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Abstract 

Fruit ripening is a physiological process that involves a complex network of signaling molecules that act as switches 
to activate or deactivate certain metabolic pathways at different levels, not only by regulating gene and protein expres-
sion but also through post-translational modifications of the involved proteins. Ethylene is the distinctive molecule 
that regulates the ripening of fruits, which can be classified as climacteric or non-climacteric according to whether 
or not, respectively, they are dependent on this phytohormone. However, in recent years it has been found that other 
molecules with signaling potential also exert regulatory roles, not only individually but also as a result of interactions 
among them. These observations imply the existence of mutual and hierarchical regulations that sometimes make it 
difficult to identify the initial triggering event. Among these ‘new’ molecules, hydrogen peroxide, nitric oxide, and mel-
atonin have been highlighted as prominent. This review provides a comprehensive outline of the relevance of these 
molecules in the fruit ripening process and the complex network of the known interactions among them.
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Introduction

Fruits are specialized organs whose function is to provide an 
appropriate environment for the formation and maturation 
of seeds that will be propagated by various procedures to 
preserve the species (Dardick and Callahan, 2014). Regard-
less of the different classifications of fruits, their ripening 
involves complex physiological processes that are associated 
with multiple changes at the genetic, proteomic, biochem-
ical, and metabolic levels, which are highly coordinated 

(Klee and Giovannoni, 2011; Palma et al., 2011; Karlova et 
al., 2014; Lü et al., 2018; Palma et al., 2019; Aghdam et al., 
2020b). Fleshy fruits are a good example in which endoge-
nous metabolic fluctuations can be translated into external 
changes that are easily observed at the phenotypic level, in 
many cases consisting of drastic changes in organoleptic fea-
tures (e.g. color, emission of volatiles, and flavor) (Lalel et al., 
2003; Wu et al., 2018).

This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

https://creativecommons.org/licenses/by/4.0/
mailto:javier.corpas@eez.csic.es?subject=


Copyedited by: OUP

Page 5948 of 5960  |   Corpas et al.

Plants contain a wide variety of molecules that exert regula-
tory functions either independently or through their interac-
tions with other molecules, acting as plant hormones. Among 
the classical phytohormones are auxins, cytokinins, gibberellins 
(GA), abscisic acid (ABA), and ethylene, but there are also other 
groups, including brassinosteroids (BR), salicylates, jasmonates, 
and strigolactones (Vanstraelen and Benková, 2012; Asgher et 
al., 2017). Recently, different types of molecules previously con-
sidered toxic to cells have been found to exert signaling func-
tions either directly or indirectly. Accordingly, molecules such 
as hydrogen peroxide (H2O2) and nitric oxide (NO), which 
are part of the metabolism of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS), have also been shown 
to be regulators of plant cellular metabolism, participating in 
all stages of plant development including seed germination, 
root and plant development, stomatal movement, senescence, 
flowering, and fruit ripening, as well as in the mechanisms of 
response to adverse environmental conditions (Smirnoff and 
Arnaud, 2019; Liu et al., 2020; Rodrigues and Shan, 2021; Cor-
pas et al., 2022; Gupta et al., 2022). Other molecules could also 
be placed in the same category, such as hydrogen sulfide (H2S), 
which has recently been shown to exert regulatory functions 
in numerous processes, including fruit ripening (Gotor et al., 
2019; Corpas, 2019; Corpas et al., 2021; Mishra et al., 2021).

The hormone melatonin, which was discovered in higher 
plants in 1995 (Dubbels et al., 1995; Hattori et al., 1995) ,is a 
well-known regulatory molecule in mammals; in humans, for 
example, it influences numerous physiological and patholog-
ical processes such as circadian rhythms (Dominguez-Rodri-
guez et al., 2010), metabolism (Korkmaz et al., 2009), aging 
(Majidinia et al., 2018), neurodegenerative diseases (Shukla et 
al., 2019), and a wide range of cancers (González et al., 2021; 
Moloudizargari et al., 2021). Melatonin also has a broad spec-
trum of functions in higher plants (Zhao et al., 2021; Arnao et 
al., 2022; Hernández-Ruiz et al., 2022). Consequently, mela-
tonin has been defined as a ‘master regulator’ in animal and 
plant cells (Reiter et al., 2010; Wang et al., 2018; Arnao and 
Hernández-Ruiz, 2019, 2021a; C. Sun et al., 2021), although 
the available information on melatonin in plants is still limited 
in comparison to that in animals. Figure 1 shows a Venn dia-
gram analysis of the number of publications from the 1980s 

to date covering the different signaling molecules (NO, H2O2, 
H2S, and melatonin) as they relate to fruit physiology, with NO 
having the greatest number of publications, followed by H2O2, 
H2S, and melatonin. A small number of publications have si-
multaneously analyzed melatonin in combination with other 
signaling molecules, indicating that this is an emerging area 
that should be addressed.

The present review provides a framework of the relevance 
of melatonin in fruit ripening from the perspective of H2O2 
and NO metabolism. Thus, melatonin, as a free radical scav-
enger, exerts regulatory actions over some ROS and RNS. The 
biochemical interactions among melatonin and these reactive 
species provide a promising new area of research due to the po-
tential signaling functions of these interactions. Furthermore, 
the biotechnological significance of these molecules during 
fruit postharvest storage is discussed, as well as the effects of 
their exogenous application.

Fleshy fruit ripening

Fleshy fruits are classically divided into two main categories 
according to their dependence on the ethylene profile and 
the respiratory burst: climacteric (e.g. apple, apricot, avocado, 
banana, melon, pear, persimmon, and tomato), which are de-
pendent on ethylene and the respiratory burst, and non-cli-
macteric (e.g. cherry, grape, orange, lemon, other citrus, olive, 
pepper, raspberry, and strawberry), which are not dependent on 
these factors (Cherian et al., 2014; Chen et al., 2018). However, 
fruit ripening also involves the integration of other molecules, 
including abscisic acid, auxin, jasmonic acid, and salicylic acid, 
which exert regulatory functions (Symons et al., 2012; Kumar 
et al., 2014; Hou et al., 2018; Kou et al., 2021; P. Li et al., 2021; 
Alferez et al., 2021). Recently, it was found that fruit ripening 
involves a physiological nitro-oxidative stress, which influences 
many subcellular processes such that some metabolic pathways 
are down-regulated whereas others are up-regulated (Chaki 
et al., 2015; Rodríguez-Ruiz et al., 2017; Corpas et al., 2018a; 
Chu-Puga et al., 2019; Palma et al., 2019; González-Gordo 
et al., 2019;  Zuccarelli et al., 2021). Furthermore, accumu-
lating data indicate that the exogenous application of some 
key molecules, such as NO, H2O2, or H2S, and most recently 
melatonin, has beneficial effects at different levels, including 
delay of fruit senescence, palliating chilling injury, ameliorating 
fungal decay, and improving nutritional quality. In many cases, 
all these molecules participate in complex signaling cascades 
that, in general, stimulate the enzymatic and non-enzymatic 
antioxidant systems.

Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is generated from 
the amino acid tryptophan. In vertebrates, melatonin is the 
main secretory product of the pineal gland located in the brain 

Fig. 1.  Venn diagram analysis of the number of publications on the 
different signal molecules, namely nitric oxide (NO), hydrogen peroxide 
(H2O2), hydrogen sulfide (H2S), and melatonin (MEL), related to fruits, found 
in the PubMed database in the period 1980–2022.
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and is probably best known for its influence on sleep. How-
ever, melatonin has multiple regulatory functions in physio-
logical and pathological conditions (Shukla et al., 2019; Ma et 
al., 2020; Back, 2021). In plant cells, this molecule is referred 
to as phytomelatonin and it has phytohormonal actions in 
higher plants, which include its antioxidant properties. A pu-
tative melatonin receptor in the plasma membrane designated 
CAND2/PMTR1 (Candidate G-protein coupled receptor 2/
Phytomelatonin receptor 1), which participates in the signaling 
mechanisms related to stomatal closure of Arabidopsis thaliana, 
has been identified. This signaling involves a cascade of signals, 
including H2O2, Ca2+ influx, and K+ efflux, in stomatal guard 
cells (Wei et al., 2018). More recently, new data obtained using 
confocal microscopy and Cand2-defective Arabidopsis mutants 
indicate that the Cand2 protein is actually localized in the cy-
tosol and may not be a G protein that mediates melatonin-
induced defense (Back and Lee, 2020). Therefore, the presence 
of a melatonin receptor on the plasma membrane in higher 
plant cells obviously remains an open question. It is, however, 
well recognized in higher plants that melatonin participates in 
regulatory functions at different levels, such as promoting lat-
eral root growth, delaying senescence, flowering, and fruit rip-
ening, ameliorating iron deficiency, and mediating the response 
to environmental stresses (Korkmaz et al., 2014; Zhang et al., 
2015; Zhu et al., 2019; Zhao et al., 2019; Arnao and Hernán-
dez-Ruiz, 2020; Siddiqui et al., 2020), and that these regulatory 
processes involve molecules such as H2O2, NO, or H2S that 
have signaling properties, although the existence of a receptor 
is still under analysis (S. Li et al., 2021b; Pardo-Hernández et al., 
2021; Singh et al., 2022).

Reactive oxygen species: H2O2 as a signal 
molecule

ROS are a family of molecules generated during the reduction 
of molecular oxygen. They include hydrogen peroxide (H2O2), 
superoxide anion (O2

•–), hydroxyl radical (•OH), and other spe-
cies that do not involve electron gains, such as singlet oxygen 
(1O2). In higher plants, the main sources of ROS are the elec-
tron transport chains of chloroplasts and mitochondria, as well 
as peroxisomes, which are a particularly important source of 
H2O2 due to the β-oxidation and photorespiration pathways 
(Corpas et al., 2020). Additionally, there are other minor cel-
lular sites of ROS production including the cytosol, plasma 
membrane, and cell wall (Corpas et al., 2015; Podgórska et al., 
2017; Kámán-Tóth et al., 2019). Furthermore, the uncontrolled 
overproduction of ROS, such as occurs as a consequence of ad-
verse environmental conditions, can trigger oxidative damage 
to the various cellular macromolecules, causing their dysfunc-
tion (Møller et al., 2007). However, some ROS have signal-
ing properties, in particular H2O2, which has been extensively 
studied (Exposito-Rodriguez et al., 2017; Foyer, 2018, 2020; 
Smirnoff and Arnaud, 2019; Nazir et al., 2020; Liu et al., 2021; 

Zhang et al., 2021; Zentgraf et al., 2022). Recent reports have 
identified two H2O2 plasma membrane receptors, designated 
leucine-rich repeat (LRR) receptor protein kinase HPCA1 
(Wu et al., 2020) and LRR-receptor-like kinase (RLK) pro-
tein HSL3 (Liu et al., 2020), which sense the apoplastic content 
of H2O2 and initiate a cascade of signals as a response mech-
anism to different exogenous stimuli (Foyer et al., 2020; Singh 
et al., 2022). Likewise, during the plant immune response, O2

•– 
generation is controlled by a receptor-like cytoplasmic kinase 
(RLCK)-mediated phosphorylation of respiratory burst oxi-
dase homolog D (RBOHD) (P. Li et al, 2021a; Singh et al., 
2022).

Reactive nitrogen species: nitric oxide as a 
signal molecule

The discovery that plant cells have the capacity to generate the 
free radical nitric oxide (•NO) opened a new area of research 
(Kolbert et al., 2019). Unlike animals, in which the enzymatic 
NO source from the amino acid l-arginine involves a group 
of well-characterized enzymes named nitric oxide synthases 
(NOSs), in higher plants, the enzymatic source remains un-
defined, although it is generally accepted that there are two 
main routes: (i) a reductive pathway from nitrate and nitrite 
that is mediated by nitrate reductase (NR), and (ii) an oxi-
dative pathway from l-arginine through a NOS-like activity, 
designated thus because it has the same biochemical require-
ments as animal NOS (Astier et al., 2018; Corpas et al., 2022). 
In higher plants, the main NO sources are the cytosol, peroxi-
somes, chloroplasts, and mitochondria.

Metabolism of NO leads to the formation of derived mol-
ecules, called RNS, which include nitrogen dioxide (•NO2), 
peroxynitrite (ONOO–), and S-nitrosoglutathione (GSNO), 
among others (Corpas, 2017). ONOO– is a highly reactive 
molecule and also a strong oxidizing and nitrating agent (Fer-
rer-Sueta et al., 2018) that is formed by the chemical reaction 
between two radicals, •NO and O2

•–, with a very high rate 
constant (~1010 M–1 s–1), even higher than the rate constant for 
O2

•– dismutation by the CuZn superoxide dismutase (SOD) 
enzyme, which is 2 × 109 M–1 s–1 (Gray and Carmichael, 1992). 
This characteristic guarantees that when both radicals are si-
multaneously present in any plant subcellular location, ONOO– 
will be generated. On the other hand, GSNO is also generated 
by the binding of NO to the thiol group of the reduced form 
of glutathione (GSH, γ-l-glutamyl-l-cysteinylglycine), which 
is considered to be the main S-nitrosothiol in plant cells and 
whose content is regulated by the enzyme GSNO reductase 
(Lee et al., 2008; Corpas et al., 2013). These two examples, 
ONOO– and GSNO, demonstrate the close relationship be-
tween ROS and RNS metabolism.

In plants, RNS regulate protein functions by post-transla-
tional modifications (PTMs). Tyrosine nitration is an irrevers-
ible process that usually causes inhibition of the target proteins 
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(Radi, 2013; Mata-Pérez et al., 2016), whereas S-nitrosation 
in the thiol group of key cysteine residues, which is revers-
ible, can either up-regulate or down-regulate enzyme func-
tions (Corpas et al., 2008; Gupta et al., 2020). To date, it has 
been demonstrated that the main antioxidant enzymes in plant 
cells, such as catalase, ascorbate peroxidase (APX), monodehy-
droascorbate reductase, and SODs, can undergo either nitra-
tion, S-nitrosation, or both (Begara-Morales et al., 2014a, 2015, 
2016;  Palma et al., 2020). Under adverse environmental con-
ditions, RNS are also overproduced in an uncontrolled way 
and trigger dysfunction in macromolecules, causing nitrosative 
stress; ONOO– has a particular relevance for protein nitration 
(Corpas and Barroso, 2014). In a mirrored manner to H2O2, 
which is the most studied ROS participating in signaling func-
tions in plant cells, NO is the most highly investigated RNS 
(Corpas et al., 2018b; Kohli et al., 2019; Gupta et al., 2022).

Chemical and biochemical interactions of 
melatonin with ROS and RNS

It is well recognized that melatonin is a potent free radical 
scavenger (Reiter et al., 2001; Sofic et al. 2005; Tan et al., 2007; 
Galano et al., 2013; Zhang and Zhang, 2014) that can diffuse 
through biological membranes, exerting its antioxidant ca-
pacity in the different subcellular compartments. Melatonin 
reacts with different ROS or RNS to form a family of mol-
ecules that involve either the addition of a hydroxyl group 
(-OH) in position 1, 4, or 6 to generate hydroxymelatonin; 
the addition of a nitro group (-NO2) in position 1, 4, or 6 to 
generate N-nitromelatonin (Kirsch and de Groot, 2009); or 
the addition of NO in position 1 to generate 1-nitrosomela-
tonin (NOMel) (Blanchard et al., 2000) (Fig. 2). Among the 
different hydroxymelatonin metabolites, 4-hydroxymelatonin 
(4-OHM) is an excellent peroxyl radical (ROO•) scavenger, 
whereas 2-hydroxymelatonin (2-OHM) is predicted to have 
low antioxidant protection. Under in vitro conditions at phys-
iological pH, it was shown that 4-OHM reacted with ROO• 
~200 times faster than trolox (an analog of vitamin E used 
to measure antioxidant capacity). Furthermore, 4-OHM was 
predicted to have a higher antioxidant capacity than natural 
antioxidants present in different fruits, such as gallic and el-
lagic acids in blueberry, blackberry, strawberry, plum, or grape 
(Pérez-González et al., 2017). In humans, mice, and rats, an-
other metabolite of melatonin has been described, namely cy-
clic 3-hydroxymelatonin, which was found to have a higher 
hydroxyl radical (•OH) scavenging capacity than either mel-
atonin or vitamin C (Tan et al., 2014). To corroborate the 
formation of these compounds, an in vitro assay using 5 mM 
melatonin in the presence of 5  mM 3-morpholinosydnoni-
mine (SIN-1, a peroxynitrite donor that simultaneously gen-
erates equimolar amounts of O2

•– and •NO) was carried out 
at 37 °C for 60 min in the dark. Subsequently, the profile of 
compounds was analyzed by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS), and all the hydroxy-, nitro-, 
and nitrosomelatonin derivatives were found.

Byeon et al. (2015) performed a systematic analysis using a 
LC-MS/MS approach to evaluate the content of melatonin 
and some of its hydroxy-derived molecules in 24 plant spe-
cies. This study found that in most plant species the melatonin 
concentration is ~1 ng g–1 fresh weight (FW). In contrast, the 
content of 2-OHM is ~6 ng g–1 FW. A deeper analysis of the 
hydroxyl forms of melatonin in the selected plants indicated 
that the predominant form was 2-OHM (99%), followed by 
4-OHM (~0.5%), with 6-hydroxymelatonin being undetected. 
Unfortunately, any melatonin molecule related to NO was not 
analyzed in this study.

Melatonin is known to react with peroxynitrite, and it could 
be expected that in a cellular environment, this would be a 
mechanism of protection against protein nitration processes 
that are usually associated with a down-regulation in the func-
tion of the affected protein (Begara-Morales et al., 2013; Radi, 
2013; Ferrer-Sueta et al., 2018; Muñoz-Vargas et al., 2018; Cor-
pas et al., 2021). It is important to consider that the formation 
of peroxynitrite is usually associated with the overproduction 
of both •NO and O2

•–, whose coupling activity is very high; as 
a result, the product, peroxynitrite, has major negative effects 
where it is generated. Thus, the interaction of peroxynitrite 
with melatonin is an additional mechanism of protection of 
proteins against nitration. particularly under stress conditions; 
this deserves to be further investigated.

Interaction among N-nitrosomelatonin, NO, 
and S-nitrosothiols

Early in vitro studies evaluated the capacity of NOMel to release 
NO. Subsequently, these assays were completed under physio-
logical conditions where NOMel, in the presence of reducing 
compounds such as ascorbate, released NO and melatonin (De 
Biase et al., 2005). The physiological relevance of this process is 
similar to that exerted by S-nitrosothiols of low and high mo-
lecular weight, including GSNO, nitrosocysteine, and S-nitro-
sated proteins, which are also NO-releasing compounds. For 
example, in the presence of reductants (ascorbate and GSH, 
and Cu2+), GSNO decomposes to produce •NO and oxidized 
glutathione (Gorren et al. 1996; Noble et al., 1999; Holmes and 
Williams 2000; Smith and Dasgupta 2000). In 30-day-old Ara-
bidopsis plants, exogenous GSNO applied to the root system 
was available to release NO and modulate up to 1945 genes 
that were expressed differently in leaves and roots, with 114 
genes being exclusive to one of these organs, indicating the 
capacity of the GSNO to move long distances through the vas-
cular system (Begara-Morales et al., 2014b). Based on this pro-
perty, Fig. 3 shows a working model in which NOMel could 
release NO and mediate a process of S-nitrosation of GSH, free 
cysteine, and thiol groups of proteins. At the same time, these 
S-nitrosothiols release NO and, by a trans-nitrosation process, 



Copyedited by: OUP

Melatonin, H2O2 and NO during fruit ripening  |  Page 5951 of 5960 

mediate the formation of NOMel (Peyrot et al., 2006; Berch-
ner-Pfannschmidt et al., 2008; Hickok et al., 2012; Mukherjee, 
2019; Hardeland, 2021). These mechanisms could be consid-
ered a cellular strategy to extend the functional actions of the 
involved molecules in the different subcellular compartments 
in which they are generated. Consequently, a close relation-
ship among all these molecules with the capacity to carry and 
release NO should be anticipated, with this being a long-dis-
tance signaling mechanism (Singh et al., 2016).

In higher plants, the information about the formation of 
hydroxy- and nitromelatonin metabolites is, to the best of our 
knowledge, limited, and it is mostly based on in vitro and in vivo 
studies of animal cells (Hardeland, 2021). However, it could be 
expected that these compounds should have analogous func-
tions in plant cells. In addition to the direct interactions be-
tween melatonin and the different ROS and RNS, there are 
also some mechanisms in plants that mediate the conversion 
of melatonin into 2-OHM and cyclic 3-hydroxymelatonin 

Fig. 2.  Melatonin-derived metabolites resulting from the interaction of melatonin with ROS and RNS. The reactions involve the addition of a hydroxyl 
group (-OH) in position 2, 4, or 6; the addition of NO (1-nitrosomelatonin); or the addition of a nitro group (NO2) in position 1, 4, or 6.
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through the enzymatic action of melatonin 2-hydroxylase 
(M2H) and melatonin 3-hydroxylase (M3H), respectively (Lee 
and Back, 2016; Lee et al., 2016). Thus, some genetic studies 
in rice plants using RNA interference approaches to down-
regulate the expression of M2H caused an increase the content 
of melatonin, conferring a higher tolerance to diverse stresses 
including cadmium, senescence, salt, and tunicamycin (Choi 
and Back, 2019). Similarly, treatment with 2-OHM induced 
plant defense genes in Arabidopsis, although to a smaller extent 
than melatonin (Byeon et al., 2015), and in rice (Oryza sativa) 
2-OHM triggered resistance against cold and drought stress 
(Lee and Back, 2016, 2019).

In cassava (Manihot esculenta) plants, there are obvious protein 
interactions among cytosolic ascorbate peroxidase (MeAPX2) 
and two cytosolic isozymes of the melatonin biosynthesis, 
tryptophan decarboxylase (MeTDC2) and N-aceylserotonin 
O-methyltransferase (MeASMT2), which provide a higher 
antioxidant capacity against H2O2 (Bai et al., 2020). This ob-
servation prompts several questions focused on the molec-
ular mechanism underlying how these protein interactions 
(MeAPX2–MeTDC2 and MeAPX2–MeASMT2) occur, 
where they take place, and whether they increase the APX 
activity and therefore provide greater protection against high 
concentrations of H2O2.

In higher plants, some experimental studies have reported an 
interaction between melatonin and NO (Y. Sun et al., 2021). In 
sunflower (Helianthus annuus L.) seedlings subjected to salinity 
stress, the exogenous application of 15 µM melatonin altered 
the content of NO, O2

•–, and ONOO–, and consequently the 
modulation of CuZn-SOD and Mn-SOD as well as protein 

tyrosine nitration (Arora and Bhatla, 2017). Recently, using 
3-day-old Arabidopsis seedlings as a model, Singh et al. (2021) 
estimated the NO release capacity of two compounds, 250 
μM GSNO and NOMel, applied through the root system, and 
evaluated the NO content in green cotyledons by confocal 
laser scanning microscopy. The results showed that NOMel 
is more efficient than GSNO in releasing NO. Consequently, 
these data indicate that both NOMel and GSNO have the ca-
pacity to travel through the vascular system and release NO in 
other parts of the plant, as was previously proposed (Airaki et 
al., 2011; Begara-Morales et al., 2014b; Singh et al., 2016).

Crosstalk among melatonin, H2O2, and NO 
in fruit ripening and postharvest storage

Knowledge of the mechanism of regulation among melatonin, 
NO and H2O2 during fruit ripening is in a nascent phase, es-
pecially due to the fact that there are earlier unresolved issues 
such as the identity of the genes involved in the melatonin bi-
osynthesis pathway, as well as how the NO is generated. Since 
the first descriptions of the presence of melatonin in plants 
(Dubbels et al.,1995; Hattori et al., 1995), interest in this mol-
ecule in the field of plant physiology has grown exponentially. 
This is especially due to its antioxidant properties, as well as 
its regulatory functions affecting both gene and protein ex-
pression, enzyme activities, and their crosstalk with different 
phytohormones (Arnao and Hernández-Ruiz, 2021b; Arnao 
et al., 2022). Likewise, the study of the interactions of endoge-
nous melatonin with ROS and RNS in higher plants has also 
been increasing, mainly based on the biochemical information 
established from animal studies that have provided basic know-
ledge in this field. However, research studies of the interactions 
between melatonin with both ROS and RNS during fruit rip-
ening are still scarce (Aghdam et al., 2022), possibly due to the 
low levels of endogenous melatonin in fruits, which make it 
difficult to identify the related melatonin metabolites. For ex-
ample, a comparative analysis of the melatonin content of the 
most consumed horticultural fruits worldwide, pepper (Cap-
sicum annuum L.) and tomato (Solanum lycopersicum L.), which 
are representative examples of non-climacteric and climacteric 
fruits, respectively, indicated that the melatonin concentration 
in red pepper fruits of six cultivars ranged from 5 ng g–1 to 
12  ng g–1 FW, whereas in red tomato fruits of seven culti-
vars, the melatonin concentration ranged from 0.6 ng g–1 to 
15 ng g–1 FW (Riga et al., 2014). A similar situation is apparent 
concerning studies on the metabolism of endogenous NO in 
fruits, about which information is also very limited (Corpas et 
al., 2018a), although in the case of ROS metabolism there is 
more information available.

Other challenges in delving into the regulatory mechanisms 
at the genetic level are to identify all the genes/enzymes in-
volved in melatonin and NO biosynthesis. In the case of 
melatonin, its synthesis from the amino acid tryptophan in 

Fig. 3.  Simple model of melatonin (Mel) nitrosation, S-nitrosation of 
glutathione (GSH), cysteine (Cys), or protein thiol (P-SH), and trans-
nitrosation. Nitric oxide (NO) interacts with Mel, GSH, Cys, and P-SH 
to generate nitrosomelatonin (NOMel), S-nitrosoglutathione (GSNO), 
S-nitrosocysteine (CysNO), or nitrosated protein (P-SNO), respectively, 
which can undergo trans-nitrosation processes.
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Table 1.  Representative examples of the beneficial effects triggered by exogenous molecules with signaling properties (melatonin, H2O2, 
and NO) in fruits to extend postharvest life or to preserve nutritional quality

Fruit Concentration Main effects Reference 

Melatonin
Peach
(Prunus persica L.)

0.1 mM Delays postharvest senescence by lowering O2
•– and 

H2O2 accumulation. Higher AA accumulation and 
increased activity of catalase, SOD, and APX

Gao et al., (2016)

Grapevine
(Vitis vinifera × labrusca).

0.2 mM Stimulates ripening by increasing the levels of ABA, 
H2O2, and ethylene

Xu et al., (2018)

Pear
(Pyrus communis L.)

0.1 mM Delays postharvest senescence and induces NO 
accumulation. Higher NOS-like gene expression and 
enzyme activity. Lower ACS, ACO, PG, and Cel genes 
expression

Liu et al., (2019)

Pear
(Pyrus communis L.)

0.1 mM Induces anthocyanin accumulation through the H2O2 
generated by RBOHF

H. Sun et al., (2021)

Sweet cherry
(Prunus avium L.)

0.1 mM Higher endogenous melatonin accumulation. Higher 
SOD, CAT, APX, and GR enzyme activity. Higher ascor-
bate and GSH accumulation. Higher membrane integ-
rity. Lower electrolyte leakage and MDA accumulation. 
Lower O2

•– and H2O2 accumulation

Wang et al., (2019)

Sweet cherry 
(Prunus avium L. var Prime Giant)

0.01 and 0.1 mM Delays ripening by modulating the contents of endoge-
nous hormones, mainly ABA and auxin

Tijero et al., (2019)

Sweet cherry
(Prunus avium L.)

0.50 and 0.1 mM Treatment of leaves treated with melatonin improved 
the antioxidant content of sweet cherry fruit

Xia et al., (2020)

Jujube 
(Ziziphus jujuba Mill.)

25 µM Higher APX and GR enzyme activity. Higher ascorbate 
and GSH accumulation. Lower PG and PME enzymes 
activity, maintaining firmness

Tang et al., (2020)

Pomegranate 
(Punica granatum L.)

0.1 mM Higher NADPH accumulation. Higher APX, GR, 
G6PDH, 6PGDH, and PAL enzyme activity. Higher AOX 
gene expression. Higher phenol and anthocyanin ac-
cumulation and DPPH-scavenging capacity. Higher AA 
and GSH accumulation. Lower AAO enzyme activity.

Aghdam et al., (2020a)

Mango 
(Mangifera indica L.)

0.2 mM Delays the ripening process. Decreases the contents of 
H2O2 and MDA in the exocarp of the fruit

Dong et al., (2021)

Apple
(Malus domestica L. Borkh)

1 mM Reduces ethylene production. Increase the activity of 
catalase, SOD and peroxidase and keeps apple quality 
during postharvest storage

Onik et al., (2021)

Blueberry 
(Vaccinium corymbosum L.)

1 mM Reduces qualitative decay and improves antioxidant 
system (catalase, SOD, APX, ascorbate, polyphenols, 
anthocyanins, and flavonoids) during cold storage

Magri and Petriccione, 
(2022)

Kiwifruit 
(Actinidia chinensis)

0.1 mM Palliates chilling injury during cold postharvest storage 
by inhibition of lignin metabolism and increasing the ac-
tivity of antioxidant enzymes and the content of soluble 
antioxidants (ascorbate and GSH)

Jiao et al., (2022)

Tomato 
(Solanum lycopersicum)

0.5 mM Promotes ripening of postharvest fruit through DNA 
methylation of ethylene-signalling genes

Shan et al., (2022)

H2O2

Melon 
(Cucumis melo L.)

20 mM Treatment of melon plants increases the soluble sugar 
content in leaves and fruits, thus improving the fruit 
quality. Increases photosynthetic activity and the activi-
ties of chloroplastic and cytosolic fructose-1,6-bisphos-
phatase, sucrose phosphate synthase, and invertases

Ozaki et al., (2009)

Longan 
(Dimocarpus longan Lour)

1.96 mM Increases the activities of pulp PLD, lipase, and 
LOX. Destroys longan pulp membrane structure and 
increases cell membrane permeability

Lin et al., (2019)

Guava 
(Psidium guajava L.)

250 mM Reduces enzymatic browning of freshly cut fruit by 
reducing PPO and POD activities. Stimulates the perox-
iredoxin/thioredoxin system

Chumyam et al., 
(2019)
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higher plants seems to involve six enzymes that are present 
in different subcellular compartments, namely tryptophan de-
carboxylase (TDC), tryptamine 5-hydroxylase (T5H), tryp-
tophan hydroxylase (TPH), serotonin N-acetyltransferase 
(SNAT), N-acetylserotonin methyltransferase (ASMT), and 
caffeic acid O-methyltransferase (COMT). However, not all 
genes/enzymes have been identified in all plants (Aghdam et 
al., 2022 and references therein) suggesting the existence of 
diverse biosynthesis pathways. In the case of NO, its biosyn-
thetic pathway is even more disputed (Corpas et al., 2022 and 
references therein). It would be of great interest if any of the 
enzymes involved in melatonin biosynthesis were found to be 
targets of NO-derived PTMs such as S-nitrosation and nitra-
tion, although, to our knowledge, this information has not yet 
been uncovered.

Consequently, the majority of the studies on fruits have 
been carried out after the exogenous application of either 
melatonin, NO, or H2O2. The few results reported indicate 

that these molecules regulate the ripening process, either 
slowing or accelerating it, or provide beneficial effects during 
postharvest storage; as a result, these compounds could be 
used as tools for biotechnological approaches to maintain the 
quality of the fruits as well as protecting them against infec-
tions by pathogens or chilling damage associated with post-
harvest storage. It should be pointed out, however, that the 
effects of these molecules on fruit ripening depend on the 
type of fruit (climacteric or non-climacteric) and the dose and 
duration of the treatment, among other parameters that must 
be optimized. Table 1 summarizes representative examples of 
climacteric and non-climacteric fruits treated with melatonin, 
H2O2, or NO and the beneficial effects of these treatments, 
such as extending postharvest storage life or preserving nutri-
tional quality. However, it seems evident that the metabolic tri-
angle constituted by melatonin, NO, and H2O2 has a common 
characteristic that implies the activation of both enzymatic 
and non-enzymatic antioxidant systems (Tan et al., 2015;  

Fruit Concentration Main effects Reference 

Kyoho grape
(Vitis vinifera × Vitis labrusca)

300 mM Promotes early ripening. Affects the gene expression 
of HSP, GDSL, XTH, and CAB1, involved in oxidative 
stress, cell wall deacetylation, cell wall degradation, and 
photosynthesis, respectively.

Guo et al., (2020)

Mango 

(Mangifera indica L.)

20 mM Treated mango plants have fruits with a higher content 
of total sugar, phenol, and carotenoids

Mostafa, (2021)

Tomato 

(Solanum lycopersicum L. cv. Verty F1)

100 mM Increases tomato fruit firmness, decreases water-sol-
uble pectin and expression of cell-wall-related genes, 
polygalacturonase, and pectate lyase. Maintains 
morphological and biochemical quality of tomato fruits 
during postharvest storage

Torun and Uluisik, 
(2022)

NO
Strawberry 

(Fragaria × ananassa Duch.)

5 µM sodium  
nitroprusside 
solution

Extends postharvest life Wills et al., (2007); Zhu 
and Zhou, (2007)

Peach fruit 
(Prunus persica L. cv. Xiahui 6)

10 ppm NO gas Delays the ripening process. Affects sucrose metabo-
lism by changing the expression of related genes 

Han et al., (2018)

Jujube 
(Ziziphus jujuba Mill.)

20 ppm NO gas Retards cell wall degradation Zhao et al., (2019)

Sweet pepper 
(Capsicum annuum L. cv. Melchor)

5 ppm NO gas Delays fruit ripening. Increases ascorbate content, 
protein nitration, and S-nitrosation. Decreases catalase 
and APX activities

Rodríguez-Ruiz et al., 
(2017); González- 
Gordo et al., (2019)

Tomato 
(Solanum lycopersicum L. cv. ‘Micro-Tom’)

300 ppm NO gas Promotes ascorbate biosynthesis and intensifies protein 
S-nitrosation and nitration. Affects carotenoid, tocoph-
erol, and flavonoid metabolism

Zuccarelli et al., (2021)

Melon 
(Cucumis melo L.)

100 ppm NO gas Enhances postharvest disease resistance to the fungus 
Alternaria alternata by postponing ethylene biosynthesis

Wei et al., (2021)

AA, ascorbic acid; AAO, ascorbic acid oxidase; AOX, alternative oxidase; ABA, abscisic acid; ACS, 1-aminocyclopropane-1-carboxylic acid (ACC) 
synthase; ACO, ACC oxidase; APX, ascorbate peroxidase; CAB1, chlorophyll a-b binding protein; CAT, catalase; Cel, cellulose; DPPH, 2,2-diphenyl-1-
picrylhydrazyl; GDSL, GDSL-motif esterase/lipase; G6PDH, glucose-6-phosphate dehydrogenase; GR, glutathione reductase; GSH, reduced glutathione; 
HSP, heat shock protein; LOX, lipoxygenase; MDA, malondialdehyde; NOS, NO synthase; PG, polygalacturonase; 6PGDH, 6-phosphogluconate 
dehydrogenase; PLD, phospholipase D; POD, peroxidase; PPO, polyphenol oxidase; RBOHF, respiratory burst oxidase homolog F; SOD, superoxide 
dismutase; XTH, xyloglucan endotransglucosylase/hydrolase.

Table 1.  Continued
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Chumyam et al., 2019; Zuccarelli et al., 2021). This may serve 
to control the overproduction of ROS and RNS that could 
trigger uncontrolled nitro-oxidative stress resulting in an al-
teration in the quality of the fruits, in terms of both their 
external appearance and their organoleptic qualities (aroma, 
flavor, acidity, sweetness, etc.).

In pepper fruits, treatment with NO gas causes delayed rip-
ening, which is accompanied by a modulation of the ROS 
metabolism characterized by an elevation in ascorbate con-
tent as a consequence of an increase in the expression and 
activity of the last enzyme of its biosynthesis pathway, the mi-
tochondrial enzyme l-galactono-1,4-lactone dehydrogenase 
(GalLDH) (Rodriguez-Ruiz et al., 2017). Likewise, the NO-
treated fruits had a higher GSH content, higher APX and 
lipoxygenase activities, lower lipid peroxidation, and lower 
O2

•–-generating NADPH oxidase activity (González-Gordo 
et al., 2019, 2020). Interestingly, a higher content of nitrated 
proteins was apparent, particularly the peroxisomal enzyme 
catalase, whose activity decreased (Chaki et al., 2015). These 
observations related to APX and catalase activity are in good 
agreement with the previously reported effect of NO-derived 
PTMs, S-nitrosation, and nitration on these enzymes in other 
plant species (Begara-Morales et al., 2014a; Palma et al. 2020). 
Similarly, the exogenous application of NO to tomato at the 
pre-climacteric stage suppressed the activity of antioxidant 
enzymes, increased protein S-nitrosation and nitration, and 

favored the accumulation of ascorbate and flavonoids (Zuc-
carelli et al., 2021). Recently, it has been shown that melatonin 
exerts an epigenetic regulation through DNA methylation 
of ethylene signaling genes, which promotes the ripening of 
tomato fruit during postharvest storage (Shan et al., 2022). 
This observation suggests a scenario to be addressed in future 
investigations.

The cascade of events that takes place when any of these 
molecules is applied exogenously has been the subject of many 
studies because there are other elements involved, such as the 
type of fruit, the involvement of phytohormones such as eth-
ylene, or the state of preservation of the fruit, for example, at 
low temperature. For example, in pear fruits, the exogenous 
application of melatonin inhibits the synthesis of ethylene, 
which seems to be mediated by NO (Liu et al., 2019), since 
this molecule can inhibit key enzymes in the ethylene bio-
synthesis pathway, such as S-adenosyl methionine synthetase, 
1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and 
ACC oxidase (Palma et al., 2019). In the case of non-climac-
teric fruits, the ripening process is essentially modulated by 
ABA, which mediates the accumulation of anthocyanins and 
sugars. For example, in sweet cherry, exogenous melatonin 
delays fruit ripening, counteracting the effect of ABA, since it 
affects the balance of other involved phytohormones such as 
cytokinins, jasmonic acid, and salicylic acid (Tijero et al., 2019; 
Michailidis et al., 2021).

Fig. 4.  Overview of the cascade of signals triggered by the application of exogenous melatonin (Mel), NO, or H2O2 to modulate fruit ripening and quality.
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Conclusions and future perspectives

As in mammals, melatonin is a multifunctional molecule in 
higher plants and specifically in fruits, where it exerts nu-
merous beneficial functions as a protectant against biotic and 
abiotic stresses when it is exogenously applied. Melatonin has 
antioxidant properties, since it reacts with both ROS and RNS, 
although the information available on the derived molecules is 
scarce in higher plants and even non-existent in relation to the 
ripening of fruits, a process that is characterized by an impor-
tant nitro-oxidative metabolism.

Future research should focus on the interactions and func-
tions of these molecules, although a major technical challenge 
is their identification and specific localization, considering that 
they are endogenously generated at very low concentrations. 
Unquestionably, the exogenous application of melatonin has 
been shown to be a powerful biotechnological tool, since it 
exerts beneficial effects either directly as an antioxidant mole-
cule, or by acting as a signaling molecule that acts upstream of 
H2O2 and NO. Furthermore, the interaction of melatonin with 
NO to generate nitrosomelatonin, a molecule that can release 
NO in the presence of reductants such as ascorbate, opens new 
research lines related to the complex crosstalk between these 
molecules. On the other hand, the use of exogenous melatonin 
to provide beneficial effects during postharvest storage could 
be considered as a novel biotechnological tool for application 
in the horticultural industry. However, it is important to note 
that the melatonin concentration, the time of exposure, and the 
means of application (by immersion, spraying, or other meth-
ods) should be optimized for each type of fruit. Figure 4 illus-
trates the cascade of signals mediated by the crosstalk among 
melatonin, NO, and H2O2 during fruit ripening, which, in 
general, stimulates antioxidant capacity through the activation 
of enzymatic and non-enzymatic systems as well as triggering 
regulatory functions in gene regulation by their interactions 
with the different phytohormones. Consequently, we conclude 
that melatonin, besides being an antioxidant molecule, it is also 
a key molecule with signaling properties. Beyond scientific in-
terest in the basic research on the complex regulatory function 
of melatonin and its crosstalk with NO and H2O2 during the 
ripening of fruits or their subsequent storage, from an anthro-
pological point of view, one of the stimuli that may promote 
its use is the nutraceutical benefits fruits enriched in melatonin 
can provide for human health.
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