Table 4.
Experimental results for multi-class classification and cluster headache class detection
Two Classes | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naive Bayes Classifier | Support Vector Machine | Logistic Regression | |||||||||||
P | R | F1-score | Accuracy | P | R | F1-score | Accuracy | P | R | F1-score | Accuracy | ||
N-grams | 0,744 | 0,7 | 0,688 | 0,732 | 0,854 | 0,832 | 0,838 | 0,858 | 0,856 | 0,83 | 0,838 | 0,858 | |
Metadata | 0,802 | 0,816 | 0,808 | 0,821 | 0,804 | 0,816 | 0,808 | 0,821 | 0,804 | 0,816 | 0,808 | 0,821 | |
N-grams + metadata | 0,744 | 0,7 | 0,688 | 0,732 | 0,838 | 0,826 | 0,828 | 0,849 | 0,848 | 0,84 | 0,84 | 0,858 | |
Class: cluster headache | |||||||||||||
Naive Bayes Classifier | Support Vector Machine | Logistic Regression | |||||||||||
P | R | F1-score | P | R | F1-score | P | R | F1-score | |||||
N-grams | 0,676 | 0,586 | 0,586 | 0,834 | 0,74 | 0,778 | 0,838 | 0,74 | 0,779 | ||||
Metadata | 0,71 | 0,81 | 0,754 | 0,71 | 0,81 | 0,754 | 0,71 | 0,81 | 0,754 | ||||
N-grams + metadata | 0,676 | 0,586 | 0,586 | 0,792 | 0,76 | 0,769 | 0,808 | 0,784 | 0,79 |
Legend: Highest accuracy scores for the two classes are boldfaced, the best F1-score for the ‘cluster headache’ class is underlined. Abbreviations: Avg Average, P Precision, R Recall