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Abstract

Motivation: Predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in triple-negative
breast cancer (TNBC) patients accurately is direly needed for clinical decision making. pCR is also regarded as a
strong predictor of overall survival. In this work, we propose a deep learning system to predict pCR to NAC based on
serial pathology images stained with hematoxylin and eosin and two immunohistochemical biomarkers (Ki67 and
PHH3). To support human prior domain knowledge-based guidance and enhance interpretability of the deep learn-
ing system, we introduce a human knowledge-derived spatial attention mechanism to inform deep learning models
of informative tissue areas of interest. For each patient, three serial breast tumor tissue sections from biopsy blocks
were sectioned, stained in three different stains and integrated. The resulting comprehensive attention information
from the image triplets is used to guide our prediction system for prognostic tissue regions.

Results: The experimental dataset consists of 26 419 pathology image patches of 1000� 1000 pixels from 73 TNBC
patients treated with NAC. Image patches from randomly selected 43 patients are used as a training dataset and
images patches from the rest 30 are used as a testing dataset. By the maximum voting from patch-level results, our
proposed model achieves a 93% patient-level accuracy, outperforming baselines and other state-of-the-art systems,
suggesting its high potential for clinical decision making.

Availability and implementation: The codes, the documentation and example data are available on an open source
at: https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers

Contact: jkong@gsu.edu or hduanmu@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Triple-negative breast cancers (TNBCs) are an aggressive breast
cancer subtype with dismal prognosis, high recurrence and death

rates (Liedtke et al., 2008). In addition, this subtype has high intra-
tumoral heterogeneity and early stage TNBC tumors lack predictive
biomarkers (Curtis et al., 2012). Treatment options for TNBC are
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mostly limited to chemotherapy and in some instances immunother-
apy. Pathological Complete Response (pCR), defined as the dis-
appearance of invasive tumors after neoadjuvant chemotherapy
(NAC), is widely used in breast cancer treatment planning (Von
Minckwitz et al., 2012). Literature suggests that pCR presents a
strong positive relationship with the overall survival and disease-free
survival (Cortazar et al., 2014). However, pCR after NAC treatment
is only observed in a limited subset (30–40%) of TNBC patients
(Oshi et al., 2021). With an accurate pCR prediction system, those
patients predicted as non- or limited responders to NAC treatment
could be directed toward clinical trial options that offer alternatives
to conventional cytotoxic therapy. Therefore, accurately predicting
pCR prior to delivery of neoadjuvant treatment would be critical to
personalize treatment.

However, an accurate pCR prediction, prior to chemotherapy, is
quite challenging. Despite numerous prior studies using different
data modalities such as CT/PET (Li et al., 2020; Park et al., 2012),
MRI (De Los Santos et al., 2013; Duanmu et al., 2020) and mam-
mography (Shin et al., 2021; Xing et al., 2021), the prediction per-
formance remains insufficient for clinical deployment. Compared to
these data types, hematoxylin and eosin (H&E) stained and IHC-
stained whole slide images (WSIs) of tissue biopsies are poorly
explored for the prediction of NAC response. WSIs can serve as a
decisive image modality that is already routinely used by patholo-
gists for clinical diagnosis and prognosis in clinical settings. While
there are few published studies on pCR prediction with pathology
images (Ali et al., 2017; Li et al., 2021; Mao et al., 2014), the overall
prediction performances are limited due to the use of a single infor-
mation source, e.g. images from a single stain.

With the rapid development of deep learning techniques, espe-
cially convolutional neural networks (CNNs), recent years have wit-
nessed a significant advance not only in natural image processing
research (LeCun et al., 2015) but also in a wide range of biomedical
image analysis tasks (Shen et al., 2017), such as abnormal region de-
tection (Gao et al., 2018), cell segmentation (Duanmu et al.,
2021a,b) and survival prediction (Bello et al., 2019). Despite the
great success in medical image analysis tasks, CNNs still present
two noteworthy drawbacks: (i) the original CNN design does not
make it easy to support multi-modal data processing or multi-modal
image analysis. In many medical prognostic tasks, it is often neces-
sary to analyze information from multiple data sources or image
types before a final decision can be reached. Although this problem
has recently drawn attention from the research community, there is
a lack of methods that can be widely proven effective yet (Zhou
et al., 2019); (ii) the convolution operations in CNNs treat every
image pixel equally. However, tissue regions in pathology images do
not present an equal amount of prognostic information for the pre-
diction. Paying attention to areas of low or no prognostic values
could lead to incorrect or inaccurate disease assessment results (Yao
et al., 2020).

We present a unique solution to address these two problems. In
addition to the predictive value from H&E images, another comple-
mentary source of information critical for pCR prediction enhance-
ment is Immunohistochemical (IHC) images with informative
biomarkers such as Ki67 for cell proliferation and Phosphohistone
H3 (PHH3) for mitotic activity (Goltz et al., 2015). In current diag-
nostic practice, pathologists quantify proliferating cell population
within tumors by Ki67 biomarker. Ki67 positivity is also known for
its relative responsiveness to chemotherapy (De Azambuja et al.,
2007). The PHH3 mitosis signal characterizes a sub-phase of the en-
tire proliferative cell cycle. Thus, we developed a deep learning pCR
prediction system with serial histopathology images including H&E
stain, Ki67, and PHH3 IHC biomarkers. Such a prediction system
jointly analyzes tumor cells, proliferation and mitosis biomarkers in
a single tissue space that can better capture the profile of cycling
proliferating tumor cells and the inherent mitotic propensity in
TNBCs. Although CNNs present certain learning abilities for mak-
ing proper spatial attention on the whole images, the overall robust-
ness, accuracy and interpretability can be further enhanced with
prior human-knowledge (Zhu et al., 2019). We thus propose a deep
learning system mimicking human review procedures in clinical

settings by creating a spatial attention mechanism specifically on
proliferation (Ki67) and mitosis (PHH3)-positive tumor cells.

The main contributions of this work are 4-fold. First, we devel-
oped a deep learning architecture for an enhanced pCR prediction
with integrated serial histopathology images stained using H&E
stain and two IHC biomarkers (i.e. Ki67 and PHH3). Second, a
human knowledge-derived spatial attention mechanism is proposed
to address the uniform spatial attention limitation by the convolu-
tion operations in CNNs. Specifically, the spatial attention mechan-
ism in this work concentrates on regions enriched with tumor cells
by proliferative (Ki67) and mitotic (PHH3) biomarkers. Third, the
intermediate results from this spatial attention mechanism can also
help pathologists identify areas of high prognostic value and im-
prove deep learning interpretability. Finally, the developed spatial
attention mechanism can be readily transferred to other customized
spatial attention modes to support various tasks in different applica-
tion scenarios.

2 Materials and methods

2.1 System overview
We present the overall architecture of our prediction system in
Figure 1. As we generate WSIs of the three serially cut full-face sec-
tions stained for H&E and two IHC biomarkers (Ki67 and PHH3),
our next processing step is to spatially register these three serial
images using a hierarchical-based approach, first starting with a low
image resolution (Rossetti et al., 2017). The resulting learned trans-
formations are next mapped to a high image resolution for retaining
the image details. In the top left ‘Image Registration’ panel, regis-
tered sample image regions in H&E stain, and of two IHC
biomarkers (i.e. Ki67 and PHH3) of size 8000� 8000 and their
zoom-in views (1000� 1000 pixels) are presented in the left and
right columns, respectively. Next, tumor cells in H&E images are
detected by a Mask-RCNN-based model, while positive biomarker
areas (brown) in IHC images are identified by a color
deconvolution-based biomarker detector. In the next step, a spatial
attention mechanism is introduced to direct the system’s attention to
areas enriched with tumor cells of positive Ki67 and PHH3 bio-
markers, as such tumor regions suggest noteworthy cell proliferation
events and mitotic activities. Finally, a ResNet-34-based deep learn-
ing model is trained for pCR prediction.

2.2 Image registration
To enable the integrated use of serial histopathology images stained
using H&E, and two IHC biomarkers, we register such image trip-
lets by a dynamic registration method (Rossetti et al., 2017). As
each whole slide histopathology image can include giga-pixels by
scale, it is technically infeasible to complete WSI registration all at
once. As a result, the spatial transformations between image pairs
are first estimated at a low image resolution. In practice, the highest
image resolution that machine memory can accommodate is selected
as the low image resolution. With our dataset and machine specifi-
cations, the low image level is downscaled by 16 times from the full
image resolution. The optimal spatial transformations learned with
a rigid and non-rigid registration at the low image resolution are
next mapped to the full image resolution. The H&E slide serves as
the reference and two IHC images are mapped to the H&E slide. At
the high image resolution, the tissue area in the reference H&E slide
is divided by 8000� 8000 image regions. Based on the mapped spa-
tial transformations, the corresponding serial Ki67 and PHH3 image
regions are aligned to the H&E reference image region after the lin-
ear interpolation. To make these mapped IHC image regions match
better to the reference, we apply another round of rigid registration
for final matched image triplets.

2.3 Cell detection and biomarker detection
As there is a large number of small-scaled tumor cells in histopath-
ology images, Mask-RCNN, a classical two-stage detection system
known for its localization accuracy for small object detection, is
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used as our tumor cell detector (He et al., 2017). Specifically, we
customize the anchor scales and ratios in the Mask-RCNN based on
tumor cell size in our dataset. Mask-RCNN, which is derived from
the Faster-RCNN, has a region proposal network for proposing can-
didate regions containing objects of interest, a region of interest
pooling component for resizing candidate regions, a detection mod-
ule for classification and the bounding box refinement, and a seg-
mentation head for segmenting proposed regions. Note that our
tumor cell detector is trained before the pCR prediction system with
independent training datasets. To locate IHC biomarkers in the reg-
istered IHC serial images, we constructed an analysis pipeline with
the color space conversion and color deconvolution (Ruifrok et al.,
2001). One pre-defined color conversion matrix is applied to all pix-
els for converting the RGB to the Hematoxylin–Eosin–DAB color
space. The resulting biomarker positive areas can be recognized by
thresholding the DAB signal channel. In our study, the appropriate
threshold is set 0.31. Pixels presenting strong DAB signals are con-
nected spatially and unduly small connected components are
removed to enhance the biomarker detection results.

2.4 Spatial attention map generation
We design a domain knowledge-derived spatial attention mechanism
to guide the deep learning system for specific prognostic areas that
pathologists would investigate during the human reviewing process.
Rather than inspecting all tumor cells, pathologists usually focus
their attention to hot spots enriched with tumor cells that are active-
ly proliferating as suggested by the Ki67 positivity. To identify such
informative tissue regions of predictive value to the pCR prediction,
we leverage the proliferation and mitosis information from co-
registered Ki67 and PHH3 IHC serial images. After identification of
tumor cells from the H&E slide and biomarker positive areas, as
illustrated in the ‘Results’ panel in Figure 1, we next detect regions
enriched with positive tumor cells by Ki67 and PHH3. Based on our
dataset, the range of tumor cell size is about 60� 100 pixels by the

equivalent cell diameter. Therefore, we label a tumor cell to be Ki67
or PHH3 positive if the distance between its center and the nearest
Ki67þ or PHH3þ area is smaller than 100 pixels.

After all tumor cells are labeled by Ki67 and PHH3 biomarker,
the prior knowledge derived spatial attention map is produced by
the kernel density estimation (KDE) algorithm (Davis et al., 2011;
Phillips et al., 2006). KDE is a non-parametric way to estimate the
probability density function on finite data samples. In this work, the
Gaussian kernel function is placed on each tumor cell of positive
biomarker and all such responses are summed and normalized to
form the smooth density estimation. Some representative attention
maps are presented in Figure 2. The kernel bandwidth is set to 150
pixels, which is slightly larger than a tumor cell size to ensure the
tumor cell neighborhood coverage. When such spatial attention is
generated by the ratio of number of tumor cells in Ki67 to that in
PHH3-enriched regions (i.e. Fig. 2d), only a positive tumor cell by
PHH3 with such a ratio larger than 0.2 within a 500-pixel neighbor-
hood is considered as a valid data sample for the KDE analysis. The
kernel bandwidth is set to 500 pixels in that case to capture areas
presenting high ratio values. The performances of all attention
modes are compared in our study.

2.5 pCR prediction
The resulting spatial attention maps are multiplied with original
pathology images in a pixel-wise manner. The resulting attention
images are provided to the prediction module that uses ResNet-34
as the backbone (He et al., 2016). Given the computation burden,
data scale and model complexity, ResNet-34 is a suitable backbone
for our study. After the first convolutional layer with a kernel size of
7, four main blocks having different channel numbers (i.e. 64, 128,
256 and 512, respectively) are proceeded with for further analysis.
For better feature extraction, residual sub-blocks in these main
blocks are repeated for 3, 4, 6 and 3 times, respectively. In each re-
sidual sub-block, two convolutional layers with a kernel size of three

Fig. 1. The overall architecture of our proposed system. Serial IHC images with biomarker Ki67 and PHH3 are registered to the H&E slide for each patient. Tumor cells in

H&E images are detected, and positive biomarker areas in IHC images are identified. A spatial attention mechanism is introduced to direct system attention to areas enriched

with tumor cells of positive Ki67 and PHH3 biomarkers. Finally, a ResNet-34-based deep learning model is trained for pCR prediction

Multi-modal pCR prediction 4607



are included. Additionally, one shortcut connection characteristic of
the ResNet is deployed. All convolutional layers are followed by an
activation function layer and a batch normalization layer. Finally,
fully connected layers are deployed to make the pCR prediction after
the global average pooling.

3 Results

3.1 Data description and training configurations
A dataset for tumor cell detection independent of the dataset for
pCR prediction is used to train the tumor cell detector. The tumor
cell training dataset consists of 868 40x H&E histopathology image
regions of size 8000� 8000 pixels. In total, 53 314 tumor cells are
manually annotated. Due to the large size of these image regions,
they are partitioned to non-overlapped 1000� 1000 image patches
that are next resized to 512�512 pixels to fit the deep learning
tumor cell detector. The tumor cell detector is trained for 200
epochs by the cross-entropy loss with an NVIDIA V100 GPU. In our
study, stochastic gradient descent is used as the optimizer. Nesterov
momentum is activated and the learning rate is set as 0.001.

A separate dataset of serial histopathology images in H&E and
of Ki67 and PHH3 IHC biomarkers is used for pCR prediction
training. A total of 73 NAC-treated TNBC cases are collected before
neoadjuvant therapy from Emory University Healthcare. Formalin-
fixed and paraffin-embedded serial tissue biopsies from each patient
before neoadjuvant therapy are H&E stained and immunohisto-
chemically stained for Ki67 and PHH3. The resulting slides are
digitally scanned and co-registered. pCR cases are those biopsy pre-
treatment specimens whose post-NAC surgical specimens had no re-
sidual invasive carcinoma in both the breast tissue and regional
lymph nodes. Our analysis is based entirely on the evaluation of the
pre-treatment biopsy; we did not analyze the post-NAC treatment
specimens. If a patient is not pCR, it is considered a residual disease
(RD) case. Based on these criteria, 43 and 30 patients are labeled
with pCR and RD after NAC, respectively.

A data summary of our dataset for prediction is presented in
Table 1. Tissue regions of all 73 patients result in 969 40x histopath-
ology image regions of size 8000� 8000 pixels. The training dataset
for pCR prediction includes randomly selected 26 pCR and 17 RD
patients with 553 tissue region images of size 8000� 8000 pixels.
Meanwhile, the testing dataset includes the other 17 PCR and 13
RD cases with 416 pathology image regions of size 8000� 8000 in
pixels. Each such image region is partitioned into non-overlapped
1000� 1000 image patches that are next resized to 512�512
images for deep learning model analysis. Images with less than 20
tumor cells are excluded from the dataset to ensure data for analysis
are properly represented. A total of 16 539 and 9880 pathology

images patches are included in the training and testing dataset, re-
spectively. As the resulting positive-to-negative ratio is around 1.5,
our dataset is generally balanced. We present an array of human-
validated image registration, tumor cell segmentation and biomarker
segmentation results in the Supplementary Material.

3.2 Model evaluation
We implemented and compared six different models to evaluate the
feasibility and efficacy of the proposed human knowledge guided
spatial attention mechanism targeting tissue regions enriched with
positive tumor cells by Ki67 and PHH3. They are pCR prediction
systems (i) with no attention mechanism; (ii) with an attention
mechanism on all tumor cells; (iii) with an attention mechanism on
tissue regions enriched with positive tumor cells by Ki67; (iv) with
an attention mechanism on tissue regions enriched with positive
tumor cells by PHH3; (v) with an attention mechanism on a high c%
where c% is defined as the percentage of positive tumor cells by
Ki67 presenting local PHH3 signals; and (vi) with an attention
mechanism on tissue regions enriched with positive tumor cells by
both Ki67 and PHH3. Evaluation metrics, including Accuracy, area
under curve (AUC), Precision and Recall, are used for quantitative
evaluation.

The detailed quantitative performance results are presented in
Table 2. Note the pCR prediction decisions at the region and patient
level are made by the maximum voting from the patch and region
level, respectively. The prediction system without any spatial atten-
tion mechanism presents the least competitive performance, with
0.700, 0.702 and 0.733 Accuracy at the patch, region and patient
level, respectively. With spatial attention on tumor cells, the model
Accuracy is improved to 0.783, 0.800 and 0.800 at the patch, region
and patient level, respectively. Noticeable improvements are also
suggested by other metrics. Additionally, the spatial attention on tis-
sue regions enriched with positive tumor cells by either Ki67 or
PHH3 is further beneficial to an enhanced pCR prediction, achiev-
ing AUCs by 0.825 and 0.802 at the patch level, and accuracy by
0.860 and 0.836 at the region level, respectively. Additionally, both
sources of attention achieve 0.833 Accuracy at the patient level.
Noteworthy models in the last two columns, i.e. Tumor (c%), and
Tumor (Ki67þ [ PHH3þ), boost the performance even further. The
model with the attention on c% is better than the previous four mod-
els by 6.42%, 8.14% and 7.18% for Accuracy at the patch, region
and patient level, respectively. By contrast, our best model with the
attention on tissue regions enriched with positive tumor cells by
both Ki67 and PHH3 is better than the previous four models by
8.24%, 9.30% and 12.00% for Accuracy at the patch, region and
patient level, respectively.

By performance comparison, the prediction system with spatial
attention on c% is slightly worse than the system with spatial atten-
tion on tissue regions enriched with positive tumor cells by both
Ki67 and PHH3 by all metrics but Precision. As Precision and Recall
are related to type I and II error, the system with spatial attention on
c% presents an overall inferior performance if both metrics are com-
bined. As the latter system learns attention from positive tumor cells

Table 1. Summary of the dataset for pCR prediction

pCR RD Total Pos/Neg

Training Patient level 26 17 43 1.53

Region level 313 240 553 1.30

Patch level 9321 7218 16 539 1.29

Testing Patient level 17 13 30 1.31

Region level 266 150 416 1.77

Patch level 6249 3631 9880 1.72

Total Patient level 43 30 73 1.43

Region level 579 390 969 1.48

Patch level 15 570 10 849 26 419 1.44

Note: Image numbers and the ratios of positive over negative cases in pa-

tient, region and patch levels are provided, respectively.Fig. 2. Spatial attention maps of different attention modes for a representative tissue

region. (a)–(c) The same small tissue area from co-registered H&E, Ki67 and PHH3

pathology image, respectively; (d) the attention map generated by the ratio of num-

ber of tumor cells in Ki67 to that in PHH3 enriched regions; (e)–(g) KDE density es-

timation results by all tumor cells, tumor cells in Ki67 and in PHH3 enriched

regions, respectively; (h) KDE density estimation results by the union of regions

enriched with tumor cells by Ki67 and PHH3
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by both Ki67 and PHH3 in a freestyle manner, it can generalize the

attention information better than the system learning attention on
pre-defined c% measure. The receiver operator characteristic curve

demonstrated in Figure 3a confirms this observation.

3.3 Ablation study
There are two salient features that make our proposed model

unique. It integrates serial histopathology H&E image with Ki67
and PHH3 (IHC) biomarker stained images and includes a domain

knowledge guided spatial attention learning mechanism. We design
an ablation study to evaluate these two components. Table 3
presents ablation study results of four models (i) processing only

H&E slides without any spatial attention mechanism (i.e. Model 1),
(ii) processing multi-modal serial slides without any spatial attention

mechanism (i.e. Model 2), (iii) processing only H&E slides with our
best spatial attention mechanism (i.e. Model 3) and (iv) processing
multi-modal serial slides with our best spatial attention mechanism

(i.e. Model 4), respectively.
Without attention information from IHC biomarkers, the base-

line system (i.e. Model 1) yields 0.665, 0.673 and 0.600 Accuracy at
the patch, region and patient level, respectively. With the inclusion

of serial pathology IHC images for prediction in Model 2, the pre-
diction performance is improved to 0.700, 0.702 and 0.733
Accuracy at the patch, region and patient level, respectively. Similar

system performance enhancement patterns are also observed be-
tween Model 3 and 4. Additionally, the high Recall and low
Precision in both systems with only H&E stained images (i.e. Model

1 and 3) indicate that these systems tend to produce false positives
by predicting a case more preferably as pCR. Without IHC Ki67

and PHH3 biomarker information support, H&E pathology image-
based prediction, especially without any spatial attention, only
achieves limited success.

Comparing models without (i.e. Model 1 and 2) and with prior
domain knowledge-based attention (i.e. Model 3 and 4), we notice

that our proposed spatial attention mechanism drastically improves
pCR prediction by 20.30% between Model 1 and 3, and 27.57%

between Model 2 and 4 at the patch level, respectively. The im-
provement percentages are 21.10% and 33.90% at the region level,
and 33.33% and 27.29% at the patient level. All these results sug-

gest a clear efficacy of our proposed domain knowledge-guided spa-
tial attention mechanism for pCR prediction. Additionally, ROC

curves plotted in Figure 3b suggest the same conclusions.

3.4 Visualization
To demonstrate the critical role our proposed domain knowledge
attention plays for pCR prediction, we present four typical sam-
ple cases in Figure 4. The first three columns from left to right are
four registered H&E, Ki67 and PHH3 histopathology images
regions, respectively. The spatial attention maps generated from
tissue regions enriched with positive tumor cells by both Ki67 and
PHH3 are presented in the fourth column. With class activation
map (CAM) algorithm (Zhou et al., 2016), we produce the spatial
attention maps in the last two columns from prediction models
with and without the spatial attention mechanism (i.e. Model 2
and 4). CAM algorithm is designed to visualize deep learning
results. It replaces the fully connected layers after the last convo-
lutional layer with one global pooling layer and one new fully
connected layer. The resulting system is trained again by only
allowing perturbations of newly added model weights. After
model training, a heatmap can be produced by a linear combin-
ation of weighted feature maps from the last convolutional layer
for each testing image. Such heatmaps indicate image attention
value for prediction. By attention maps in Figure 4, the CAM
visualization results from the prediction system with the spatial
attention are similar to the prior domain knowledge-derived spa-
tial attention maps, suggesting a good attention learning out-
come. Informative tissue areas for pCR prediction by human
prior knowledge are properly analyzed by the prediction system
with spatial attention. By contrast, the CAM visualization results
from the system without an attention mechanism tend to cover
wider tissue regions with a weaker specificity for locating inform-
ative regions.

3.5 Efficiency
The computational efficiency of a computer-aided clinical support-
ing system is important as it may limit a system deployment poten-
tial in real clinical settings. By a computer cluster equipped with one
NVIDIA Tesla V100 GPU and 2 Intel Xeon CPUs with 88 cores, it
takes less than 5 s to detect tumor cells in a H&E histopathology
image region of size 8000� 8000 pixels. It takes about 10 s to finish
the biomarker detection process. Although the time cost for the spa-
tial attention map generation highly depends on the size of tissue
regions of interest and the number of enriched positive tumor cells
by Ki67 and PHH3 in an image, the average cost by our dataset is
about 10 s. The final prediction module is efficient and can complete
the prediction of an image input in 2 s. When I/O time cost is
included, the overall PCR prediction analysis can be completed in
30 s per image triplet of 8000� 8000 pixels by size. Equipped with
parallel computing and batch operations, such analyses can be suffi-
ciently boosted for clinical support.

4 Discussion

4.1 Comparison to other state-of-the-art systems
To our best knowledge, few studies have been reported on the pCR
prediction using histopathology images of pretreatment biopsies of
patients with TNBCs utilizing machine learning, especially deep
learning methods. For example, pCR status has been predicted with
manually designed features from tumor infiltrating lymphocytes and

Table 2. Quantitative performance comparison across all proposed models by Accuracy, AUC, Precision and Recall at the image patch, re-

gion and patient level, with the best performance in bold for each metric

W/o attention Attention on tumor Tumor (Ki67þ) Tumor (PHH3þ) Tumor (c%) Tumor (Ki67þ [ PHH3þ)

Patch level Accuracy 0.700 0.783 0.825 0.802 0.878 0.893

AUC 0.710 0.812 0.884 0.838 0.946 0.962

Precision 0.722 0.784 0.828 0.801 0.908 0.897

Recall 0.854 0.907 0.912 0.914 0.898 0.939

Region level Accuracy 0.702 0.800 0.860 0.836 0.930 0.940

Patient level Accuracy 0.733 0.800 0.833 0.833 0.900 0.933

Fig. 3. Comparison of ROC curves of all evaluated models (a) using distinct atten-

tion information, and (b) for ablation studies

Multi-modal pCR prediction 4609



their subtypes (Mao et al., 2014). The number and spatial density of
detected tumor infiltrating lymphocytes are provided to the univari-
ate and multivariate logistic regression with other clinical variables
including age, tumor size, tumor type and molecular subtype. The
best prediction performance by the odds ratio is 6.44. Similar studies
on pCR prediction by logistic regression with cellular information
have been reported (Ali et al., 2016, 2017). One study uses cell
quantity profiles from pathology images for pCR prediction by con-
ventional machine learning methods, achieving an odds ratio of 4.46
(Ali et al., 2016). In a follow-up investigation from the same group,
the cell density from local neighborhoods in H&E slides is used for
prediction, but with a lower odds ratio of 2.92 (Ali et al., 2017). In
another study, pCR is predicted by tumor cell features (e.g. count,
size and circularity) and image-based features (e.g. mean pixel inten-
sity and correlation of the gray-level co-occurrence matrix). By the
multivariate binary logistic regression, it achieves an accuracy of
0.79 in a dataset with 58 patients (Dodington et al., 2021). All these
studies using conventional machine learning methods present a lim-
ited prediction success, largely due to limited sources of information
and human-defined engineering features insufficient for prediction
support.

By contrast, our proposed prediction system overcomes these
limitations by a human prior knowledge guided deep learning atten-
tion framework with integrative use of serial pathology slides in

multiple stains, achieving much better performance with an odds
ratio higher than 50. Except for our previous study on this topic
(Duanmu et al., 2021a,b), only one study using deep learning for
this prediction problem is found to our best knowledge (Li et al.,
2021). The Inception-V3-based CNN architecture is reported to pre-
dict pCR from NAC from pre-determined tumor epithelium regions
in H&E pathology images, achieving 0.84 by AUC. When tumor
epithelium regions from H&E images are combined with informa-
tion on stromal tumor-infiltrating lymphocytes and tumor subtype,
the prediction performance is improved to 0.89 by AUC. By com-
parison, our system integrating H&E stained pathology images with
IHC Ki67, and PHH3 biomarkers from serial slides achieves 0.96 by
AUC at the patch level. Encouraged by promising prediction results
from our previous work (Duanmu et al., 2021a,b), we further intro-
duce human prior knowledge guided spatial attention mechanism
and make such embedded attention module readily customizable to
other prediction analyses.

4.2 Spatial attention mechanism
Whole slide histopathology images are often large in size with giga-
pixels. Not all tissue areas present equal prognostic values for pre-
diction analyses. As a result, it is important to accurately locate
image areas with high predictive values for further processing. This

Table 3. Quantitative performance comparison among all ablated models for the ablation study

Single-modal w/o attention Multi-modal w/o attention Single-modal with attention Multi-modal with attention

Patch level Accuracy 0.665 0.700 0.800 0.893

AUC 0.644 0.710 0.820 0.961

Precision 0.679 0.722 0.802 0.897

Recall 0.894 0.854 0.908 0.939

Region level Accuracy 0.673 0.702 0.815 0.940

Patient level Accuracy 0.600 0.733 0.800 0.933

Fig. 4. Attention visualization demonstration for typical tissue regions. Representative H&E, Ki67 and PHH3 histopathology image regions are shown in (a)–(c); (d) spatial at-

tention maps targeting tissue regions enriched with positive tumor cells by Ki67 and PHH3; CAM visualization results from prediction models (e) with and (f) without the spa-

tial attention mechanism
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work introduces domain knowledge-driven spatial attention to
guide deep learning model training. In this way, deep learning mod-
els can pay more attention to prognostic tissue areas, contributing to
an enhanced training outcome. Leveraging the clinical biomarker
Ki67 for proliferation and the mitosis activity signal for better tumor
cell cycling characterizations (De Azambuja et al., 2007; Goltz
et al., 2015), we develop a spatial attention mechanism for a deep
learning model to target tumor regions enriched with positive tumor
cells by Ki67 and PHH3, effectively reducing the negative learning
impact from misleading areas. Different from our prior work
(Duanmu et al., 2021a,b), we make the spatial attention mechanism
separated from the final prediction module. In this way, spatial at-
tention mode can be easily transferred to other attention modes opti-
mal for other studies.

We present one representative patient H&E WSI and four
sampled tissue regions that include spatial attention by our method
in Figure 5. With our fully automated analysis pipeline, the resulting
spatial attention maps can facilitate pathologists to identify prog-
nostic tissue areas of interest in a large WSI. In the meanwhile, such
an attention mechanism can help improve the interpretation of how
a deep learning model works, which is critical to an informed clinic-
al decision support. Our prediction framework can be readily
extended to other attention modes to predict treatment responses to
other diseases. Depending on the domain knowledge of the disease,
the number and the type of IHC biomarkers can be flexibly custom-
ized for each prediction task.

4.3 IHC biomarker measure
Although proved to be promising by our comparison experiments,
the prediction system focusing on tissue regions enriched with posi-
tive tumor cells by PHH3 slightly underperforms when it is com-
pared with the model focusing on tissue regions enriched with
positive tumor cells by Ki67 overall. Notably, there are fewer posi-
tive biomarker areas in PHH3 than those in Ki67 IHC images. With
too few tissue areas to focus on, it can result in insufficient system
robustness for an accurate prediction. Additionally, the prediction
model with the attention on c% is slightly worse than the one with
attention on tissue regions enriched with positive tumor cells by
both Ki67 and PHH3. This can result from two major reasons. First,
the measure c% is sensitive to the computation errors from prior
analysis steps, including the image registration, cell localization and
biomarker detection. Second, the measure c%, as a manually
pre-defined parameter, may not be the best feature representation
that can be learned from IHC images. By contrast, the deep learning
model can extract the optimal feature patterns to support prediction
analysis in principle.

4.4 Model implementation
We design and implement our prediction system by principles of
both efficacy and efficiency. Considering the inference speed, port-
ability and detection performance on small objects, the two-stage
detector, Mask R-CNN, is chosen. One-stage detection systems gen-
erally present worse detection performance for small and crowded
targets of interest (Nguyen et al., 2020). By the same criteria, a

variant of ResNet architecture, i.e. ResNet-34, is chosen for its bal-
anced efficiency and effectiveness. Moreover, we increase the input
image size from 224�224 used in the original ResNet-34 to size
512�512 to achieve a larger scope of tissue perception but without
too much computation burden increase.

4.5 Limitations and future work
There are several directions we plan to investigate in future work.
First, we use serial tissue sections capturing both cellular phenotype
and molecular biomarker information; thus the resulting dataset
scale is limited. Our ongoing efforts are focused on collecting data
from more patients for more comprehensive system training and
testing. Second, as a key step to enable information integration from
serial histopathology images, serial image registration affects all the
following analysis steps. It is thus important to further improve the
registration accuracy and the system robustness with imperfect
inputs. Third, in our current analysis pipeline, the final prediction
decision is made by the maximum voting of local image patch-level
predictions. This decision-making mechanism limits the system from
leveraging global tissue information. A global analysis schema is
needed to enhance the divide-combine mode. Furthermore, the
developed attention mechanism can be extended to include addition-
al tumor microenvironment components (e.g. stroma and tumor-
infiltrating lymphocytes) to further enhance prediction performance.
In future studies, we plan to explore alternative ways to apply atten-
tion maps to original WSIs, such as the transformer (Prakash et al.,
2021).

5 Conclusion

In this work, we develop a domain knowledge-guided deep learning
system to predict pCR to NAC in a TNBC cohort. The developed
system simultaneously processes and integrates three serial path-
ology images capturing complementary tissue phenotype and mo-
lecular information critical to pCR prediction. The newly proposed
spatial attention mechanism directs deep learning attention to tissue
regions with prognostic values by human prior knowledge. The
intermediate attention results are visualized to help pathologists lo-
cate predictive tissue regions and interpret deep learning predictions.
With a well-prepared TNBC patient dataset, our system achieves
93% accuracy for pCR prediction. With a systematic ablation study,
we demonstrate the efficacy of an integrative use of tissue phenotype
and molecular information from serial tissue slides and the proposed
domain knowledge-driven spatial attention mechanism. The great
prediction performance, highly generalized attention and strong sys-
tem interpretability of our prediction system suggest its promising
clinical and translational impact on enhancing breast cancer treat-
ment planning.
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