Skip to main content
. 2022 Sep 30;23(1):129. doi: 10.1186/s10194-022-01490-0

Table 4.

Experimental results for multi-class classification and cluster headache class detection

Two Classes
Naive Bayes Classifier Support Vector Machine Logistic Regression
P R F1-score Accuracy P R F1-score Accuracy P R F1-score Accuracy
N-grams 0,744 0,7 0,688 0,732 0,854 0,832 0,838 0,858 0,856 0,83 0,838 0,858
Metadata 0,802 0,816 0,808 0,821 0,804 0,816 0,808 0,821 0,804 0,816 0,808 0,821
N-grams + metadata 0,744 0,7 0,688 0,732 0,838 0,826 0,828 0,849 0,848 0,84 0,84 0,858
Class: cluster headache
Naive Bayes Classifier Support Vector Machine Logistic Regression
P R F1-score P R F1-score P R F1-score
N-grams 0,676 0,586 0,586 0,834 0,74 0,778 0,838 0,74 0,779
Metadata 0,71 0,81 0,754 0,71 0,81 0,754 0,71 0,81 0,754
N-grams + metadata 0,676 0,586 0,586 0,792 0,76 0,769 0,808 0,784 0,79

Legend: Highest accuracy scores for the two classes are boldfaced, the best F1-score for the ‘cluster headache’ class is underlined. Abbreviations: Avg Average, P Precision, R Recall