentiated NSCs may form
teratomas

iPSCs60 reprogrammed adult human or rodent cells (e.g., skin
fibroblasts)42,43

ethical issues are avoided genomic instability may be induced by
reprogramming

can be differentiated to desired neuronal cell
types

might be functionally incomplete or
different from in vivo and primary
neurons

offer unlimited source of cells
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platforms, axons can be separated and guided toward specific
neuronal populations, and synaptic connections can subse-
quently be visualized and manipulated to form either bidirec-
tional or unidirectional connectivity patterns and construct 3D
neuronal circuits with high precision. Feed-forward communi-
cation between two populations of the same or different
neuronal cell types, for instance, has been achieved using two-
compartment microfluidic devices.327 Meanwhile, patterning
neuronal networks in binodal configurations (i.e., grids) has
been used inmany studies to produce highly simplistic models of
brain circuits.
An essential step to confirm that engineered circuits function

as intended, i.e., that connectivity is taking place in the expected
direction, is to capture neuronal activity at the network level for a
prolonged time period. Neuronal network activity is recorded
either optically, i.e., by calcium imaging or with voltage-sensitive
indicators, or electrically using multielectrode arrays
(MEAs).328,329 MEAs offer high temporal resolution and are
compatible with noninvasive long-term (several months)
recordings.31,330 In many cases, microfluidic circuit designs

must be coupled with MEAs to make the functional data from
the engineered circuits accessible. Such coupling enables to
simultaneously record from neurons scattered throughout the
circuit while also improving signal-to-noise ratios. The latter, in
turn, makes it also feasible to record from tiny axonal branches in
microfluidic-MEA sandwich devices.29,30,331,332 Standard MEA
chips fail to provide sufficient spatial resolution to effectively
record from all network modules. To address this limitation,
high-density MEAs based on complementary metal-oxide
semiconductor (CMOS) technology scale down electrode
sizes and the space between electrodes, thereby facilitating
recording from almost all neurons in a circuit.333 Using these
devices, information flow can also be tracked along axons,
making it possible to determine the direction and pattern of
functional connectivity between individual neurons.334 A
summary of coupled microfluidic-MEA platforms designed to
capture the activity of a neuronal network or to record the
biophysical properties of axons as they grow in microtunnels is
found in Tables 5−7.

Figure 5.Main approaches for engineering neuronal circuits inmicrofluidic devices. (A) Two-compartmentmicrofluidic devices can be used for axonal
isolation.351 In such devices, a third compartment is often added to manipulate isolated axonal branches.354,359,399 (B) Seeding neurons in both
compartments of such two-compartment devices allows for the generation of bidirectionally connected networks.106,391,393,395,400,401 (C) Inserting a
third compartment to two-compartment devices close to one neuronal population is a commonly used strategy to study synapses.362,376 (D)
Multicompartment devices connecting different neuronal populations bidirectionally enables the engineering of complex circuits and the testing of
chemical compounds in specific populations.343,394,402,403 (E−H) Unidirectional neuronal circuits are constructed in compartmentalized devices
connected by straight microchannels or by diode-style configurations. In straight microchannels, the probability of axonal growth in one direction is
manipulated by (E) the use of axonal attractant or repellent gradients,255,404 (F) the seeding of different cell densities in the two connected
compartments,405,406 and/or (G) the sequential seeding of cells in each compartment.327,385 (H) The axonal diode configuration of microfluidic
devices is one of the most widely used approaches to direct axonal growth.292,382 Diode structures can be embedded in reservoirs or, alternatively,
entire reservoirs can be designed in a particular shape, e.g., stomach, to facilitate unidirectional axonal growth.40,407 Microchannel diodes can also be
designed by simply narrowing them on one side382,383,404 to create arrow-like structures,353,408 by including barbs that prompt axons to grow in one
direction,409 or by connecting adjacent channels with arches that allow growing axons to turn backward.384 Overall, axonal diode layouts are designed
to increase the probability of axons growing in a particular direction.
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5.1. Cell Types and Sources for Engineering Neuronal
Circuits in Microfluidic Platforms

Neuronal circuits have been engineered using different cell
sources, including primary neurons and stem cell-derived
neurons (Table 4). In the case of primary cells, several
established methods are available for dissociating cortical,
hippocampal, sensory, and motor neurons, as well as astrocytes,
from the neonatal or embryonic rodent brain.335,339 Human
primary neurons are mainly obtained either from post-mortem
adult brains or from fetal tissue biopsies following an autopsy.340

NSCs used in neuronal circuit engineering are either derived
from stem cells or isolated from fetal or adult tissues.16,58,341−344

Each of these cell sources has its own advantages and
disadvantages (summarized in Table 4). NSCs differentiate
into neurons within weeks and have recently been used as a new
source of neuronal cells for circuit engineering.17,343,345 While
most neuronal circuits in microfluidic devices are created using
primary murine neurons, such models possess neither the
regulatory elements nor the cellular and network phenotypes
required for results to be interpreted in terms of healthy and
pathological human brain function.17,346 Adult NSCs are found
in the subventricular zone (SVZ) of the lateral ventricle and in
the subgranular zone (SGZ) of the hippocampal dentate
gyrus,47,344 while ESCs are isolated from the inner cell mass of

blastocysts.347 Human iPSCs are commonly generated by
exogenous expression of the TFs Oct4, Sox2, Klf4, and Myc in
somatic cells.43,344 Once established, human iPSC lines can
differentiate into neurons or glial cells in response to the
exogenous expression of specific genetic factors or in response to
chemical agents in culture.47,344 Circuits engineered with
neurons derived from iPSCs which were produced from patients
suffering specific neurological disorders caused by genomic
abnormalities often replicate in vitro the disease phenotype and
are thereby extremely valuable for drug screening and precision
medicine.348

5.2. Microfluidic Devices for Axonal Guidance

Axonal growth and elongation occur after the establishment of
neuronal polarity. Axonal pathfinding is a complex process in
which a growth cone must elongate between many neuronal and
non-neuronal structures to reach a target region in the brain,
form complex branches, and finally make synaptic contact with
specific neurons in this target region.247 The growth cone is a
motile structure at the tip of axons, which is highly sensitive to
physicochemical cues present in its microenvironment.248

Depending on their type and concentration, chemical cues can
either exert attractant or repellent effects or induce axonal
branching. Considering the numerous long-distance connec-
tions between neurons in the brain circuitry, the precise control

Table 5. Microfluidic Devices for Neurite Separation and Functional Evaluations

subcellular
compartment application cell source microfluidic device functional studies

axon axonal separation351 cortex and hippocampus
E18a rat or E17 mouse

2-compartment device with micro-
channels

axonal biology and injury, axonal myelination

axon axonal electrophysiology in
chip29,353,356,368

cortex E19 rat 2-compartment device combined
with MEAs

action potential propagation velocity

axon axonal electrophysiology in chip331 cortex E18 rat 2-compartment device combined
with MEAs

action potential recording

axon axonal injury and electrophysiology353 cortex and hippocampus
E18 rat

2-compartment device combined
with MEAs

axonal pruning, long-term axonal electrophysiol-
ogy

axon axonal injury and regeneration359 hppocampus E17 rat microchannels with valves microscopy of axonal injury and regeneration
axon long-term axonal electrophysiology30 cortex E18 rat quasi-modular PDMS device com-

bined with MEA
long-term axonal electrophysiology

axon 2-photon axonal stimulation369 hippocampus E18 rat microchannel diodes combined with
MEAs

optical stimulation of neuronal circuits

axon axonal guidance using electrokinetic
forces370

hippocampus E18 rat neurite bridge chip with 4 compart-
ments

neurite growth in collagen scaffolds

axon axonal myelination371 DRGb E13 mice, OPCsc
P1d mouse

2-compartment device with optoge-
netic stimulation

optically evoked axonal myelination by oligo-
dendrocytes

axon separating iPSC-derived neuronal
axons372,373

H9 ESCs or NSCs differ-
entiated into glutamater-
gic neurons

2-compartment device with micro-
channels

induction of presynaptic compartments in axonal
compartment

axon axonal branching374 brain cortex P1−P3 rat bifurcating microchannels branching neurites in bifurcated microchannel
axon axonal transport375 DRG E15−E16 rat 2- and 3-compartment devices retrograde axonal transport of quantum dots
axon−syn-
apse

studying axonal transport and neuro-
transmitter release354

cortex and striatum E17.5
rat

3-compartment devices with a syn-
aptic module

changes in axonal transport during maturation

synapse visualization and manipulation of
synapses362

hippocampus P0−P2 rat 3-compartment devices with a syn-
aptic module

calcium imaging for studying synaptic trans-
mission between two layers

synapse recording from pre- and postsynaptic
modules (UF-MEA chip)365

cortex E17.5 rat 3-compartment devices with synaptic
module coupled with MEA elec-
trophysiology

associating postsynaptic calcium oscillations with
presynaptic axonal activity

synapse modeling synaptic competition-on-a-
chip (two-input pathway competi-
tion model)376

cortex E18-E19 rat 2-compartments on the sides con-
nected to a target compartment in
the middle

effect of inhibition of neuronal activity on synapse
formation and axonal growth in the competing
population

synapse modeling peripheral pain synapse and
signaling367

DRG neurons and DHe

neurons from spinal
cords E16 rat

3-compartment device effect of distal axotomy on DRG-DH synaptic
transmission

synapse synaptogenesis assays377 hippocampus E18 rat synapse microarray device with mul-
tiple wells

increased sensitivity and decreased duration for
synaptogenesis assays

dendrite studying dendrite-to-nucleus
signaling378

cortex and hippocampus
E18 rat

2-compartment device probing molecular signals from the dendrite to
the nucleus

aEmbryonic day. bDorsal root ganglion. cOligodendrocyte progenitor cell. dPostnatal day. eDorsal horn neurons.
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of axon guidance processes is likely critical for the establishment
of the complex in vivo neuronal network topology.349,350 Axonal
guidance in vitro is studied based on patterns and gradients of
different attractant or repellent cues like laminin, neurotrophins,
netrins, slits, semaphorins, and ephrins.248 These patterns and
gradients are generated bymicrotechnological methods like strip
assays, microcontact printing (μCP), laser-assisted patterning,
3D-hydrogel patterning, and microfluidic platforms.248

Microfluidic devices with defined channel dimensions and
configurations can physically prevent neuronal cell bodies from
entering them while allowing axons to do so (Figure 5A,B).351

Thus, such devices make it possible to study axonal biology in
isolation within a chemically and physically controlled micro-
environment.26 Additionally, they can be used to study the
axonal response to chemical cues or to guide them toward a
particular population of neurons (Table 5, Figure 5). The latter
can be exploited for manipulating connectivity orientation in
neuronal circuits.352 Furthermore, as microfluidic devices are
primarily fabricated from transparent polymers, i.e., polydime-
thylsiloxane (PDMS), they constitute an optimal platform for
monitoring the axonal growth process.58,353 Thereby, axonal
behavior as well as molecular and organelle transport along
axons can be investigated simultaneously.354,355 Additionally,
these devices have been coupled with electrophysiology
platforms like transparent MEA chips29,30,356 to study the
long-term function and biophysical properties of axons, with
special interest in changes of the latter during elongation30 and
regeneration.353,357−359

5.3. Microfluidic Devices for Isolating Dendrites and
Synapses

The establishment of synaptic connectivity between dendrites
and axons and its modification or elimination lies at the center of
neuronal network development in vivo.360,361 Therefore, an
optimal platform for neuronal circuit engineering should offer
adequate control over synapse formation between axons of
presynaptic neurons and dendrites or the cell body of
postsynaptic neurons.360 Indeed, microfluidic devices with
interconnected compartments are used to control with high
precision synapse formation between pairs of neurons or
between neuronal populations and to manipulate the activity
of such synapses using specific agonists and antagonists26,362

(Figure 5, Table 5).
A typical microfluidic device for synapse formation between

two neuronal populations includes three compartments, or
reservoirs, connected through axon- and dendrite-guiding
microchannels363 (Figure 5C). As dendrites do not normally
extend more than 400 μm, axons and dendrites can be kept
separated by fine-tuning channel lengths.15,351,362 In this case,
pre- and postsynaptic cells are each seeded in one of two outer
reservoirs so that axons from presynaptic neurons meet the
dendrites of postsynaptic neurons in the middle compart-
ment.362 This so-called synaptic compartment has its own inlets
and outlets to control the chemical environment of the synapses
and to stimulate or inhibit synaptic communication.362,364,365

Such devices have been used to model neurological diseases that
affect synapses or that are related to their pathology.366,367 For
instance, Virlogeux et al. developed a Huntington’s disease
model in a three-compartment device incorporating presynaptic
cortical neurons and postsynaptic striatal ones.366 This unidirec-
tional corticostriatal network-on-a-chip enabled the authors to
investigate and precisely manipulate corticostriatal synaptic
transmission. A similar three-compartment microfluidic device

using spinal cord dorsal root ganglia (DRG) neurons and dorsal
horn neurons has also been used for modeling the circuit
involved in peripheral pain.367 In this device, bipolar axons from
DRG neurons in the middle compartment branched into side
compartments and made synapses with dorsal horn neurons,
with ablation of the DRG axonal branches inducing pain
signaling.367

In certain microfluidic devices, synapse formation itself can
also be experimentally controlled. A device incorporating
synergistic gradients of nerve growth factor (NGF) and B27
supplement, for instance, exhibited enhanced synapse formation
with increased concentration of such chemical agents in 3D
hydrogel neuronal cultures.279 This observation prompted the
development of devices embedding neuronal cell layers in 3D
hydrogels to achieve a heterogeneous spatial distribution of
synapses. Remarkably, such systems closely resemble the
heterogeneously distributed synapses found across the six layers
of the cortex.39,279 Three-compartment microfluidic devices
with interconnected microchannels are also optimal for
generating and modeling synaptic competition, a process in
which the presence and activity of one synapse affects the
formation, stabilization, or elimination of other synapses on the
same postsynaptic neuron.376,379 In synaptic competition, which
occurs naturally, neuronal activity and sensory inputs play a
major role in shaping neuronal connectivity patterns during
development.379 To model synaptic competition in vitro,
Coquinco et al. utilized two populations of neurons seeded in
the side compartments of a microfluidic device which then
innervated each other in the central compartment. This model
revealed that chemical blockade of neuronal activity in one
compartment could promote the elongation of axons with
capacity for synapse formation from neurons in the opposing
compartment.376

5.4. Engineering 2D Neuronal Circuits with Controlled
Connectivity Patterns

Two-layer neuronal circuits have their origin in the two-
compartment microfluidic device designed for axonal separa-
tion26,351,352 (Figure 5). A simple two-layer neuronal circuit
inside a microfluidic device can be made by seeding neurons in
two opposing reservoirs and letting axons grow from both
neuronal populations toward the opposite compartment, which
produces bidirectional connectivity380,381 (Figure 5B). How-
ever, engineering layered neuronal networks with unidirectional
connectivity is an essential step in modeling in vivo neuronal
structures.382−385 Microfluidic-engineered unidirectional and
bidirectional neuronal circuit models are summarized in the
following sections and in Tables 6 and 7.
Different strategies are available for seeding neuronal

populations at specific locations in the microfluidic chambers.
The NeuroArray device, for instance, uses a PDMS stencil with
20 μm pores to position populations of Purkinje neurons and
NSCs at particular locations.386 By decreasing pore diameters
below 3 μm and using a sacrificial layer-protected PDMS
molding method, Li et al. created a “cell sieve” to seed at single-
cell resolution; functional connectivity was subsequently tracked
by calcium imaging.387 An alternative high-throughput method
to seed neurons at single-cell resolution is block-cell printing. In
this method, tiny protrusions on microchannel walls trap and
restrain individual neuronal cells.388

5.4.1. Engineering 2D Neuronal Networks with
Bidirectional Connectivity. Bidirectional connectivity be-
tween subpopulations of neurons was first achieved in
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microfluidic devices either by the use of microchannels or by
printing lines of adhesion molecules using microchannel
stamping.373,381,389 Two-compartment microfluidic devices
with straight microchannels connecting to each other,351

however, offer no control over axonal growth direction (Figure
5B, Table 6): axons can grow in any direction and connect with
any neuron. This leads to the formation of two-layer neuronal
circuits with bidirectional connectivity.390 Loading this kind of
device with primary cortical neurons in one compartment and
primary thalamic neurons in the other, for example, resulted in
two neuronal populations connecting with each other through
shallowmicrochannels (less than 3 μm in height); the reciprocal
effects of the cortical and thalamic network activities were then
investigated based on MEA recordings.390,391

A similar approach using microfluidic devices on MEA chips
was used to engineer hippocampal circuits using cells extracted
from the entorhinal cortex (EC), the dentate gyrus, and the CA1
and CA3 subfields.392 Electrophysiology data recorded from
axons of the presynaptic neurons and somata of the postsynaptic
module confirmed connectivity between hippocampal re-
gions.393 Such connectivity was achieved by shrinking the
width of the connecting microchannels to 2.5 μm, thereby
effectively allowing only a few axonal branches into each of them.
With this strategy, it was possible to record individual action
potentials from specific axons, as well as the direction and
kinetics of their propagation.389

Given that microfluidic device design is highly versatile, it is
possible to adjust the number and type of communicating
neuronal populations in circuits forming within them (Figure
5D) so as to mimic the structure of complex brain nuclei.394

Fantuzzo et al., for instance, generated dopaminergic,
glutamatergic, and GABAergic neuronal populations and loaded
each of them into a separate compartment of a microfluidic
device allowing for connections to be formed between
populations through microchannels.17,343 This kind of layout,
in which each neuronal population receives inputs from the rest,
is considered to mimic the in vivo circuitry of a single brain
nucleus.343 A similar approach was used by Sarkar et al. to
examine the activity patterns of circuits formed by iPSC-derived
neurons from healthy subjects or from individuals affected by
schizophrenia, with particular focus on the hippocampal circuits
formed by postsynaptic CA3 pyramidal neurons and presynaptic
DG neurons.395 Notably, bidirectional neuronal networks
engineered in compartmentalized microfluidic devices have
been adapted to a 96-well plate-based format and thereby
constitute valuable resources for disease modeling and drug
screening.396

5.4.2. Engineering 2D Neuronal Networks with
Unidirectional Connectivity. While bidirectionally con-
nected neuronal circuits in vitro have been developed to
model mutually connected networks in the central nervous
system (Table 6), many brain regions exhibit unidirectional
connectivity patterns. In such regions, neurons receiving inputs
from other parts of the brain do not communicate back to the
neurons sending the signal. Unidirectional connections are
common in most regions of the CNS and are the basic modules
of complex hierarchically connected or layered networks.6

Unidirectionally connected neuronal circuits decrease the
complexity of the functional data within such systems, which
in turn makes them easier to interpret.397,398 Constructing
oriented connectivity between neuronal populations can be
achieved either by modifying culturing protocols or by altering

the design of the microfluidic device being used (Table 7, Figure
5E−H).
5.4.2.1. Engineering Unidirectional Networks Based on

Cell-Seeding Protocols. The capacity of two-compartment
devices to intrinsically form feed-forward connections from
hippocampal DG to CA3 populations has already been
demonstrated.405 By conducting MEA recordings on similar
neuronal circuits, it has been shown that communication
between DG−CA3 neurons is preferentially unidirectional
(62%), while no directionality is observed in DG−DG and
CA3−CA3 networks.406 Whether polarized connections
between DG−CA3 networks arise naturally or are caused by
the DG:CA3 3:1 ratio used in these studies is not clear. In fact,
seeding neuronal cells at different densities in two compart-
ments constitutes in itself a strategy to produce directional
connectivity between two modules: denser populations tend to
occupy microchannels more promptly and with more axonal
branches than low density ones (Figure 5F), thereby hindering
the innervation of those channels by the low density
population.363

Early in vitro models of layered neuronal networks were
engineered by sequential seeding of neurons in two compart-
ment devices356,385 (Figure 5G). In a two-compartment
microfluidic device, Pan et al. seeded rat cortical neurons in
one compartment and allowed axons to reach the second
compartment through connecting microtunnels. After 7−10
days, a new set of cortical neurons was added to the second
compartment. This gave rise to a layered neuronal structure with
pre- and postsynaptic modules.356 Parallel electrophysiological
recordings from each compartment proved unidirectional
communication between the two modules.385 Additionally, by
increasing the number of connecting microtunnels, the authors
showed that connectivity strength can also be manipu-
lated.327,385

5.4.2.2. Engineering Unidirectional Networks Based on
Microfluidic Device Design. The implementation of specific
designs in microfluidic devices represents another commonly
used approach to construct layered neuronal networks with
directional connectivity (Figure 5H, Table 7). Asymmetric
geometries have been proposed for this purpose by Feinerman et
al., for example, who guided axonal branches of hippocampal
neurons through triangular cell-adhesive patterns on a glass
substrate.412 Neuronal activity in such a device was measured
using a calcium-sensitive fluorescent dye, which revealed signal
propagation among all engineered modules.412−414

On this basis, Peyrin et al. designed diode microchannels
which were wide at one end and very narrow at the other end382

(Table 7) to guide axons from one compartment toward
another. In this device, axonal growth occurred primarily in one
direction (97% vs 3%). Additionally, the authors constructed an
oriented corticostriatal circuit which triggered presynaptic
clustering along striatal dendrites and increased striatal neuron
maturation. Calcium imaging revealed that slow calcium
oscillations in the cortical population were transferred to the
striatal population, an effect not occurring in nonconnected
striatal networks.382 In a comparable device with an additional
compartment to deliver chemical agents, Lassus et al.
constructed corticostriatal networks with the same activity as
that observed in corticostriatal circuits in situ.404

The axon-diode concept has been widely tested and
optimized40,383,384,408,409 (Table 7). Le Feber et al., for instance,
inserted microchannels with barbs in all interconnecting
channels (Figure 5H) to prevent axon growth in the unwanted
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direction.409 By using MEA electrophysiology on this device, it
was possible to confirm the unidirectional propagation of
spontaneous or evoked signals along axons and between the two
compartments.409Meanwhile, in an axonal edge guidance device
(Figure 5H), axons were hindered from growing in one of the
directions and instead guided to the source reservoir by the use

of curved or arched microchannels connecting back to the main
microchannels.384

The use of multiple sequential axon-diode modules along
microchannels increases the likelihood of achieving unidirec-
tional axonal growth.40,383,408 In a recent study, Gladkov et al.
designed miniaturized diodes in “spine”, “triangular”, and “zig-
zag” configurations and incorporated them over the length of

Table 8. Microfluidic Concepts for Engineering Neuronal Circuits or Neural Tissues

3D model cell source
scaffold
material microfluidic device functional study key findings

layered cortical circuits39 cortex E19a rat agarose−algi-
nate

device with four inlets con-
verging on a single channel

microscopic imaging 3D multilayered cortical networks were formed
in two cell-hydrogel layers separated by cell-
free hydrogel layers in a single channel.

neuronal cell blocks424 hippocampus E18
rat hiPSC-de-
rived neurons

collagen multiple microwells for loading
cell-matrix mixtures; gelling
to form cell blocks

MEA electrophysiol-
ogy, calcium imag-
ing

Aligned collagen fibers guided axons between
3D neuronal cell blocks. Bidirectional func-
tional connectivity was confirmed by MEA
electrophysiology.

aligned cortical circuits425 cortex E17 rat Matrigel device with pre- and postsy-
naptic compartments, and a
gel-alignment compartment

calcium imaging Matrigel aligned by applying hydrostatic
pressure from presynaptic side. 3D cortical
circuits with functional connectivity between
pre- and postsynaptic modules.

anisotropically organized hip-
pocampal circuits426

hippocampus CA3
and CA1b neu-
rons E18.5
mouse

collagen device with 3 inlets merging on
a single channel

patch-clamp electro-
physiology, calci-
um imaging

Collagen was aligned by stretch and release to
guide axons between CA3 and CA1 pop-
ulations. Synaptic contact between CA3 and
CA1 neurons confirmed by microscopy and
patch clamp.

neurospheroid blocks, corti-
cal−hippocampal circuit423

cortex and hippo-
campus E17−
E18 rat

scaffold-free PDMS-based neuronal blocks
used to mold neuronal sphe-
roids

calcium imaging, mi-
croscopy

Synaptic contact between cortical and hippo-
campal spheroid networks confirmed by
oscillations in calcium signals detected by
microscopy.

neurospheroid-on-a-chip449 cortex E16 rat scaffold-free
self-assem-
bly

multiple microwells and low
interstitial level fluidic flow

High-throughput spheroid platform for model-
ing β-amyloid-induced Alzheimer’s disease.

brain organoid-on-a-chip450 hiPSCs Matrigel parallel organoid chambers and
media perfusion channels

microscopy of orga-
noid growth on
chip

Perfusion of brain organoids improved cortical
development compared to static organoid
cultures.

motor unit-on-a-chip452 myoblast and
mESCc-derived
motor neurons
(MNs)

collagen−
Matrigel
hydrogel

parallel gel channels flanked by
medium channels assembled
on top of a PDMSmembrane
with two sets of capped
pillars

patch clamp, optoge-
netic stimulation of
MNsd, measure-
ment of contrac-
tion forces

Functional 3D neuromuscular junction. Capped
pillars in myoblast compartment measured
their contraction force. Optical stimulation of
MNs induced myoblast contraction.

ALSe motor unit-on-a-chip453 MNs from ALS
patient iPSC-de-
rived skeletal
muscle cells

collagen−
Matrigel
hydrogel

device with multiple compart-
ments for MN, muscle cells,
and neurite elongation; pil-
lars on muscle cell compart-
ment

electrical and optical
stimulation of
MNs, measure-
ment of contrac-
tion forces in the
muscle cells

Functional 3D motor unit derived from ALS
patient compared with a motor unit from a
healthy subject. Optically or electrically
induced contraction forces were measured.

neurovascular unit458 cortex E18 rat as-
trocytes P0−P2f

rat HUVECsg

collagen
type I

parallel compartments for me-
dium, neuron-hydrogel, as-
trocyte-hydrogel, and an en-
dothelial cell monolayer sep-
arated by trapezoidal
structures

calcium imaging,
permeability assay

Functional 3D-engineered neuronal network
with vascular unit. Compound selectivity of
the endothelial monolayer was used to analyze
the effect of different compounds and factors
on neuronal growth and maturation.

BBB-on-a-chip459 cortex E17−E18
rat motor neu-
rons, E12 mouse
Schwann cells
P4, mouse
HBMECsh

collagen
type I

A 96-well plate-format device
with hydrogel injection ports,
media reservoirs, hydrogel
channels, and micropost ar-
rays.

calcium imaging,
permeability test-
ing, quantification
of protein expres-
sion levels

High-throughput 3D-engineered cortical cir-
cuits, BBBi and myelinated MNs.

brain organoid-on-a-chip450 hiPSCs Matrigel parallel organoid chambers and
supporting media channels
with interconnecting aper-
tures

immunolabeling of
cortical markers

Brain organoids benefited from an improved
nutrient exchange. Enhanced expression of
cortical markers compared to static cultures.

brain organoid-on-a-chip451 hiPSCs brain ECMj

mixed with
Matrigel

multicompartment device with
3D assembled microchannels
and rocker-system driven
flow

immunostaining, cal-
cium imaging,
patch-clamp elec-
trophysiology

Improved and reproducible corticogenesis,
complex structural organization, diverse and
mature neuronal identities, and enhanced
electrophysiological properties.

retinal organoid-on-a-chip463 hiPSCs HyStem-Ck 2-layer structure: top layer
(organoids) and lower layer
(vasculature system) with a
porous membrane in be-
tween

immunostaining,
drug testing, calci-
um imaging

Replicated the interaction of mature photo-
receptors and RPEl. Enhanced retinal outer
segment formation. Modeling key processes
of the visual cycle.

aEmbryonic day. bCA1 and CA3 subregions of hippocampus. cMouse embryonic stem cell. dMotor neurons. eAmyotrophic lateral sclerosis.
fPostnatal day. gHuman umbilical vein endothelial cells. hHuman brain microvascular endothelial cells. iBlood−brain barrier. jExtracellular matrix.
kA hyaluronic acid-based hydrogel. lRetinal pigment epithelium.
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entire microchannels. MEA recordings showed that sponta-
neous burst activity in the source compartment propagated
directionally through the microchannels, triggering activity in
the target compartment.383 In a different study, axonal
pathfinding in microchannels with several types of diode motifs,
such as arch, pretzel, heart, and arrowhead, was investigated
(Figure 5H).408 The authors reported that axon-diodes with
acute corners (e.g., arrowhead) or complex paths (e.g., pretzel)
were more effective in forcing axons to grow toward a target
reservoir and could be applied to more effectively achieve
unidirectional connectivity between compartments.408

Asymmetric microchannel designs have been extensively used
to engineer complex brain circuits with particular connectivity
patterns. Kamudzandu et al., for instance, seeded five cell types
extracted from rat basal ganglia (BG) into an interconnected
five-compartment microfluidic device in an attempt to
reconstruct the BG neuronal circuitry.292 Directional con-
nectivity between glutamatergic cortical neurons, GABAergic
and dopaminergic neurons of the substantia nigra, and
GABAergic neurons of the globus pallidus and striatum was
established using tapered microchannels and functionally
confirmed by calcium imaging and patch-clamp electro-

Figure 6. Construction of 3D neuronal circuits in microfluidic devices. (A) Layered neuronal circuits: Different neuronal types are embedded in
hydrogel and pushed through microchannels in microfluidic devices to engineer 3D layers. Hydrogel-embedded neuronal cell blocks can be generated
using PDMS devices and placed next to each other afterward. (B) Oriented and aligned networks: 3D hydrogel scaffolds supporting neuronal cells are
aligned either by stretching the microfluidic device during the polymerization process or by applying hydrostatic pressure. Aligning collagen or
Matrigel fibers enables the axons to be better guided from presynaptic to postsynaptic compartments and to thereby form unidirectional networks. (C)
Spheroid-on-a-chip: High-throughput scaffold-free neurospheroid cultures are generated in perfused microwell microfluidic systems. Spheroid blocks
from different neuronal cell types can be engineered and subsequently placed next to each other. (D) Organoid-on-a-chip: Growing brain and retinal
organoids in microfluidic devices with improved diffusion extends their lifespan. (E) Organ-on-a-chip: By integrating additional cell types such as
myocytes or endothelial cells, functional units like the motor unit or the blood−brain barrier (BBB) can be replicated in microfluidic platforms.
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physiology.292 Such complex models that replicate circuits
within specific brain nuclei can be exploited for modeling
neurological disorders like Huntington’s and Parkinson’s
disease.
To guide axonal branches in predefined directions, reservoirs

instead of microchannels can also be designed with a diode
configuration (Figure 5H). In a device developed by Isomura et
al., unidirectional bias was achieved by designing compartments
with arrow-shaped structures that forced axons to grow
preferentially toward the peak of the arrow.407 Probing the
activity propagation between networks in such a device using
electrodes embedded in the substrate confirmed 75% unidir-
ectionality.407 Similarly, Forro ́ et al. constructed asymmetric
reservoir modules with several geometries.40 Among the
different configurations, the authors showed that a stomach-
shaped reservoir with one sharp and one round side can guide
axons in the desired direction with 92% fidelity. Long-term
evaluation of the spontaneous and evoked activities demon-
stratedmore information flow between layers than in a randomly
connected network.40

Although there is a strong trend toward the 3D engineering of
neuronal tissues in vitro, simplistic models of 2D-engineered
neuronal circuits are better suited for their use with conventional
functional recording technologies such as MEA electrophysiol-
ogy. Likewise, there are well-established methods for imaging
the development and formation of 2D-engineered neuronal
circuits in microfluidic platforms. Furthermore, the activity of
2D-engineered neuronal circuits can be controlled using
chemical factors or optical and electrical tools without the
need for extremely sophisticated instruments.
5.5. Engineering 3D Neuronal Networks in Microfluidic
Devices

Neuronal circuits in microfluidic platforms have so far been
constructed primarily in two dimensions. However, 2D neuronal
circuits fail to fully replicate the in vivo neuronal architecture.
Therefore, despite the difficulties engineering and experiment-
ing with them, there is widespread interest in the development of
3D neuronal tissue models for basic research and disease
modeling.416,417 Several methods have been developed to
fabricate 3D scaffolds for neuronal tissue engineering. Here we
focus solely on microfluidic-based 3D neuronal tissue engineer-
ing to model brain circuits (Table 8).
One of the first steps in designing neuronal tissues in 3D is

finding an optimal biomaterial to support the neuronal structure
in three dimensions.418 Therefore, the 3D engineering of
neuronal circuits in microfluidic platforms relies heavily on
biomaterial research.419 Themajor categories of biomaterials for
the construction of 3D neuronal tissue include natural polymers,
synthetic polymers, composite polymers, and decellularized
ECM; the use and properties of these materials have been
previously reviewed by others.417,420,421 As in 2D microfluidic
devices, compartments and microchannels are used in
biocompatible 3D scaffolds to position and connect neurons.422

An early 3D neuronal circuit was engineered in a microfluidic
device39 by embedding primary cortical neurons in an agarose-
alginate-basedmixture which was subsequently injected through
two inlets (Figure 6A). Simultaneous injection of a cell-free
alginate−agarose mixture through an additional pair of inlets
produced four laminar opposing flows of cell-containing and
cell-free mixtures through four separate lines which, as the
temperature dropped, solidified to form two layers of 3D cortical
circuits inside a single microfluidic channel (Figure 6A). After a

few weeks, neurites from each layer elongated and crossed the
cell-free layer to connect with cells in the other layer.39

Alternatively, such circuits can also be created by first molding
an individual 3D neuronal network in a PDMS-based template
and then assembling these “neuronal blocks” (Figure 6A) to
produce layered neuronal networks (e.g., cortical and hippo-
campal).423 Using this method, parallel layers of different
neuronal populations that remain in close contact with each
other can be fabricated with no mechanical barrier between
them (Figure 6A).
Layered 3D neuronal circuits have also been constructed by

loading a cell−collagen mixture into parallelly aligned open
compartments in a microfluidic device. After gel formation,
PDMS was removed, and the space between layers was filled
with a mixture of collagen fibers which solidified after incubating
the device at 37 °C. Using this method, three-layer networks
containing hippocampal- and hiPSC-derived neurons were
assembled. MEA recordings of these devices confirmed
bidirectional communication between the distinct layers.424

Bang et al. applied a microfluidic device with diode-shaped
pillars to separate pre- and postsynaptic compartments.425 They
aligned Matrigel between the two compartments by applying
hydrostatic pressure through the first (presynaptic) compart-
ment (Figure 6B). Synaptic communication between the two
populations of 3D neuronal layers was confirmed by calcium
imaging.425 Further, Kim et al. exploited the elastic properties of
PDMS and the fibrillogenesis kinetics of collagen to form
aligned fibrous structures between populations of CA3 and CA1
hippocampal networks.426 The 3D collagen fibrous structures
were aligned by stretching or compressing the microfluidic
devices during the gelation process (Figure 6B). Collagen
fibrous structures guided the axons of the CA3 population
toward CA1 neurons, effectively recreating an oriented 3D
CA3−CA1 circuit.
Other common approaches for 3D neuronal tissue engineer-

ing like neuronal spheroids and organoids can also be adapted to
microfluidic platforms for microenvironment control, diffusion
improvement, or disease modeling and drug screening427 (Table
8). Spheroids and organoids are 3D structures grown from stem
cells, either embryonic, adult, or induced pluripotent, that
exhibit organ-specific cell types and that self-organize through
spatially restricted lineage commitment.12,428,429 Brain and
cortical organoids are normally formed by diverse cell types,
including neuronal and glial progenitor cells.430−432 Different to
other 3D models, brain organoids exhibit structures character-
istic of the developing brain34,131,133,169,171,428,433 as they are
created largely based on intrinsic hiPSC differentiation
mechanisms.12,34,168,434,435 Notably, brain region-specific orga-
noids can also be created but require the use of extrinsic
modulatory factors like small molecules or growth fac-
tors.432,436,437 Indeed, some research groups have tried to fuse
brain region-specific organoids together into what are now
known as assembloids to control inter-regional interac-
tions.438−443 In a cortical−thalamic assembloid, Xiang et al.
showed that axons of neurons from the thalamic organoid
extended and innervated the superficial layers of the cortical
organoid.283,443 Such directionality in connection patterns
between the two organoids recapitulated the process of neuronal
circuit assembly occurring during human brain development.
Thus, brain organoids and assembloids can be exploited for
studying a variety of developmental features like neuronal
migration, axonal elongation, synaptogenesis, and synapse
pruning in vitro.283
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Although the organoid field has grown exponentially in recent
years, brain organoid technology is still in its infancy and
multiple challenges remain to be overcome. For instance,
different types of cells may need months to develop within a
brain organoid. Moreover, the molecular gradients governing
cell organization and axonal guidance are absent. Importantly,
large organoids tend to develop a necrotic core due to the lack of
vasculature within them, and the occurrence of randomly
positioned neural tubes in brain organoids interferes with their
proper organization.283,429,444,445 Luckily, microfluidic concepts
to improve perfusion, control and establish molecular gradients,
and provide geometric constraints, have all already been
implemented to different extents to simplify and optimize
organoid generation procedures.445−448 Park et al., for example,
developed a microfluidic-based 3D system in which neuronal
spheroids are trapped inmicrowells with continuous exposure to
slow interstitial fluid flows (Figure 6C) to simulate the brain
microenvironment.449 Wang et al. embedded hiPSC-derived
embryoid bodies in Matrigel and injected them into parallel
microfluidic channels (Figure 6D) connected through diagonal
microchannels.450 Remarkably, the brain organoids produced by
the authors under perfused culture conditions showed region-
alization and cortical organization.450 In a different study, Cho et
al. embedded brain organoids into brain extracellular matrix in a
pump-free microfluidic device that used a rocker system to flow
media through the ECM to show that periodic flow of media and
3D ECM matrix improves organoid survival and reproducibly
enhances the formation of a cortical layer and its electro-
physiological function.451 Recently developed intelligent micro-
fluidic minibioreactors continuously modulate the media flow to
brain organoids and use a reinforcement learning-based
controller to regulate mode, direction, and speed of rotation in
organoid microwells.445

3D neuronal circuits engineered in microfluidic devices have
also been coupled with cells of a target tissue (e.g., muscle cells;
Figure 6E) to provide a model of an organ, often referred as
organ-on-a-chip platforms.452 Uzel and colleagues, for example,
embedded either myoblasts or Channelrhodopsin-2-expressing
motor neurons into collagen-Matrigel matrices and loaded them
into two separate compartments of a microfluidic device
connected through microchannels (Figure 6E). While Chan-
nelrhodopsin-2 allowed for the motor neurons to be optically
stimulated to fire action potentials, the compartment onto which
myoblasts were loaded contained PDMS pillars whose tilting
could be used as a measure of muscle contraction. With this
system in place, the authors could confirm that optical
stimulation of motor neurons could effectively induce the
contraction of innervated muscle cells.452 Such a system is an
elegant example of 3D neuromuscular junction (NMJ) models,
which have been also used to study amyotrophic lateral sclerosis
(ALS) by incorporating hiPSC-derived motor neurons of
individuals affected by the disease.453,454

The neurovascular unit can also be formed in microfluidic
devices by seeding neuronal spheroids and endothelial cells
embedded in hydrogel into a single channel supported by
adjacent media delivery channels.455 Meanwhile, multilayer
assembly is also useful to mimic the neurovascular unit and the
BBB in other organ-in-a-chip platforms (Figure 6E). Although in
most instances these devices do not offer control over neuronal
polarity or network organization, they offer great potential for
drug screening and disease modeling applications.49,456 For the
neurovascular unit, neurons and endothelial cells are commonly
cultured in 2D but separated by a thin porous membrane, which

makes it possible to control the media in the neuronal and
endothelial chambers separately,456,457 while for the BBB, four-
compartment devices with parallel microchannel structures are
used to culture hydrogel-embedded astrocytes and neurons.
Such microchannels are then put in contact with an endothelial
cell monolayer in the outer compartment that mimics the BBB
and enables to investigate size-selective permeability.458,459

In conclusion, microfluidics-based 3D neuronal circuit
engineering techniques are flexible and support the culture of
brain organoids and the development of brain-on-a-chip
models.447,460,461 Unlike brain-on-a-chip models, brain organo-
ids faithfully replicate fetal neocortex development while also
exhibiting segregated brain regions, cell type heterogeneity, and
brain-endogenous gene expression programs.34,131 On the other
hand, while brain organoid platforms often fail to provide tools
for controlling the cellular microenvironment, brain-on-a-chip
models are compatible with microenvironmental control as they
incorporate diverse microfluidic concepts.462,463 Low through-
put and lack of reproducibility, however, remain as major
challenges in the organoid field.464 Initial attempts at adapting
droplet-based microfluidic concepts, which have been exploited
extensively for single-cell sorting and sequencing, are being
undertaken as to generate uniform organoids at scale.447 Such a
robust platform could enhance the translational capacity of
human-derived brain organoids and upgrade their physiological
relevance.460,461 In turn, brain region-specific organoids465−467

can also be adapted to multicompartment microfluidic devices
to engineer on-chip assembloids. Similar to two-layered 2D and
3D network structures in compartmentalized microfluidic
devices, 3D brain region-specific organoids could also be
studied in physically and chemically isolated environments
while synaptically interacting with each other. Thus, combining
these two technologies, brain-on-a-chip and brain organoids,
could allow the scientific community to more closely
recapitulate brain development. Achberger et al. showed that
integrating retinal organoids into a microfluidic system with
vasculature-like perfusion (Figure 6D), for instance, improved
the formation of an outer retinal segment and photoreceptor
development.463 In a different study, it was also shown that
perfusing brain organoids in microfluidic systems (Figure 6D)
resulted in the organoids exhibiting a higher expression of
cortical layer markers than their counterparts cultured under
static nonperfusing conditions.450 Hence, microfluidic-based
approaches represent an excellent platform to replicate the long-
term features of the developing human cortex and retina in vitro.
In addition, optimized perfusion systems and cell culture media
can be integrated with advanced microscopy and electro-
physiology tools to enable the uninterrupted collection of data
from developing 2D or 3D neuronal networks and organo-
ids.468−472 Together with advances in strategies for the
derivation of neuronal cells from hiPSCs, which partially
circumvent the need for animals as primary cell sources,
microfluidic-based approaches represent an excellent platform
to advance our understanding of CNS development and disease.

6. LIMITATIONS OF MICROFLUIDICS FOR
ENGINEERING NEURONS AND NEURONAL
CIRCUITS

In spite of the numerous technological advantages that
microfluidic platforms offer for engineering neuronal circuits,
there are still limitations in the physical and chemical effects of
the microfluidic environment on the cell, as well as challenges in
coupling microfluidic devices with other platforms, especially
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those for imaging and for electrophysiological recordings.247

Subtle changes in the concentration of cell-culture media
components and supplements, whose quality sometimes varies
between production batches, can dramatically influence cell fate
and behavior. Thus, the implementation of stringent and
frequent quality checks is of the utmost importance for the
generation of robust, reliable, and reproducible results.
Experiments in microfluidic devices can be significantly

complex. High-throughput microfluidic platforms for highly
parallelized experiments, for instance, require meticulous
evaluation and precise control of intricate microchannel systems
before their use. Moreover, although the shallow channels of
shrunken cellular microenvironments impose no limitation on
nutrient and gas diffusion, the effects of synthetic physical and
chemical environments on neuronal cells must be thoroughly
assessed.13 For instance, elevated shear forces arising from high-
speed flows along microchannels, the absorption and adsorption
of soluble materials in cell-culture media, and the desorption of
materials from the microfluidic device need to be taken into
account not only when actually conducting experiments but
already at the design and manufacturing stages.13,16

At the circuit level, microfluidic platforms usually provide
conditions that support the survival of low-density networks.
However, a sealed cellular environment is often problematic for
certain experimental measurements, such as patch-clamp
electrophysiology, which requires access from the top of the
device. Although microfluidic platforms have been successfully
integrated with planar MEA electrodes, the use of recently
developed 3D MEAs to investigate 3D-engineered neuronal
circuits in microfluidic platforms remains challenging and still
requires optimization.473 In addition, the use of optical tools to
record from and to stimulate 3D neuronal networks in
microfluidic devices is not always straightforward, as substances
from diverse fluids can be absorbed by PDMS and affect the
optical properties of the device.474

7. CONCLUSION AND OUTLOOK
Progress in hiPSC technology has facilitated the engineering of a
multitude of cell types, including multiple neuronal cells. In
parallel, diverse advances in microfluidics have laid the
foundations for the development of strategies to isolate and
transcriptionally profile individual cells from virtually any tissue,
including those of the CNS. Together, these technological
advances have enabled us to deepen our understanding of the
organization and function of cells and tissues, ultimately
providing crucial information for tissue engineering, for more
accurately modeling neurodegenerative and developmental
disorders in vitro and for developing advanced cell-replacement
therapies.475

The creation of more sophisticated microfluidic tools has
accelerated the sorting and classification of the cells forming the
CNS. Microfluidic-based systems have delivered substantial
progress in single-cell sequencing and high-throughput screen-
ing platforms that havemade it possible to categorize a myriad of
neuronal cells based on their molecular profiles. The latter is
crucial for engineering neuronal cells, which are essential for the
in vitro development of neuronal circuits.86 Additionally,
microfluidic systems offer the possibility to closely recreate
many cellular microenvironments through the fine-tuning of
their physical and chemical properties. Thereby, microfluidic
devices offer the possibility to efficiently and controllably drive
the differentiation and maturation of multiple cell types,
including neurons.476

The electrophysiological and molecular properties of neuro-
nal cells can be studied at the axonal and synaptic levels in
compartmentalized microfluidic systems. Within them, neuro-
nal cell wiring can be finely controlled by adjusting various
design parameters. Althoughmicrofluidic-based neuronal circuit
engineering is still in its infancy, it has already been successfully
applied to the construction of 2D and 3D neuronal networks
made up of multiple neuronal (and in some cases non-neuronal)
cell types.17,425 These engineeredmodels can be used to recreate
specific brain circuits in vitro and to study both their function
and dysfunction in health and disease.
By integrating additional cell types, such as astrocytes, muscle

cells, microglia and endothelial cells, into neuronal circuits, it is
also possible to study the features of a variety of physiologically
relevant functional units and to investigate their response to a
variety of stimuli, as in the frame of drug screenings and disease
modeling.450,463,477 Similarly, microfluidic platforms offer an
optimal experimental environment for the long-term culture of
stem cell-derived brain and retinal organoids, which closely
replicate the main developmental features of these tissues in
vivo.
In general, the possibility of coupling microfluidic devices

with a wide range of technologies, and to use them both with
classical 2D cultures as well as with sophisticated 3D systems,
makes them highly valuable tools for investigating the inner
workings of CNS components and modules in health and
disease. Therefore, taking into account the advantages of
microfluidic platforms for classifying, sorting, and engineering
neuronal cells, as well as either simple or complicated neuronal
circuits and tissues, it is difficult to understate their value as an
experimental platform for studying a wide variety of central
nervous system processes.
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ABBREVIATIONS
AC = alternating current
ALS = amyotrophic lateral sclerosis

BBB = blood−brain barrier
BDNF = brain-derived neurotrophic factor
BG = basal ganglia
C1TM = single-cell auto prep integrated fluidic circuit (IFC)
CA1 and CA3 = subregions of hippocampus
cAMP = cyclic adenosine monophosphate
ChR2 = channel rhodopsin 2
cMOS = complementary metal-oxide semiconductor
CNS = central nervous system
Cspecific membrane = specific membrane capacitance
DEP = dielectrophoresis
DG = dentate gyrus
dpf = days postfertilization
DRG = dorsal root ganglion
E = embryonic day
EC = entorhinal cortex
ECM = extracellular matrix
EGF = epidermal growth factor
ESCs = embryonic stem cells
FACS = fluorescence-activated cell sorting
FGF2 = fibroblast growth factor 2
GAD = glutamate decarboxylase; catalyzes the conversion of
L-glutamic acid to γ-aminobutyric acid (GABA)
GEM = gel bead in emulsion
GP = globus pallidus
HD = Huntington’s disease
hiPSCs = human induced pluripotent stem cells
hNESCs = hiPSC-derived neuroepithelial stem cells
inDrop = indexing droplets
iPSCs = induced pluripotent stem cells
MEAs = multielectrode arrays
mESCs = mouse embryonic stem cells
MGE = medial ganglionic eminence
NGF = nerve growth factor
NSCs = neural stem cells
OPCs = oligodendrocyte precursor cells
OSVZ = outer subventricular zone
P = postnatal day
PD = Parkinson’s disease
PDGF = platelet-derived growth factor
PDMS = polydimethylsiloxane
PKA = protein kinase A
PNS = peripheral nervous system
qRT-PCR = quantitative reverse transcription polymerase
chain reaction
RGC = retinal ganglion cell
scRNA-Seq = single-cell RNA sequencing
SGZ = subgranular zone
SN = substantia nigra
sNucDrop-Seq = single-nucleus RNA-Seq
SVZ = subventricular zone
TF = transcription factor
UMI = unique molecular identifiers
VZ = ventricular zone
wpc = weeks post conception
μFACS = microfluidic FACS platform
σcytoplasm = cytoplasm conductivity
μCP = microcontact printing
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