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Abstract 

Background:  Globally, gastric cancer is the third most common cancer and the third leading cause of cancer death. 
Proximal and distal gastric cancers have distinct clinical and biological behaviors. The microbial composition and 
metabolic differences in proximal and distal gastric cancers have not been fully studied and discussed.

Methods:  In this study, the gastric microbiome of 13 proximal gastric cancer tissues, 16 distal gastric cancer tissues, 
and their matched non-tumor tissues were characterized using 16S rRNA amplicon sequencing. Additionally, 10 
proximal gastric cancer tissues, 11 distal gastric cancer tissues, and their matched non-tumor tissues were assessed by 
untargeted metabolomics.

Results:  There was no significant difference in microbial diversity and richness between the proximal and distal 
gastric cancer tissues. At the genus level, the abundance of Rikenellaceae_RC9_gut_group, Porphyromonas, Catonella, 
Proteus, Oribacterium, and Moraxella were significantly increased in Proximal T, whereas that of Methylobacterium_
Methylorubrum was significantly increased in Distal T. The untargeted metabolomics analysis revealed 30 discrimina-
tive metabolites between Distal T and Distal N. In contrast, there were only 4 discriminative metabolites between 
Proximal T and Proximal N. In distal gastric cancer, different metabolites were scattered through multiple pathway, 
including the sphingolipid signaling pathway, arginine biosynthesis, protein digestion and absorption, alanine, aspar-
tate and, glutamate metabolism, etc.In proximal gastric cancer, differential microbial metabolites were mainly related 
to hormone metabolism.

Conclusion:  Methylobacterium-Methylorubrum was significantly increased in Distal T, positively correlated with can-
cer-promoting metabolites, and negatively correlated with cancer-inhibiting metabolites. Rikenellaceae_RC_gut_group 
was significantly increased in Proximal T and positively correlated with cancer-promoting metabolites. Further studies 
regarding the functions of the above-mentioned microorganisms and metabolites were warranted as the results may 
reveal the different mechanisms underlying the occurrence and development of proximal and distal gastric cancers 
and provide a basis for future treatments.

Importance:  First, the differences in microbial composition and metabolites between the proximal and distal gastric 
cancers were described; then, the correlation between microbiota and metabolites was preliminarily discussed. These 
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Introduction
Gastric cancer (GC) is the third most common can-
cer globally and the third leading cause of cancer death 
[1]. China is a high-incidence area of GC [2]. GC can be 
divided into proximal GC, middle GC, and distal GC [3]. 
It is generally believed that proximal GC exhibits dif-
ferent clinical and biological behaviors compared with 
middle and distal GC. A study in Portugal indicated that 
proximal and distal gastric cancers are significantly dif-
ferent in terms of patient survival, tumor size, venous 
invasion, nodal status, and overall stage [4]. Moreover, 
the prognosis for proximal GC is significantly worse than 
distal GC [3].

Previous studies have also investigated the molecular 
differences between proximal and distal GCs. Whole-
genome sequencing analysis of gastroesophageal junction 
(GEJ) carcinoma and distal GC by previous researchers 
showed no significant difference between the mutations 
in the two cancers and that the expression rates of PD-L1 
in distal GC and GEJ cancer were 58.3% and 66.7%, 
respectively [5]. Moreover, the expression of the adenom-
atous polyposis coli gene, β-catenin, and E-cadherin was 
not significantly different between proximal and distal 
GCs [6]. An analysis conducted by Zhao et al. based on 
the SEER and TCGA databases revealed that the progno-
sis of proximal GC was worse than distal GC. Among the 
280 differential genes, 90 were up-regulated in distal GC, 
while 190 were up-regulated in proximal GC. Pathway 
analysis showed that the activity of serine protease, ion 
channel (Na + /Cl-), and cytoskeleton could be related 
to the poor prognosis of proximal GC [7]. Furthermore, 
lower blood glucose levels were significantly associated 
with an increased risk of distal GC [8]. The overexpres-
sion of HER2 was significantly higher in Chinese patients 
with proximal GC than those with distal GC [9].

GC is a multifactorial disease, and alterations in the 
tumor microenvironment are necessitated for GC ini-
tiation, progression, and metastasis [10, 11]. As part of 
the tumor microenvironment, gastric microbiota has 
attracted increasing attention as it can impact cancer 
growth and spread in several ways. However, gastric 
microbiota has been relatively understudied compared 
to gut microbiota. Although the human stomach is 
thought to be exclusively inhabited by Helicobacter 
pylori (Hp) and viewed as an inhospitable environment 
for microbiota, attributable to its acidic conditions and 
other antimicrobial factors, more gastric microbiota 

has been identified with the development of sequenc-
ing technology; studies have demonstrated that gastric 
bacteria mainly include Proteus, Firmicutes, Bacteroi-
detes, Actinomycetes, and Clostridium [12]. Currently, 
it is unclear whether there is a correlation between the 
diversity of the gastric microbiota and the progres-
sion from healthy gastric mucosa to gastric cancer. 
Some studies found GC microbiota exhibit decreased 
microbial diversity, decreased abundance of Hp, and 
enrichment with other bacteria [13, 14]. However, there 
have also been studies suggesting that gastric cancer is 
associated with increased diversity and richness of the 
microbiota [15]. There were also research results indi-
cated there was no significant difference in microbial 
abundance between gastric cancer and control samples 
[16].

The metabolome of GC has been studied as well; Pan 
et  al. discovered that TG (54:2), G3p, α- aminobutyric 
acid, α-CEHC, dodecanol, glutamylalanine, 3-methy-
lalanine, sulfite, CL (63:4), PE NME (40:5), TG (53:4), 
retinol, 3-hydroxysterol, tetradecanoic acid, Mg (21:0 
/ 0:0 / 0:0), tridecanoic acid, myristic acid glycine, and 
octacarbonate were potential biomarkers of abdominal 
metastasis from GC[17]. In another instance, Lee et al. 
studied the correlation between bile acid metabolism 
and GC [18]. A study comparing urine metabolomics of 
patients with GC and healthy controls found significant 
differences in urine alanine, citric acid, creatine, cre-
atinine, glycerol, hippuric acid, phenylalanine, taurine, 
and 3-hydroxybutyric acid between the two groups 
[19]. In general, metabolic changes in blood, urine, 
gastric juice, and tissue in patients with GC have been 
evaluated, and changes in the metabolic spectrum have 
also been validated to be related to the occurrence and 
development of GC [20].

The prognostic differences and molecular biological 
characteristics of proximal and distal GCs have been 
explored for decades; the microbiome and metabolome 
of GC have also been studied [21]. However, the micro-
bial composition and metabolic differences between 
proximal and distal GCs have not been fully studied 
and discussed. This study aimed to explore the meta-
bolic differences between microbial-related proximal 
and distal gastric cancer through 16S rRNA amplicon 
sequencing and non-targeted metabolome analysis and 
explore the causes and development of proximal and 
distal gastric cancer.

microbes and metabolites deserve further investigations as they may reveal the different mechanisms involved in the 
occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments.
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Methods
Samples
16 distal gastric cancer (GC) patients and 13 proximal 
GC patients with no history of preoperative chemother-
apy were enrolled from January 2018 to August 2019 at 
the First Affiliated Hospital, School of Medicine, Zhe-
jiang University. All GC patients were diagnosed by 
postoperative pathological examinations. The clinical-
pathological features of GC, such as tumor stage, tumor 
differentiation, and Lauren classification of tumor type, 
were collected. Baseline characteristics, including age, 
gender, body mass index (BMI), and history of hyper-
tension and diabetes, were recorded as well. The clini-
cal and pathological staging was in accordance with the 
8th edition of the American Joint Committee on Can-
cer (AJCC) TNM staging system for gastric cancer. The 
exclusion criteria were as follows: BMI > 30; use of anti-
biotics, probiotics, prebiotics, or synbiotics in the previ-
ous month; preoperative chemotherapy, radiotherapy, 
or other biological treatment prior to gastrectomy. Basic 
demographic and clinical data were collected at the time 
of inclusion (Additional file  1: Table  S1). The research 
was approved by the Ethics Committee of the First Affili-
ated Hospital, School of Medicine, Zhejiang University 
(IIT20200503A). Informed written consent was obtained 
from each patient before enrollment.

DNA extraction, 16S detection, and data analysis
After thoroughly grinding and breaking 25 mg of tissue, 
total genomic DNA was extracted using a DNA Extrac-
tion Kit according to the manufacturer’s instructions 
(Qiagen). DNA concentration was verified with Nan-
oDrop and agarose gel. The genomic DNA was used as 
the template for PCR amplification with the barcoded 
primers and DNA Polymerase (Takara). For bacterial 
diversity analysis, the V3-V4 variable regions of 16S 
rRNA genes were amplified with universal primers 343F 
and 798R. Finally, the library was sequenced on an Ion 
S5TM XL platform, and 400–600  bp single-end reads 
were generated.

Raw sequencing data were in the FASTQ format. Paired-
end reads were then preprocessed using Cutadapt to detect 
and cut off ambiguous bases (N); low-quality sequences 
with an average quality score below 20 were also cut off. 
The chimeric sequence was subsequently removed from 
reads obtained after the above processing. The reads 
sequence was then compared with the species annotation 
database to detect the chimera sequence, which was finally 
removed to obtain the final effective data (clean reads). 

QIIME software (version 1.8.0) was utilized to investigate 
species diversity and evaluate differences in microbial 
community composition. Bioinformatics analysis was per-
formed with the OECloud tools at https://​cloud.​oebio​tech.​
cn.

Metabolome detection and data analysis
100 mg of tissue samples were used to extract the metabo-
lites. The extracted samples were stored at -80 ℃ for further 
use. UHPLC-MS/MS analysis was performed using a Van-
quish UHPLC system coupled with an Orbitrap Q Exactive 
series mass spectrometer (Thermo Fisher). The samples 
were injected into a Hyperil Gold column at a flow rate 
of 0.2 mL/min. The eluents for the positive polarity mode 
were eluent A (0.1% FA in water) and eluent B (methanol). 
The eluents for the negative polarity mode were eluent A 
(5 mM ammonium acetate, pH 9.0) and eluent B (metha-
nol). The solvent gradient was set as follows: 2% B, 1.5 min; 
2% to 100% B, 12.0 min; 100% B, 14.0 min; 2% to 100% B, 
14.1 min; 2% B, 17 min. The Q Exactive mass spectrometer 
operated in both positive and negative polarity modes; the 
spray voltage was set to 3.2 kV, and the capillary tempera-
ture was set to 320 °C. Compound Discoverer 3.1 (Thermo 
Fisher) was used to process the original data file generated 
by UHPLC-MS/MS and perform peak calibration, peak 
picking, and quantification for each metabolite. Next, the 
peak intensity was normalized to the total spectral inten-
sity. The molecular formula was predicted using the nor-
malized data based on additive ions, molecular ion peaks, 
and fragment ions. Thereafter, peaks were matched using 
mzCloud, mzVault, and MassList databases to acquire 
accurately qualitative and relatively quantitative results. 
These metabolites were annotated using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database, the 
Human Metabolome Database (HMDB), and the the LIPID 
MAPS Structure Database (LMSD). Orthogonal Partial 
Least Squares-Discriminant Analysis (OPLS-DA) was 
performed. The metabolites with variable importance in 
projection (VIP) > 1 and p-value < 0.05 and fold change ≥ 2 
or FC ≤ 0.5 were considered differential metabolites. The 
functions of these metabolites and metabolic pathways 
were analyzed using the KEGG database.

Combined microbiome‑metabolome analysis
The correlation between the different microbiota and 
metabolites was calculated according to the one-to-one 
correspondence relationship between samples. Spearman 
correlation calculation method was utilized for the correla-
tion algorithm.

https://cloud.oebiotech.cn
https://cloud.oebiotech.cn


Page 4 of 14Yang et al. Journal of Translational Medicine          (2022) 20:439 

Results
Differences in microbial diversity, richness, 
and composition between proximal and distal gastric 
cancers
Alpha diversity was analyzed to investigate the differ-
ences in microbial diversity between the groups. The 
Shannon index, which reflects species richness and 
evenness, was higher in the distal GC tissues (Distal 
T) than in the matched non-tumor tissues (Distal N) 
(p = 0.0014). Shannon index was higher in the proxi-
mal GC tissues (Proximal T) than in the matched non-
tumor tissues (Proximal N) (p = 0.0164). However, the 
Shannon index of Proximal T was not significantly dif-
ferent compared with Distal T (p = 0.5306) (Fig.  1A). 
Similarly, the Shannon index of Distal N was not signifi-
cantly different compared with Proximal N (p = 0.4811)

(Fig. 1A).The observed species, which reflected the spe-
cies richness, was not significantly different between 
distal GC and proximal GC (Distal T vs Proximal T, 
p = 0.6703;Distal N vs Proximal N,p = 0.8462); but the 
observed species in GC tumor tissues was significantly 
different from the matched non-tumor tissues (Distal 
T vs. Distal N, p = 0.0039; Proximal T vs. Proximal N, 
p = 0.0072) (Fig.  1B). In order to compare the compo-
sition of the microbial community between the proxi-
mal and distal GC tissues, beta diversity analysis was 
performed. Significant clustering was detected for the 
Weighted_unifrac PCoA analysis between Proximal T, 
Distal T, and the matched non-tumor tissues (Fig. 1C). 
The taxonomic profiles of the gastric microbiota are 
illustrated in Figs. 1D, E. At the phylum level, the top 5 
gastric microorganisms identified in Distal N and Distal 
T were Campilobacterota, Proteobacteria, Firmicutes, 

Fig. 1  Altered gastric microbiota in 16 distal gastric cancer tissues, 13 proximal gastric cancer tissues compared with matched non-tumor tissues. 
A, B The observed species and Shannon indices were used to evaluate the microbial diversity of the proximal gastric cancer tissues, distal gastric 
cancer tissues and matched non-tumor tissues. C PCoA of weighted UniFrac distance demonstrated that the proximal, distal tumor tissues and 
matched non-tumor tissues showed four distinct clusters. D, E The microbial relative abundance of proximal, distal tumor tissues and matched 
non-tumor tissues at the phylum and genus levels. Proximal T,proximal GC tumor tissues; Proximal N,proximal GC non-tumor tissues; Distal T, distal 
GC tumor tissues; Distal N, distal GC non-tumor tissues
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Bacteroidota, and Others. The top 5 gastric microor-
ganisms in Proximal N and Proximal T were Campi-
lobacterota, Bacteroidota, Firmicutes, Proteobacteria, 
and Spirochaetota (Fig. 1D). At the genus level, the 10 
most prevalent microorganisms in Distal N were Heli-
cobacter, Pseudomonas, Other, Prevotella, Streptococ-
cus, uncultured, Escherichia-Shigella, Fusobacterium, 
Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium, and Lactobacillus. The 10 most common 
microorganisms in Distal T were Other, Lactobacil-
lus, Pseudomonas, Prevotella, Helicobacter, uncultured, 
Streptococcus, Haemophilus, Acinetobacter, and Fusobac-
terium. Helicobacter, Prevotella, Streptococcus, Porphy-
romonas, Acinetobacter, Alloprevotella, Lentimicrobium, 
Treponema, Peptostreptococcus, and Fusobacterium 
were the top 10 microorganisms detected in Proximal N. 
Lastly, the 10 most common microorganisms in Proximal 
T were Helicobacter, Prevotella, Streptococcus, Rikenel-
laceae_RC9_gut_group, Lactobacillus, Methylocaldum, 
Treponema, Pseudomonas, Methylophilus, and Sphin-
gomonas (Fig.  1E). We  provided  stacked bar plots for 
all samples in phylum level and genus level  (Additional 
files2: Fig. S1 and Additional files 3: Fig.S2).

Analysis of the differential taxa between distal T and distal 
N
The linear discriminant analysis (LDA) effect size (LEfSe) 
method (LDA > 3.0, corrected p-value < 0.05) was used to 
analyze the composition of the flora in Distal T, and Dis-
tal N. At the phylum level, the abundance of Firmicutes, 

Bacteroidota, Proteobacteria, Other, and Actinobacteri-
ota was significantly increased in Distal T, whereas only 
the abundance of Campilobacterota was significantly 
decreased in Distal T. At the genus level, the abundance 
of Lactobacillus, Other, Streptococcus, Fusobacterium, 
Muribaculaceae, Enterobacter, Psychrobacter, Methylo-
bacterium_Methylorubrum, Megasphaera, Alloprevotella, 
Atopobium, and SM2D12 was significantly increased in 
Distal T, while the abundance of Helicobacter was signifi-
cantly decreased in Distal T (Fig.  2A, B and Additional 
file 4: Figure S3A).

Analysis of the differential taxa between proximal T 
and proximal N
Similarly, the linear discriminant analysis (LDA) effect 
size (LEfSe) method (LDA > 3.0, corrected p-value < 0.05) 
was used to analyze the composition of the flora in 
Proximal T and Proximal N. At the phylum level, the 
abundance of Firmicutes, Bacteroidota, and Actinobac-
teriota were significantly increased in Proximal T, while 
that of Campilobacterota was significantly decreased 
in Proximal T. At the genus level, the abundance of 
Rikenellaceae_RC9_gut_group, Lactobacillus, Methy-
lophilus, Dubosiella, Prevotellaceae_NK3B31_group, 
Muribaculaceae, Quadrisphaera, CAG_352, Morga-
nella, Bacteroides, Sellimonas, Romboutsia, Collinsella, 
and Jeotgalicoccus were significantly increased in Proxi-
mal T, whereas only the abundance of Helicobacter was 

Fig. 2  Differential microbiota of Distal T and Distal N. A, B Differential taxa at genus and phylum levels and cladogram identified by LEfSe analysis 
(LDA > 3.0, Q < 0.05)
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significantly decreased in Proximal T (Fig.  3A, B and 
Additional file 4: Figure S3B).

Different microorganisms in proximal T and distal T 
compared to their respective non tumor samples
Microbiota composition was analyzed by Wilcoxon 
signed-rank test. From phylum to genus we found many 
microbes features show contrasting results between 
proximal and distal gastric cancer samples when com-
pared to their respective non-cancer samples (Addi-
tional file 1: Table S2). At phylum level, Proteobacteria, 
Patescibacteria, Other, Bdellovibrionota and Fusobac-
teriota were significantly increased in Distal T, wheres 
Spirochaetota was significantly decreased in Distal T. 
However, these microbiota were no significant differ-
ence between proximal gastric cancer tumor tissues 
and control tissues. Myxococcota and Cyanobacteria 
were significantly increased in Proximal T, wheres Aci-
dobacteriota was significantly decreased in Proximal 
T. These three microorganisms were no significantly 

difference between Distal T and Distal N. Compared 
with the results of LEfSe analysis, the differential 
microorganisms that distinguish proximal gastric can-
cer from distal gastric cancer are marked in the table 
with asterisks.

Differences in the metabolome profiles between distal T 
and distal N
Given the diversity and composition of the gastric micro-
biota were different in Distal T and Distal N, we hypoth-
esized that changes in the metabolome pathways could 
be partially influenced by the gastric microbiota of the 
patients. Thus, untargeted metabolomics analysis of the 
samples (11 Distal T and 11 Distal N) was performed 
using UHPLC-MS/MS, and 1207 metabolites were quan-
tified in the positive and negative modes. The OPLS-DA 
score plot illustrated that Distal T and Distal N were 
separated into two distinct clusters (R2Y = 0.958 and 
R2X = 0.453) (Fig. 4A). The test for the OPLS-DA model 
illustrated that the R2 value was larger than the Q2 value 

Fig. 3  Differential microbiota of Proximal T and Proximal N. A, B Differential taxa at genus and phylum levels and cladogram identified by LEfSe 
analysis (LDA > 3.0, Q < 0.05)

(See figure on next page.)
Fig. 4  Metabolite composition and difference between Distal T and Distal N. A, B OPLS-DA showed that Distal T and Distal N were separated into 
two clusters. Test for OPLS-DA model showed that the model for this study was valid. C Volcano map of different metabolites between Distal T 
and Distal N. (VIP > 1 and p value < 0.05). D The functions of these metabolites and metabolic pathways were studied using the KEGG database. 
E Heatmap representative differentially metabolites between Distal T and Distal N. Tumor, represents the samples of Distal T; Normal, represents 
the samples of Distal N.The abscissa represents the sample name and the ordinate represents the differential metabolite. The color from blue to 
red indicates that the expression abundance of metabolites is from low to high, that is, the more red indicates that the expression abundance of 
differential metabolites is higher
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Fig. 4  (See legend on previous page.)
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and that the Q2 regression line had a negative intercept 
(R2 = [0.0, 0.787], Q2 = [0.0, -0.476]), indicating that 
the OPLS-DA model for this study was valid (Fig.  4B). 
Volcanic maps were used to depict 54 metabolites with 
significant differential relative abundance between 
the Distal T and Distal N (VIP > 1 and p-value < 0.05) 
(Fig. 4C). Compared to Distal N, 17 differential metabo-
lites were down-regulated in Distal T, and 37 were up-
regulated. After p-value calibration by the Bonferroni 
method, 30 significantly different metabolites were iden-
tified between Distal T and Distal N (Additional file  1: 
Table  S3). Hierarchical clustering of the top 50 signifi-
cantly differential metabolites (Fig.  4E) was performed 
to explore the expression and relationship of the differ-
ent metabolites between different samples. In order to 
determine the main metabolic pathways and signal path-
ways related to the differential metabolites in Distal T 
and Distal N, KEGG enrichment analysis was performed. 
Figure 4D illustrates the discriminative metabolites scat-
tered through multiple pathways, including aminoacyl-
tRNA biosynthesis, central carbon metabolism in cancer, 
GABAergic synapse, alcoholism, ABC transporters, histi-
dine metabolism, biosynthesis of unsaturated fatty acids, 
protein digestion and absorption, glutathione metabo-
lism, etc. Compared to the metabolites of Proximal T 
related pathways, the enrichment pathways of Distal T 
included purine metabolism, D-glutamine, and D-gluta-
mate metabolism, sphingolipid signaling pathway, tau-
rine and hypotaurine metabolism, arginine biosynthesis, 
alanine, aspartate and glutamate metabolism, β-alanine 
metabolism, butanoate metabolism, ascorbate and 
aldarate metabolism, and nicotinate and nicotinamide 
metabolism (Fig. 4D and Additional file 1: Table S5).

Differences in the metabolome profiles between proximal 
T and proximal N
Likewise, untargeted metabolomics analysis of the sam-
ples (10 Proximal T and Proximal N) was also performed 
using UHPLC-MS/MS. The OPLS-DA score plot delin-
eated that Proximal T and Proximal N were separated 
into two distinct clusters (R2Y = 0.928 and R2X = 0.438) 
(Fig. 5A). The test for the OPLS-DA model showed that 
the R2 value was larger than the Q2 value and that the Q2 
regression line had a negative intercept (R2 = [0.0, 0.776], 

Q2 = [0.0, -0.49]), signaling that the OPLS-DA model for 
this study was valid (Fig. 5B). Volcanic maps depicted 37 
significantly different metabolites between Proximal T 
and Proximal N (VIP > 1 and p-value < 0.05) (Fig. 5C). 12 
differential metabolites were down-regulated in Proximal 
T, and 25 differential metabolites were up-regulated in 
Proximal T. Following p-value calibration by the Bonfer-
roni method, 4 significantly different metabolites were 
discovered between Proximal T and Proximal N (Addi-
tional file  1: Table  S4). KEGG analysis determined that 
discriminative metabolites scattered through multiple 
pathways, like the pathways in distal GC, also included 
aminoacyl-tRNA biosynthesis, central carbon metabo-
lism in cancer, neuroactive ligand-receptor interaction, 
histidine metabolism, protein digestion and absorp-
tion, ABC transporters, glutathione metabolism, etc. 
Compared to the metabolites of Distal T related path-
ways, the enrichment pathways of Proximal T included 
insulin resistance, inflammatory mediator regulation of 
TRP channels, glycine, serine and threonine metabo-
lism, circadian entrainment, etc. (Fig. 5E and Additional 
file 1: Table S6). A heatmap representative of differential 
metabolites between Proximal T and Proximal N was 
generated (Fig. 5E).

Different metabolites in proximal T and distal T compared 
to their respective non‑tumor samples
Compared with proximal gastric cancer, there were 
more differential metabolites between Distal T and Dis-
tal N. All the differential metabolites of Proximal T and 
Proximal N were included in the differential metabolites 
of Distal T and Distal N. In contrast, the abundance of 
adrenic acid, 1-methylnicotinamide, L-glutamic acid, 
8Z,11Z,14Z-eicosatrienoic acid, and pentadecanoic acid 
were significantly elevated in Distal T (Additional file 1: 
Table S3 and Table S4).The OPLS-DA score plot deline-
ated that Distal N and Proximal N were not divided into 
two clusters(R2Y = 0.8 and R2X = 0.477) (Additional 
file 5: Figure S4 A and B).

The relationship between discriminative genera 
and metabolites in different genera
Spearman’s correlation analysis was employed to 
assess the association between differential genera and 

Fig. 5  Metabolite composition and difference between Proximal T and Proximal N. A, B OPLS-DA showed that Proximal T and Proximal N 
were separated into two clusters. Test for OPLS-DA model showed that the OPLS-DA model for this study was valid. C Volcano map of different 
metabolites between Proximal T and Proximal N. (VIP > 1 and p value < 0.05). D The functions of these metabolites and metabolic pathways were 
studied using the KEGG database. E Heatmap representative differentially metabolites between Proximal T and Proximal N. Tumor, represents the 
samples of Proximal T; Normal, represents the samples of Proximal N.The abscissa represents the sample name and the ordinate represents the 
differential metabolite. The color from blue to red indicates that the expression abundance of metabolites is from low to high, that is, the more red 
indicates that the expression abundance of differential metabolites is higher

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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discriminative metabolites in the main enriched path-
ways (Fig. 6). In distal and proximal GCs, non-tumor tis-
sues were enriched with Helicobacter. Helicobacter had a 
significantly positive correlation with fatty acid metabo-
lism but a significantly negative correlation with amino 
acid metabolism and glucose metabolism. The abundance 
of Streptococcus, Prevotella, Enterobacter, Lactobacil-
lus, Acinetobacter, Muribaculaceae, Methylobacterium-
Methylorubrum, and Faecalibacterium were significantly 
increased in Distal T and positively correlated with all 
the differential metabolites in the glutathione, purine, 
and multiple amino acids metabolism pathways. These 
bacteria had a significantly negative correlation with fatty 
acid metabolism (Fig. 6A). The abundance of Bacteroides, 
Lactobacillus, Muribaculaceae, Rikenellaceae_RC9_gut_
group, and Morganella were significantly increased in 
Proximal T and positively correlated with amino acid 
metabolic pathway and glucose metabolism. However, 
they were negatively correlated with fatty acid metabo-
lism. Interestingly, Muribaculaceae also had a signifi-
cantly positive correlation with N-Acetylneuraminic acid 
and 1-Methylnicotinamide. In contrast, Rikenellaceae_
RC9_gut_group was positively correlated with 1-Methyl-
nicotinamide (Fig. 6B).

Discussion
To the best of our knowledge, this is the first study to 
explore the differences in microbial diversity between 
proximal and distal GCs. Herein, the diversity and rich-
ness of the gastric microbiota were not significantly 

different between Proximal T and Distal T. At the phy-
lum level, Campilobacterota was significantly decreased 
in Proximal T and Distal T. Bacteroidota, Firmicutes, 
Actinobacteriota, and Desulfobacterota were increased 
in Distal T and Proximal T. Acidobacteriota, Myxo-
coccota and Cyanobacteria were increased in Proxi-
mal T. Proteobacteria, Fusobacteriota, Spirochaetota, 
Patescibacteria, and Bdellovibrionota were significantly 
increased in Distal T. At the genus level, Helicobac-
ter was decreased in Proximal T and Distal T. This 
result is consistent with the previous results of other 
researchers [22]. Lactobacillus and Muribaculaceae 
were both increased in Distal T and Proximal T. Son-
veaux et al. reported that Lactobacillus might generate 
metabolites that could be used as an energy source for 
tumor growth and angiogenesis [23]. Zhang et al. pro-
posed that since the abundance of Muribaculaceae was 
increased in cholangiocarcinoma, it could be a prom-
ising biomarker for its diagnosis [24]. However, Prevo-
tella, Streptococcus, Acinetobacter, Faecalibacterium, 
Enterobacter, Methylobacterium-Methylorubrum, and 
Alloprevotella were increased only in Distal T. In com-
parison, Rikenellaceae_RC-_gut_group, Methylophilus, 
Bacteroides, Morganella, Romboutsia, Parabacteroides, 
and Desulfovibrio were only increased in Proximal 
T. When Distal T and Proximal T were compared, 
the abundance of Methylobacterium-Methylorubrum 
was increased in Distal T, whereas that of Rikenel-
laceae_RC9_gut_group was significantly increased 
in Proximal T at the genus level. Limited studies on 

Fig. 6  The integrated analysis of microbiota and metabolites. The association between top20 genera and 20 differential metabolites were analyzed 
using the Spearman’s correlation method. A Distal T vs Distal N, B Proximal T vs Proximal N. The abscissa represents differential microorganisms 
and the ordinate represents differential metabolites. Red, positive correlations; Blue, negative correlations. Darker the color, indicating that the 
correlation is more significant.*p < 0.05; **p < 0.01;***p < 0.001



Page 11 of 14Yang et al. Journal of Translational Medicine          (2022) 20:439 	

Methylobacterium-Methylorubrum suggested that it 
could survive in extreme environments and was related 
to drug resistance [25, 26]. Previous studies have also 
evinced that Rikenellaceae_RC9_gut_group is associ-
ated with inflammation [27].

The metabolome analysis of Distal T and Distal N 
revealed 54 significant differential metabolites. How-
ever, the comparison between Proximal T and Proximal 
N revealed merely 37 metabolites with significant dif-
ferences. KEGG analysis demonstrated that these dif-
ferent metabolites of distal gastric cancer and proximal 
gastric cancer were related to aminoacyl-tRNA biosyn-
thesis, central carbon metabolism in cancer, neuroac-
tive ligand-receptor interaction, histidine metabolism, 
biosynthesis of unsaturated fatty acids, protein digestion 
and absorption, ABC transporters, glutathione metabo-
lism, apoptosis, FoxO signaling pathway, Huntington 
disease, long-term potentiation, spinocerebellar ataxia, 
nicotine addiction, GABAergic synapse, and alcoholism. 
The results are in line with the findings of previous stud-
ies. Gao et al. also determined that the aminoacyl tRNA 
biosynthesis pathway in GC tissues was significantly up-
regulated compared with adjacent non-tumor tissues 
[28]. The neuroactive live receptor interaction pathway 
is involved in the tumor microenvironment and cell-cell 
communication [29]. The relative abundance of the dif-
ferential metabolites of amino acids in tumor tissues was 
higher than in non-tumor tissues. A study by Tsai et al. 
unveiled the aberrant metabolism of multiple amino 
acids in gastric cancer [30]. The relative abundance of 
the differential metabolites of amino acids in tumor tis-
sues was higher than in non-tumor tissues. Since tumor 
cells use amino acids to produce energy and synthesize 
proteins and nucleosides, increasing the concentration of 
amino acids is essential for tumor cell proliferation.

Different metabolites in distal GC were also correlated 
with purine metabolism, D-glutamine and D-glutamate 
metabolism, sphingolipid signaling pathway, proximal 
tubule bicarbonate reclamation, Parkinson’s disease, 
taurine and hypotaurine metabolism, arginine biosyn-
thesis, alanine, aspartate and glutamate metabolism, 
β-alanine metabolism, butanoate metabolism, ascorbate, 
and aldarate metabolism, and nicotinate and nicotina-
mide metabolism. Prior studies have highlighted that 
the sphingolipid signaling pathway, alcoholism, glu-
tathione metabolism, taurine and hypotaurine metabo-
lism, alanine, aspartate, and glutamate metabolism were 
all associated with GC [31–34]. Strikingly, PD has been 
associated with most cancers in Taiwan [35]. Abnormal 
arginine metabolism is a potential treatment for GC 
[36]. Previous studies have also shown that the GC dif-
ferential genes are enriched in the butyric acid metabolic 
pathway [37]. Taylor et  al. concluded that the ascorbic 

acid pathway was related to melanoma [38]. Cumulative 
evidence suggests that nicotinamide plays an instrumen-
tal role in cancer prevention and therapy [39]. Interest-
ingly, the abundance of nicotinamide related metabolites 
was decreased in distal GC. Moreover, different metabo-
lites identified in proximal GC were also related to insu-
lin resistance, inflammatory mediator regulation of TRP 
channels, human papillomavirus infection, rheumatoid 
arthritis, glycine, serine, and threonine metabolism, 
glutamatergic synapse, cocaine addiction, necroptosis, 
circadian entrainment, and so on. Kwon et  al. hypoth-
esized that insulin resistance could be an independent 
risk factor for GC [40]. Studies have corroborated that 
human cytomegalovirus infection is related to the occur-
rence and development of GC [41]. The transient recep-
tor potential (TRP) channel is the key receptor of pain 
stimulation signal transduction. The substances released 
by the microenvironment of different types of cancer 
govern the activity of TRPs by regulating intracellular 
signaling pathways [42]. Prolonged immune dysregula-
tion and the resulting inflammatory response associated 
with the development of rheumatoid arthritis could also 
lead to increased cancer development risk [43]. There are 
overwhelming reports supporting the role of supplemen-
tary glycine in the prevention of many diseases and disor-
ders, including cancer [44]. Circadian timing can modify 
2- to tenfold the tolerability of anticancer medications in 
experimental models and cancer patients [45]. A study 
of colorectal cancer exposed the differences in genes 
between the liver metastases and the primary tumors. 
KEGG analysis of mutant genes showed that the muta-
tions were mainly distributed in circadian entrainment, 
insulin secretion, and glutamatergic synapses [46]. These 
results indicate that the occurrence of distal GC may be 
closely related to the disorder of amino acid metabolism, 
lipid metabolism, and nucleotide metabolism. Addition-
ally, the occurrence and development of proximal GC 
may be related to hormone dysregulation.

According to Spearman’s correlation analysis, Meth-
ylobacterium-Methylorubrum, which was significantly 
increased in Distal T, was positively correlated with 
adrenic acid, L-pyroglutamic acid, D-(-)-glutamine, and 
acetyl phosphate. However, Methylobacterium-Methyl-
orubrum was negatively correlated with glycerophospho-
N-palmitoyl ethanolamine, γ-linolenic acid, α-eleostearic 
acid, monoolein, and FAHFA. L-pyroglutamic acid and 
glutamine are metabolites of glutamine metabolism, and 
they were significantly increased in Distal T[47]. Studies 
have found that Streptococcus can metabolize glutamine 
into pyroglutamate and ammonia [48]. Recent research 
implies that adrenic acid can determine the sensitivity of 
ferroptosis in gastric cancer [49]. Duan et al. showed that 
glycosphospho-N-palmitoyl ethanolamine is a potential 



Page 12 of 14Yang et al. Journal of Translational Medicine          (2022) 20:439 

biomarker of depression [50]. Besides, correlation anal-
ysis revealed that Methylobacterium-Methylorubrum 
was associated with the decrease in glycosphospho-
N-palmitoyl ethanolamine in Distal T. γ-linolenic acid 
can inhibit the growth and epithelial-mesenchymal 
transformation of gastric cancer cells [51]. Meanwhile, 
α-Eleostearic acid inhibits the proliferation of breast 
cancer cells [52]. Monoolein and nanocomposites could 
be utilized for cancer drug delivery [53]. Some FAHFAs 
can enhance glucose tolerance and insulin sensitivity, 
stimulate insulin secretion, and exert anti-inflammatory 
effects [54]. Rikenellaceae_RC_gut_group, which was 
significantly increased in Proximal T, was positively cor-
related with N-acetylneuraminic acid, also referred to as 
sialic acid, and negatively correlated with 2,3-dihydroxy-
propyl 12-methyltridecanoate. Büll et  al. observed that 
sialic acid had a key role in tumor immune escape. They 
proved that sialic acid block creates an immune permis-
sive tumor microenvironment for CD8 + T cell-mediated 
tumor immunity [55]. Earlier studies have reported that 
Legionella pneumophila can be metabolized to 2,3-dihy-
droxypropyl 12-methyltridecanoate [56]. The aforemen-
tioned results showed differences in microbial-related 
metabolites in proximal and distal GCs, which further 
suggested that there are distinct mechanisms for the 
occurrence and development of proximal and distal GCs.

Our study had several limitations that need to be taken 
into account. First, the sample size of proximal and distal 
GCs was limited, resulting in no significant difference in 
the microbial diversity and abundance between proximal 
and distal GCs. Second, differential microbiota and metab-
olites were discovered in proximal and distal GCs, and the 
pathways associated with metabolite enrichment were pre-
liminarily analyzed. Nevertheless, no further experiments 
have been undertaken to determine the cause of this dif-
ference. Lastly, dietary habits and medications impact 
microbial composition and metabolism, but the patients’ 
dietary and medication data were not collected.

In conclusion, to the best of our knowledge, the dif-
ferences in microbial composition and metabolites in 
proximal and distal GCs were described for the first time, 
and the correlation between microbiota and metabolites 
was preliminarily discussed. Methylobacterium-Methy-
lorubrum was significantly increased in Distal T, posi-
tively correlated with cancer-promoting metabolites, and 
negatively correlated with cancer-inhibiting metabolites. 
Moreover, Rikenellaceae_RC_gut_group was significantly 
increased in Proximal T and was positively correlated 
with cancer-promoting metabolites. These metabolites 
and microbiota could be related to the various mecha-
nisms involved in the occurrence and development of 
proximal and distal GCs and provide a foundation for 
future treatments; hence, they deserve further study.
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